题名

單分子光譜技術在生物物理和化學分析上的應用: I.微小脂質體的脂質動力學 II. 微流道內氧氣濃度梯度的量測和分析

并列篇名

Biophysical and chemical investigation using single molecule spectroscopy: I. Lipid dynamics in lipid bilayer of small unilamellar vesicles II. Probing oxygen gradient across micro-fluidic channel

DOI

10.6342/NTU201602829

作者

趙孟軒

关键词

共聚焦顯微鏡 ; DMPC ; DPPC ; 微脂粒 ; 小型單層微脂粒 ; 異構化 ; 氧氣淬息 ; 側向擴散 ; 氧氣梯度 ; 微流道 ; 馬可夫分析 ; confocal microscopy ; DMPC ; DPPC ; liposome ; small unilamellar vesicles ; isomerization ; intersystem crossing ; oxygen quenching ; lateral diffusion ; oxygen tension ; Birth-death Markov process ; micro-fluidic device

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2016年

学位类别

博士

导师

林金全

内容语文

英文

中文摘要

過去的一二十年,顯微鏡的解析度大幅提升使單一分子的動態行為偵測變得可能,進而找出隱藏在原本大量粒子的平均量測中所看不到的細微變化。單分子技術已被廣泛應用於生物學、物理學至材料科學等眾多領域。此論文即以單分子技術為核心,進行二大主軸的研究。主軸一為利用單分子技術研究仿生膜的脂質動力學。我們製備了四種不同的微小脂質體,直徑大約一百奈米,其成分組成為DMPC、DMPC/膽固醇、DPPC、DPPC/膽固醇,並在膜內嵌入染料(DiD)好進行偵測。DiD在膜內的光動力學和擴散行為會受到周圍環境的影響,表現在其螢光放射隨時間的變化。首先,透過訊號的自相關(autocorrelation)分析,我們發現脂雙層的極化區域有可能是氧氣穿透的障礙。接著,藉由三重態(triplet-state)生命期與擴散常數(diffusion constant)的交叉比較圖,我們可推斷仿生膜內除了過去所認定的相位(phase)外,應該還有極小的脂質簇合物(ultra-small lipids cluster)產生,仿生膜的相位也有可能呈現不均勻分布。在主軸二,我們結合單分子和微流道技術,希望量測數十微米流道內氧氣濃度隨空間的變化。此實驗中,藉由靈敏高速的攝影機(EM-CCD),我們可同時拍到散佈在流道內的染料分子的螢光表現,進而得到橫跨流道的氧氣梯度。因染料分子極小,空間上的解析度只取決於顯微鏡的繞射極限(~400nm)。相比於溶氧電極的大小(~3mm),單分子技術偵測的策略大幅提升了空間解析度,相信能成為觀察血管中或著膜內外溶氧變化的主要工具。

