题名

可撓式垂直排列奈米碳管叢應變感測計

并列篇名

Flexible Strain Sensor Using Vertically Aligned Carbon Nanotube Forest

DOI

10.6342/NTU201602927

作者

葉冠禹

关键词

垂直排列填鐵奈米碳管叢 ; 可撓性 ; 應變感測計 ; 高線性 ; 高應變規因子 ; Vertically aligned iron-filled Carbon nanotube ; Flexible ; Strain sensor ; High linearity ; Gauge factor

期刊名称

國立臺灣大學機械工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

張所鋐

内容语文

繁體中文

中文摘要

奈米碳管應用於應變感測計已有許多項研究,但大多研究皆利用奈米碳管混和聚合物於薄膜,進而做成可撓式應變感測計,很少有單純垂直排列奈米碳管叢應變感測計之研究。本論文將先利用化學氣相沉積法,以控制成長區溫度的方式,在鋁箔紙上成長出不同高度的填鐵奈米碳管叢。本研究之填鐵奈米碳管具有均勻且等高及垂直排列特性。 本研究將利用垂直排列填鐵奈米碳管叢分別製作四種不同應變感測計,分別為第一類應變感測計、第二類應變感測計、第三類應變感測計及第四類應變感測計。其中最為特別的是第三類應變感測計,藉由施加外應力的方式把奈米碳管叢原始高度降低,並利用封裝等外在拘束的方式把縮短的奈米碳管叢拘束住,其方式可以增加奈米碳管叢之間的起始接觸面積,當有彎曲應變產生時,因為接觸面積改變率變大,進而提高應變規因子。 實驗結果顯示當奈米碳管高度接近於12.5μm時,有最高應變規因子表現;另一方面,利用12.5μm單層垂直排列填鐵奈米碳管叢製作成第三類應變感測計,可以得到208之應變規因子,線性度達到0.989;更近一步延伸為第四類應變感測計,應變規因子甚至可以達到367。除此之外,預先施加一外應力於第三類應變感測計是一個很重要的因素,可以發現其量值與應變規因子存在一簡單數學關係式,因此可藉由應變規因子,進而推出施加於應變感測計上之應力。最後經由簡單動態量測可發現經由多次上下振動測試後,電阻值依然對應變有著顯著變化,甚至利用本研究應變感測計成功量取人體脈搏波形圖。本研究之應變感測計具有高線性度、高再現性及高應變規因子表現。