英文摘要

In the last decades, single molecule spectroscopy has been highly developed to visualize exactly one molecule in complex environments. The well-established method allows the investigation of heterogeneity which is hidden in ensemble observation and help to enlarge our knowledge raging from biology to material science. In topic I, we utilized the technique to explore lipid dynamics in the membrane of four types small unilamellar vesicles (SUV): DMPC, DMPC/cholesterol (55:45 molar ratio), DPPC, and DPPC/cholesterol (55:45 molar ratio). We observed that the polar region of membrane might become oxygen transport barrier where lipid polar heads and cholesterols reduce oxygen diffusivity. Moreover, we found that lateral translational diffusion of DiD in lipids membrane is not only highly dependent on the lipids membrane phase, but also sensitive to the microenvironment discrepancy. Through the diffusion coefficient and triplet-state 2D correlation spectrum, we found DiD may locate at huge lipids domain, the lipids-packing defects or DiD induced ‘bouquet’ ultra-small clusters. In topic II, we probed the oxygen gradient across microfluidic channels using single molecule spectroscopy. Dye molecule is served as a probe. Due to the oxygen sensitivity to the triplet-state lifetime, the random-distributed dyes could sense the oxygen concentration at specific place. Each probe was measured under wide-field mode so that the gas variation could be visualized simultaneously. The detection limit in space ~400nm originates from diffraction limit which is largely lower than commercial oxygen elctrode ~3mm. The small, highly-respond technique might be an inspiration to the detection of dissolved oxygen (DO) distribution in vessel and gas gradient across membrane.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. References in Part I
    連結:
  2. [6] Li, Q. F.; Wu, S. S. H. and Chou, K. C. Biophys. J. 2009, 97, 3224.
    連結:
  3. [9] Leung, B. O. and Chou, K .C. Applied Spectroscopy 2011, 65, 967-980.
    連結:
  4. [12] Gustafsson, M. G. L. J. Microsc.-Oxford 2000, 198, 82.
    連結:
  5. [13] Gustafsson, M. G. L. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 13081.
    連結:
  6. [16] Simons, K.; Vaz, W. L. C. Annu. Rev. Biophys. Biomol. Struct. 2004, 33, 269-95.
    連結:
  7. [17] Huang, C.; Mason, J. T. Proc. Natl. Acad. Sci. USA 1978, 75, 308-310.
    連結:
  8. [19] Galbraith, C. G.; Galbraith, J. A. J. Cell Sci. 2011, 124, 1607-1611.
    連結:
  9. [22] Simons, K.; Toomre, D. Nat. Rev. Mol. Cell Biol. 2000, 1, 31-39.
    連結:
  10. [27] Saxton, M. J.; Jacobson, K. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 373-399.
    連結:
  11. [30] Kyoung, M.; Sheets, E. D. Biophys. J. 2008, 95 5789–5797.
    連結:
  12. [33] Q. Ke and M. Costa, Mol. Pharmacol., 2006, 70, 1469–1480.
    連結:
  13. References in Part II
    連結:
  14. Chapter 1
    連結:
  15. [5] Palmer, A. G.; Thompson, N. L. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 6148–6152.