英文摘要

There are many researches about producing strain sensors with carbon nanotubes (CNTs). But most of them are studying nanocomposite film of CNTs and polymer and using nanocomposite film to fabricate the strain sensor. There are few researches about fabricating the strain sensors with vertically aligned carbon nanotubes (VA-CNTs). In this research, we synthesize the different height of iron-filled CNTs on aluminum foil by controlling the synthesis temperature in furnace and using the chemical vapor deposition method (CVD). There are some characters for iron-filled CNTs in this research, such as uniformity, equal height and vertically aligned. In this research, we fabricate four different strain sensors by iron-filled VA-CNTs, such as sensor type 1, sensor type 2, sensor type 3 and sensor type 4. One of the most special is sensor type 3. We constrain the height of CNTs by using package method and exerting an external force to depress the initial height of CNTs. This method can enlarge the initial contact area between the CNTs. When the bending strain occurs in the CNTs, it will lead the change rate of contact area increase. That is why this result can enhance the gauge factor (GF). The experimental results show that the height of CNTs near 12.5μm has the best GF performance. We use 12.5μm single layer iron-filled VA-CNTs to fabricate the sensor type 3. We find out that this kind of sensor has the value 208 of GF and the value 0.989 of linearity. After that, we even extend this kind of CNTs to sensor type 4. The results show that the GF of sensor type 4 can reach to 367. Furthermore, previously exerting an external force to sensor type 3 is an important factor in our research. We find out that there is a mathematical relationship between the external force and the GF. So we can use the result of GF to derive the external force value which is exerted on the strain sensor. At the last, we also show that resistance still has the significant changes by the simple up-down-shaking dynamic measurement. We even successfully apply strain sensor to measure the human pulse. The strain sensors in this research have high linearity, good repeatability and big GF value.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. [1]S. Iijima, "Helical microtubules of graphitic carbon," nature, vol. 354, pp. 56-58, 1991.
    連結:
  2. [3]S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter," 1993.
    連結:
  3. [4]D. Bethune, C. Klang, M. De Vries, G. Gorman, R. Savoy, J. Vazquez, et al., "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls," 1993.
    連結:
  4. [5]R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes vol. 35: World Scientific, 1998.
    連結:
  5. [6]J. W. Wilder, L. C. Venema, A. G. Rinzler, R. E. Smalley, and C. Dekker, "Electronic structure of atomically resolved carbon nanotubes," Nature, vol. 391, pp. 59-62, 1998.
    連結:
  6. [8] A. M. Rao, E. Richter, S. Bandow, B. Chase, P. Eklund, K. Williams, et al., "Diameter-selective Raman scattering from vibrational modes in carbon nanotubes," Science, vol. 275, pp. 187-191, 1997.
    連結:
  7. [9] H. Kataura, Y. Kumazawa, Y. Maniwa, I. Umezu, S. Suzuki, Y. Ohtsuka, et al., "Optical properties of single-wall carbon nanotubes," Synthetic metals, vol. 103, pp. 2555-2558, 1999.
    連結:
  8. [10] M. Dresselhaus, G. Dresselhaus, and R. Saito, "Physics of carbon nanotubes," Carbon, vol. 33, pp. 883-891, 1995.
    連結:
  9. [11] A. Thess, R. Lee, P. Nikolaev, and H. Dai, "Crystalline ropes of metallic carbon nanotubes," Science, vol. 273, p. 483, 1996.
    連結:
  10. [12] A. Fennimore, T. Yuzvinsky, W.-Q. Han, M. Fuhrer, J. Cumings, and A. Zettl, "Rotational actuators based on carbon nanotubes," Nature, vol. 424, pp. 408-410, 2003.
    連結:
  11. [13] V. P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, et al., "Multifunctional composites using reinforced laminae with carbon-nanotube forests," Nature materials, vol. 5, pp. 457-462, 2006.
    連結:
  12. [14] C. Bower, O. Zhou, W. Zhu, D. Werder, and S. Jin, "Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition," Applied Physics Letters, vol. 77, pp. 2767-2769, 2000.