    連結:
  16. [6] Meyer, T.; Schindler, H. Biophys. J. 1988, 54, 983–993.
    連結:
  17. [8] Borejdo, J.; Putnam, S.; Morales, M. F. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 6346–6350.
    連結:
  18. [9] Schwille, P.; in Fluorescence correlation spectroscopy. Theory and applications, 2001, Elson, E.L.; Rigler, R. Eds., Springer, Berlin, p. 360
    連結:
  19. [10] Schwille, P.; Haustein, E. in Fluorescence correlation spectroscopy. An Introduction to its Concepts and Applications, p.18
    連結:
  20. [11] H. Yang and X. S. Xie, Chem. Phys., 2002, 284, 423–437.
    連結:
  21. [14] P. Tinnefeld, D. K. Herten and M. Sauer, J. Phys. Chem. A, 2001, 105, 7989-8003.
    連結:
  22. [20] Andreoli, T.E. in Membrane Physiology, 1987, Plenum Medical Book
    連結:
  23. [21] Kam, L.; Boxer, S. G. J. Am. Chem. Soc. 2000 , 122 , 12901 .
    連結:
  24. [24] Mabrey-Gaud, S. in Liposomes: From Physical Structure to Therapeutic Applications. C. G. Knight, ed. Elsevier/North-Holland, Amsterdam, 1981, p. 105-138
    連結:
  25. [25] Huang, C.; Lapides, J. R.; Levin, I. R. J. Am. Chem. Soc. 1982 , 104 , 5926-5930.
    連結:
  26. [28] Ruocco, M. J.; Shipley, G. G. Biochim. Biophys. Acta, 1982, 691, 309-320.
    連結:
  27. [30] Heimburg, T. Thermal biophysics of membranes, 1st ed.; Wiley- VCH: Weinheim, 2007.
    連結:
  28. [34] Rubenstein, J. L. R.; Smith, B. A.; McConnell, H. M. Proc. Natl. Acad. Sci. U.S.A. 1979, 76, 15–18.
    連結:
  29. [39] Sankaram, M. B.; Thompson, T. E.; Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8686–8690.
    連結:
  30. [41] Faller, R. Lecture Notes. University of California Davis, 2014.
    連結:
  31. [43] Petrov, E.P.; Schwille, P. Biophys. J. 2008, 94, L41–L43.
    連結:
  32. [47] Saxton, M. J.; Jacobson, K. Annu. Rev. Biophys. Biomol. Struct. 1997, 26, 373-399.
    連結:
  33. [48] Kahya, N.; Schwille, P. J. Fluoresc. 2006, 16, 671–678.
    連結:
  34. [51] Machan, R.; Hof, M. Biochim. Biophys. Acta. 2010, 1798, 1377–1391.
    連結:
  35. [56] Subczynski, W.K.; Hyde, J. S.; Kusumi, A. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 4474-4478.
    連結:
  36. [57] Widomska, J.; Raguz, M.; Subczynski, W.K. Biochim. Biophys. Acta 2007, 1768, 2635–2645.
    連結:
  37. Chapter 6
    連結:
  38. Chapter 7
    連結:
  39. Chapter 8
    連結:
  40. [62] J. Widengren and P. Schwille, J. Phys. Chem. A 2000, 104, 6416-6428.
    連結:
  41. [63] Z. Huang, D. Ji, S. Wang, A. Xia, F. Koberling, M. Patting and R. Erdmann, J. Phys. Chem. A 2006, 110, 45−50.
    連結:
  42. [67] P. Tinnefeld, D. K. Herten and M. Sauer, J. Phys. Chem. A 2001, 105, 7989-8003.
    連結:
  43. Chapter 9
    連結:
  44. [72] Z. Huang, D. Ji, S. Wang, A. Xia, F. Koberling, M. Patting and R. Erdmann, J. Phys. Chem. A 2006, 110, 45−50.
    連結:
  45. [73] J. Widengren and P. Schwille, J. Phys. Chem. A 2000, 104, 6416-6428.
    連結:
  46. [74] G. K. Schenter, H. P. Lu and X. S. Xie, J. Phys. Chem. A, 1999, 103, 10477-10488.
    連結:
  47. [76] Kahya, N.; Schwille, P. J. Fluoresc. 2006, 16, 671–678.
    連結:
  48. [77] M. Christensen, J. Comput. Phys. 2004, 20, 421-428.
    連結:
  49. [79] Widengren, J.; Schwille, P. J. Phys. Chem. A 2000, 104, 6416-6428.
    連結:
  50. [80] M. J. Saxton, Biophys. J. 1994, 67, 2110-2119.
    連結:
  51. [85] M. B. Sankaram and T. E. Thompson, Proc. Natl. Acad. Sci. U.S.A. 1991, 88, 8686–8690.
    連結:
  52. [86] English, D.S.; Furube, A.; Barbara, P.F. Chem. Phys. Lett. 2000, 324, 15-19.
    連結:
  53. [87] E.S. Smotkin, F.T. Moy and W.Z. Plachy, Biochim. Biophys. Acta.1991, 1061, 33-38.
    連結:
  54. [88] W.K. Subczynski, J. S. Hyde and A. Kusumi, Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 4474-4478.
    連結:
  55. [91] J. Widomska, M. Raguz and W. K. Subczynski, Biochim. Biophys. Acta. 2007, 1768, 2635–2645.
    連結:
  56. [92] N. Kahya and P. Schwille, J. Fluoresc., 2006, 16, 671–678.
    連結:
  57. [95] H. M. Wu, Y. H. Lin, T. C. Yen and C. L. Hsieh, Sci. Rep. 2016, 6, 20542.
    連結:
  58. References in Part III
    連結:
  59. Chapter 10
    連結:
  60. [1] W. E. Moerner and David P. Fromm Rev. Sci. Instrum., 2003, 74, 3597
    連結:
  61. Chapter 11
    連結:
  62. [3] G. K. Schenter, H. P. Lu and X. S. Xie, J. Phys. Chem. A, 1999, 103, 10477-10488.
    連結:
  63. [5] H. Yang and X. S. Xie, Chem. Phys., 2002, 284, 423–437.
    連結:
  64. [9] M. J.ger, A. Kiel, D. P. Herten and F. A. Hamprecht, ChemPhysChem, 2009, 10, 2486 – 2495
    連結:
  65. Chapter 12
    連結:
  66. [12] P. Tinnefeld, D. P. Herten, and M. Sauer, J. Phys. Chem. A, 2001, 105, 7989-8003.
    連結:
  67. [13] E. Ziomek, N. Kirkpatrick and I.D. Reid, Appl. Microbiol. Biotechnol., 1991, 35, 669–673
    連結:
  68. [15] T. R. Marrero and E. A. Mason, J. Phys. Chem. Ref. Data, 1972, 1, 1.
    連結:
  69. [16] Kestin, J., et al., J. Phys. Chem. Ref. Data, 1984, 13, 229.
    連結:
  70. [1] Cotlet, M; Masuo, S.; Luo, G.; Hofkens, J.; Auweraer, M. V.; Verhoeven, J.; Müllen, K.; Xie, X. S. and Schryver, F. D. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 14343–14348.
  71. [2] Kerssemakers, J. W. J.; Munteanu, E. L.; Laan, L.; Noetzel, T. L.; Janson M. E. and Dogterom, M. Nature 2006, 442, 709–712.
  72. [3] Joo, C.; McKinney, S. A.; Nakamura, M.; Rasnik, I.; Myong, S.; Ha, T. Cell, 2006, 126, 515–527.
  73. [4] Hell, S. W. and Wichmann, J. Opt. Exp. 1994, 19, 780.
  74. [5] Willig, K. I.; Rizzoli, S. O.; Westphal, V.; Jahn, R. and Hell, S. W. Nature 2006, 440, 935.
  75. [7] Buckers, J.; Wildanger, D.; Vicidomini, G.; Kastrup, L. and Hell, S. W. Opt. Exp. 2011, 19, 3130.
  76. [8] Betzig, E.; Patterson, G. H.; Sougrat, R.; Lindwasser, O. W.; Olenych, S.; Bonifacino, J. S.; Davidson, M. W.; Lippincott-Schwartz, J. and Hess H. F. Science 2006, 313, 1642.
  77. [10] Gustafsson, M. G. L.; Agard, D. A.; and Sedat, J. W.; United States Patent, Patent number 5671085 (1997).
  78. [11] Heintzmann, R. and Cremer, C. Proc. SPIE-Int. Soc. Opt. Eng. 1998, 3568, 185.
  79. Chapter 2
  80. [14] Groves, J. T.; Parthasarathy, R.; Forstner, M. B. Annu. Rev. Biomed. Eng. 2008, 10, 311-338.
  81. [15] Maekawa, M.; Fairn, G. D. Journal of Cell Science 2014, 127, 4801-4812.
  82. [18] Mobius, W.; Ohno-Iwashita, Y.; van Donselaar, E. G.; Oorschot, V. M.; Shimada, Y.; Fujimoto, T.; Heijnen, H. F.; Geuze, H. J.; and Slot, J. W. J. Histochem. Cytochem. 2002, 50, 43-55.
  83. [20] Mizuno, H.; Abe, M.; Dedecker, P.; Makino, A.; Rocha, S.; Ohno-Iwashita, Y.; Hofkens, J.; Kobayashi, T.; Miyawaki, A. Chem. Sci. 2011, 2, 1548-1553.
  84. [21] Wang, J.; Richards, D. A. Biol. Open 2012 1, 857-862.
  85. [23] Axelrod, D.; Koppel, D. E.; Schlessinger, J.; Elson, E.; Webb, W. W. Biophys. J. 1976, 16, 1055-1069.
  86. [24] Hammond, G. R.; Sim, Y.; Lagnado, L.; Irvine, R. F. J. Cell Biol. 2009, 184, 297-308.
  87. [25] Fahey, P. F.; Koppel, D. E.; Barak, L. S.; Wolf, D. E.; Elson, E. L.; Webb, W. W. Science 1977, 195, 305-306.
  88. [26] Korlach, J.; Schwille, P.; Webb, W. W.; Feigenson, G. W. Proc. Natl. Acad. Sci. USA 1999, 96, 8461- 8466.
  89. [28] Martin, D. S.; Forstner, M. B.; Kaぴs, J. A. Biophys. J. 2002, 83, 2109-2117.
  90. [29] Kay, J. G.; Koivusalo, M.; Ma, X.; Wohland, T.; Grinstein, S. Mol. Biol. Cell 2012, 23, 2198- 2212.
  91. [31] Lin, C. M.; Li, C. S.; Sheng, Y. J.; Wu, D. T.; Tsao, H. K. Langmuir 2012, 28, 689–700.
  92. [32] A. M. McCord, M. Jamal, U. T. Shankavarum, F. F. Lang, K. Camphausen, and P. J. Tofilon, Mol. Cancer Res. 2009, 7, 489-97.
  93. [34] V. K. Bhaskara, I. Mohanam, J. S. Rao and S. Mohanam, PLoS One, 2012, 7, e30905.
  94. [35] S. Grist, L. Yu, L. Chrostowski and K. C. Cheung, SPIE MOEMS-MEMS, 2012, p. 825103.
  95. [36] M. Polinkovsky, E. Gutierrez, A. Levchenko and A. Groisman, Lab Chip, 2009, 9, 1073–1084.
  96. [37] Y.-A. Chen, A. D. King, H.-C. Shih, C.-C. Peng, C.-Y. Wu, W.-H. Liao and Y.-C. Tung, Lab Chip, 2011, 11, 3626–3633.
  97. [38] G. Mehta, K. Mehta, D. Sud, J. W. Song, T. Bersano-Begey, N. Futai, Y. S. Heo, M.-A. Mycek, J. J. Linderman and S. Takayama, Biomed. Microdevices, 2007, 9, 123–134.
  98. [39] E. Sinkala and D. T. Eddington, Lab Chip, 2010, 10, 3291–3295.
  99. [1] Fahey, P. F.; Koppel, D. E.; Barak, L. S.; Wolf, D. E.; Elson, E. L.; Webb, W. W. Science 1977, 195, 305-306.
  100. [2] Koppel, D. E.; Axelrod, D.; Schlessinger, J.; Elson, E. L.; Webb W. W Biophys. J. 1976, 16, 1315–1329.
  101. [3] Magde, D.; Elson, E. L.; Webb, W. W. Biopolymers, 1974, 13, 29–61.
  102. [4] Magde, D.; Elson, E. L.; Webb, W. W. Phys. Rev. Lett. 1972, 29, 705–708.
  103. [7] Magde, D.; Webb, W. W.; Elson, E. L. Biopolymers 1978, 17, 361–376.
  104. [12] W. T. Yip, D. Hu, J. Yu, D. A. V. Bout and P. F. Barbara, J. Phys. Chem. A., 1998, 102, 7564-7575.
  105. [13] Y. P. Chang, P. Y. Tsai, H. L. Lee, K. C. Lin, Electroanalysis, 2013, 25, 1064 – 1073.
  106. [15] K. Schätzel and R. Peters, SPIE, 1991, 1430, 109-115.
  107. Chapter 4
  108. [16] Gennis, R. B. in Biomembranes, 1989, Springer-Verlag Press
  109. [17] Petty, H. R. in Molecular biology of membranes, 1993, Plenum Press
  110. [18] Evans, W. H.; Hardison, W. G. M. Biochem. J. 1985, 232, 33-36.
  111. [19] Phillips, M. C. Prog, Member. Surf. Sci. 1972, 5, 139-221.
  112. [22] (a) Mueller, P.; Rudin, D. O.; Tien, H. T.; Wescott, W. C. Nature 1962 , 194 , 979 ; (b) Mueller, P.; Wescott, W. C.; Rudin, D. O.; Tien, H. T. J. Phys. Chem. 1963, 67, 534.
  113. [23] Levin, I. W. in Advanses in Infrared and Raman Spectroscopy, Volume 11. R. J. H. Clark and R. E. Hester, eds. Heyden, London, 1984, p.1-48.
  114. membrane composition [Robert B. Biomembranes,1989]
  115. [26] Janiak, M. J.; Small, D. M.; Shipley, G. G. Biochemistry, 1976, 15, 4575-4580.
  116. [27] Chen, S. C.; Sturtevant, J. M.; Gaffney, B. J. Proc. Natl. Acad. Sci. U.S.A. 1980, 77, 5060–5063.
  117. [29] Matsuki, H.; Goto, M.; Tada, K.; Tamai, N. Int. J. Mol. Sci. 2013, 14, 2282-2302.
  118. [31] Halstenberg, S.; Heimburg, T.; Hianik, T.; Kaatze, U.; Krivanek, R. Biophys. J. 1998, 75, 264–271.
  119. [32] Pan, J.; Mills, T. T.; Tristram-Nagle, S.; Nagle, J. F. Phys. ReV. Lett. 2008, 100, 198103 1–4.
  120. [33] Filippov, A.; Orädd, G.; Göran, L. Biophys. J. 2003, 84, 3079– 3086.
  121. [35] Almeida, P. F. F.; Vaz, W. L. C.; Thompson, T. E. Biochemistry 1992, 31, 6739–6747.
  122. [36] Róg, T.; Pasenkiewicz-Gierula, FEBS Lett. 2001, 502, 68–71.
  123. [37] Chiu, S. W.; Jakobsson, E.; Mashl, R. J.; Scott, H. L. Biophys. J. 2002, 83, 1842–1853.
  124. [38] Niemela, P. S.; Hyvonen, M. T.; Vattulainen, I. Biochim. Biophys. Acta 2009, 1788, 122–135.
  125. [40] de Meyer, F. J. M.; Benjamini, A.; Rodgers, J. M.; Misteli, Y.;
  126. Chapter 5
  127. [42] Vaz, W. L. C.; Goodsaid-Zalduondo, F.; Jacobson, K. FEBS Lett. 1984, 174, 199–207.
  128. [44] Almeida, P. F. F.; Vaz, W. L. C.; Thompson, T.E. Biochemistry, 1992, 31, 6739–6747
  129. [45] Ratto, T.V.; Longo, M.L. Langmuir, 2003, 19, 1788–1793.
  130. [46] Axelrod, D.; Koppel, D. E.; Schlessinger, J.; Elson, E.; Webb, W. W. Biophys. J. 1976, 16, 1055-1069.
  131. [49] Fahey, P. F.; Koppel, D. E.; Barak, L. S.; Wolf, D. E.; Elson, E. L.; Webb, W. W. Science 1977, 195, 305-306.
  132. [50] Korlach, J.; Schwille, P.; Webb, W. W.; Feigenson, G. W. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8461- 8466.
  133. [52] Kahya, N.; Scherfeld, D.; Bacia, K.; Schwille, P. J. Stru. Bio. 2004, 147, 77–89.
  134. [53] Endeward, V.; Al-Samir, S.; Itel, F.; Gros, G. Frontiers in Physiology 2014, 4, 1-21
  135. [54] Itel, F.; Al-Samir, S.; Öberg, F.; Chami, M.; Kumar, M.; Supuran, C. T.; Deen, P.M.T.; Meier, W.; Hedfalk, K.; Gros, G. Endeward, V. The FASEB Journal, 2012, 26, 5182-5191.
  136. [55] Simon,S.A.; Gutknecht, J. Biochim. Biophys. Acta. 1980, 596, 352–358.
  137. [58] The pictures of Mini Extruder are from the website of Avanti Polar Lipids, Inc. http://www.avantilipids.com/
  138. [59] Joo, C.; McKinney, S. A.; Nakamura, M.; Rasnik, I.; Myong, S.; Ha, T. Cell 2006, 126, 515–527.
  139. [60] Aitken, C. E.; Marshall, R. A.; Puglisi, J. D. Biophys. J. 2008, 94, 1826– 1835.
  140. [61] X. Shi, J. Lim and T. Ha, Anal. Chem. 2010, 82, 6132–6138.
  141. [64] P.F. Ammendía, R.M. Negri and E. S. RomPán, J. Phys. Chem. 1994, 98, 3165-3173.
  142. [65] M. E. Sanborn, B. K. Connolly, K. Gurunathan and M. Levitus, J. Phys. Chem. B 2007, 111, 11064-11074
  143. [66] H.C. Yeh, C. M. Puleo, Y. P. Ho, V. J. Bailey, T. C. Lim, K. Liu and T. H. Wang, Biophys. J. 2008, 95, 729–737.
  144. [68] M. Heilemann, E. Margeat, R. Kasper, M. Sauer and P. Tinnefeld, J. Am. Chem. Soc. 2005, 127, 3801-3806.
  145. [69] S. Steinhauer, C. Forthmann, J. Vogelsang and P. Tinnefeld, J. Am. Chem. Soc. 2008, 130, 16840–16841.
  146. [70] J. Vogelsang, C. Steinhauer, C. Forthmann, I. H. Stein, B. Person-Skegro, T. Cordes and P. Tinnefeld, ChemPhysChem. 2010, 11, 2475 – 2490.
  147. [71] E. M. S. Stennett, M. A. Ciuba and M. Levitus, Chem. Soc. Rev. 2014, 43, 1057-1075.
  148. [75] H. Ishitobi, T. Kai, K. Fujita, Z. Sekkat and S. Kawata, Chem. Phys. Lett. 2009, 468, 234–238.
  149. [78] N. C. Maiti, M. M. G. Krishna, P. J. Britto and N. Periasamy, J. Phys. Chem. B 1997, 101, 11051-11060.
  150. [81] P. F. Ammendía, R. M. Negri, and E. S. Román, J. Phys. Chem. 1994, 98, 3165-3173.
  151. [82] Y. Gao, A. M. Baca, B. Wang, and P. R. Ogilby, Macromolecules 1994, 27, 7041-7048.
  152. [83] S. Halstenberg, T. Heimburg, T. Hianik, U. Kaatze and R. Krivanek, Biophys. J. 1998, 75, 264–27.
  153. [84] F. J. M. de Meyer, A. Benjamini, J. M. Rodgers, Y. Misteli and B. Smit, J. Phys. Chem. B 2010, 114, 10451–10461.
  154. [89] S. Vanni, H. Hirose, H. Barelli, B. Antonny and R. Gautier, Nat. Commun. 2014, 5, 4916.
  155. [90] L. S. Hirsta, A. Ossowskia, M. Frasera, J. Gengb, J. V. Selinger and R. L. B. Selinger, Proc. Natl. Acad. Sci. U.S.A. 2013, 110, 3242-3247.
  156. [93] P. F. Faheyt and W. W. Webb, Biochemistry, 1978, 17, 3046-3053.
  157. [94] J. Korlach, P. Schwille, W. W. Webb and G. W. Feigenson, Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 8461- 8466.
  158. [2] W. T. Yip, D. Hu, J. Yu, D. A. V. Bout and P. F. Barbara, J. Phys. Chem. A., 1998, 102, 7564-7575.
  159. [4] H. Ishitobi, T. Kai, K. Fujita, Z. Sekkat and S. Kawata Chemical Physics Letters, 2009, 468, 234–238.
  160. [6] K. McHale, A. J. Berglund and H. Mabuchi, Biophysical Journal, 2004, 86, 3409–3422.
  161. [7] Joo, C.; McKinney, S. A.; Nakamura, M.; Rasnik, I.; Myong, S.; Ha, T. Cell, 2006, 126, 515–527.
  162. [8] J. Zhang, A. A. Boghossian, P. W. Barone, A. Rwei, J. H. Kim, D. Lin, D. A. Heller, A. J. Hilmer, N. Nair, N. F. Reuel and Michael S. Strano, J. Am. Chem. Soc. 2011, 133, 567–581.
  163. [10] N. Keiding, The Annals. of Statistics, 1975, 3, 363-372.
  164. [11] H. Ishitobi, T. Kai, K. Fujita, Z. Sekkat and S. Kawata Chemical Physics Letters, 2009, 468, 234–238.
  165. [14] H. Shiku, T. Saito and C.C. Wu, Chem Lett, 2006, 35, 234–235.