    連結:
  13. [15] I. Song, Y. Cho, G. Choi, J. Park, and D. Kim, "The growth mode change in carbon nanotube synthesis in plasma-enhanced chemical vapor deposition," Diamond and related materials, vol. 13, pp. 1210-1213, 2004.
    連結:
  14. [16] A. Gohier, C. Ewels, T. Minea, and M. Djouadi, "Carbon nanotube growth mechanism switches from tip-to base-growth with decreasing catalyst particle size," Carbon, vol. 46, pp. 1331-1338, 2008.
    連結:
  15. [17] C. Rao and R. Sen, "Large aligned-nanotube bundles from ferrocene pyrolysis," Chem. Commun., pp. 1525-1526, 1998.
    連結:
  16. [18] G. Choi, Y. Cho, S. Hong, J. Park, K. Son, and D. Kim, "Carbon nanotubes synthesized by Ni-assisted atmospheric pressure thermal chemical vapor deposition," Journal of applied physics, vol. 91, pp. 3847-3854, 2002.
    連結:
  17. [19] M. Chhowalla, K. Teo, C. Ducati, N. Rupesinghe, G. Amaratunga, A. Ferrari, et al., "Growth process conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition," Journal of Applied Physics, vol. 90, pp. 5308-5317, 2001.
    連結:
  18. [20] K. Teo, S. Lee, M. Chhowalla, V. Semet, V. T. Binh, O. Groening, et al., "Plasma enhanced chemical vapour deposition carbon nanotubes/nanofibres—how uniform do they grow?," Nanotechnology, vol. 14, p. 204, 2003.
    連結:
  19. [21] Y. Wei, G. Eres, V. Merkulov, and D. Lowndes, "Effect of catalyst film thickness on carbon nanotube growth by selective area chemical vapor deposition," Applied Physics Letters, vol. 78, pp. 1394-1396, 2001.
    連結:
  20. [22] A. Qiu, D. Bahr, A. Zbib, A. Bellou, S. D. Mesarovic, D. McClain, et al., "Local and non-local behavior and coordinated buckling of CNT turfs," Carbon, vol. 49, pp. 1430-1438, 2011.
    連結:
  21. [24] B. Satishkumar, A. Govindaraj, and C. Rao, "Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene–hydrocarbon mixtures: role of the metal nanoparticles produced in situ," Chemical Physics Letters, vol. 307, pp. 158-162, 1999.
    連結:
  22. [25] R. Kozhuharova‐Koseva, M. Hofmann, A. Leonhardt, I. Mönch, T. Mühl, M. Ritschel, et al., "Relation between Growth Parameters and Morphology of Vertically Aligned Fe‐filled Carbon Nanotubes," Fullerenes, Nanotubes, and Carbon Nanostructures, vol. 15, pp. 135-143, 2007.
    連結:
  23. [26] A. Leonhardt, M. Ritschel, D. Elefant, N. Mattern, K. Biedermann, S. Hampel, et al., "Enhanced magnetism in Fe-filled carbon nanotubes produced by pyrolysis of ferrocene," Journal of applied physics, vol. 98, pp. 074315-074315, 2005.
    連結:
  24. [27] Q. Liu, Z.-G. Chen, B. Liu, W. Ren, F. Li, H. Cong, et al., "Synthesis of different magnetic carbon nanostructures by the pyrolysis of ferrocene at different sublimation temperatures," Carbon, vol. 46, pp. 1892-1902, 2008.
    連結:
  25. [29] C. Müller, S. Hampel, D. Elefant, K. Biedermann, A. Leonhardt, M. Ritschel, et al., "Iron filled carbon nanotubes grown on substrates with thin metal layers and their magnetic properties," Carbon, vol. 44, pp. 1746-1753, 2006.
    連結:
  26. [30] C. Müller, D. Elefant, A. Leonhardt, and B. Büchner, "Incremental analysis of the magnetization behavior in iron-filled carbon nanotube arrays," Journal of Applied Physics, vol. 103, p. 034302, 2008.
    連結:
  27. [31] C. Shi and H. Cong, "Tuning the coercivity of Fe-filled carbon-nanotube arrays by changing the shape anisotropy of the encapsulated Fe nanoparticles," Journal of Applied Physics, vol. 104, p. 034307, 2008.
    連結:
  28. [32] J. Cheng, X. Zou, G. Zhu, M. Wang, Y. Su, G. Yang, et al., "Synthesis of iron-filled carbon nanotubes with a great excess of ferrocene and their magnetic properties," Solid State Communications, vol. 149, pp. 1619-1622, 2009.
    連結:
  29. [33] X. Gui, K. Wang, W. Wang, J. Wei, X. Zhang, R. Lv, et al., "The decisive roles of chlorine-contained precursor and hydrogen for the filling Fe nanowires into carbon nanotubes," Materials Chemistry and Physics, vol. 113, pp. 634-637, 2009.
    連結:
  30. [34] C. Müller, A. Leonhardt, M. C. Kutz, B. Büchner, and H. Reuther, "Growth aspects of iron-filled carbon nanotubes obtained by catalytic chemical vapor deposition of ferrocene," The Journal of Physical Chemistry C, vol. 113, pp. 2736-2740, 2009.
    連結:
  31. [35] X. Zhang, A. Cao, B. Wei, Y. Li, J. Wei, C. Xu, et al., "Rapid growth of well-aligned carbon nanotube arrays," Chemical Physics Letters, vol. 362, pp. 285-290, 2002.
    連結:
  32. [36] F. Geng and H. Cong, "Fe-filled carbon nanotube array with high coercivity," Physica B: Condensed Matter, vol. 382, pp. 300-304, 2006.
    連結:
  33. [37] S. Hampel, A. Leonhardt, D. Selbmann, K. Biedermann, D. Elefant, C. Müller, et al., "Growth and characterization of filled carbon nanotubes with ferromagnetic properties," Carbon, vol. 44, pp. 2316-2322, 2006.
    連結:
  34. [38] W. Wang, K. Wang, R. Lv, J. Wei, X. Zhang, F. Kang, et al., "Synthesis of Fe-filled thin-walled carbon nanotubes with high filling ratio by using dichlorobenzene as precursor," Carbon, vol. 45, pp. 1127-1129, 2007.
    連結:
  35. [39] I. Kunadian, R. Andrews, D. Qian, and M. P. Mengüç, "Growth kinetics of MWCNTs synthesized by a continuous-feed CVD method," Carbon, vol. 47, pp. 384-395, 2009.
    連結:
  36. [40] Y. T. Lee, N. S. Kim, J. Park, J. B. Han, Y. S. Choi, H. Ryu, et al., "Temperature-dependent growth of carbon nanotubes by pyrolysis of ferrocene and acetylene in the range between 700 and 1000 C," Chemical physics letters, vol. 372, pp. 853-859, 2003.
    連結:
  37. [41] C.-C. Su and S.-H. Chang, "Comparison of the efficiency of various substrates in growing vertically aligned carbon nanotube carpets," Carbon, vol. 49, pp. 5271-5282, 2011.
    連結:
  38. [42] C. P. Deck and K. Vecchio, "Growth mechanism of vapor phase CVD-grown multi-walled carbon nanotubes," Carbon, vol. 43, pp. 2608-2617, 2005.
    連結:
  39. [43] S. C. Lim, J. H. Jang, D. J. Bae, G. H. Han, S. Lee, I.-S. Yeo, et al., "Contact resistance between metal and carbon nanotube interconnects: effect of work function and wettability," Applied Physics Letters, vol. 95, p. 264103, 2009.
    連結:
  40. [44] T.-L. Li, J.-H. Ting, and B.-Z. Yang, "Conducting properties of suspended carbon nanotubes grown by thermal chemical vapor deposition," Journal of Vacuum Science & Technology B, vol. 25, pp. 1221-1226, 2007.
    連結:
  41. [45] J.-O. Lee, C. Park, J.-J. Kim, J. Kim, J. W. Park, and K.-H. Yoo, "Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method," Journal of Physics D: Applied Physics, vol. 33, p. 1953, 2000.
    連結:
  42. [46] K. Rykaczewski, M. R. Henry, S.-K. Kim, A. G. Fedorov, D. Kulkarni, S. Singamaneni, et al., "The effect of the geometry and material properties of a carbon joint produced by electron beam induced deposition on the electrical resistance of a multiwalled carbon nanotube-to-metal contact interface," Nanotechnology, vol. 21, p. 035202, 2009.
    連結:
  43. [47] C. A. Santini, A. Volodin, C. Van Haesendonck, S. De Gendt, G. Groeseneken, and P. M. Vereecken, "Carbon nanotube–carbon nanotube contacts as an alternative towards low resistance horizontal interconnects," Carbon, vol. 49, pp. 4004-4012, 2011.
    連結:
  44. [48] W. Thomson, "On the electro-dynamic qualities of metals:--effects of magnetization on the electric conductivity of nickel and of iron," Proceedings of the Royal Society of London, vol. 8, pp. 546-550, 1856.
    連結:
  45. [49] M. Gall, "Early days of the resistance strain gauge," Strain, vol. 25, pp. 83-88, 1989.
    連結:
  46. [50] P. K. Stein, "A brief history of bonded resistance strain gages from conception to commercialization," Experimental Techniques, vol. 14, pp. 13-19, 1990.
    連結:
  47. [51] P. G. S. Jackson, "The early days of the Saunders‐Roe foil strain gauge," Strain, vol. 26, pp. 61-66, 1990.
    連結:
  48. [52] G. Yin, N. Hu, Y. Karube, Y. Liu, Y. Li, and H. Fukunaga, "A carbon nanotube/polymer strain sensor with linear and anti-symmetric piezoresistivity," Journal of composite materials, p. 0021998310393296, 2011.
    連結:
  49. [53] I. Kang, M. J. Schulz, J. H. Kim, V. Shanov, and D. Shi, "A carbon nanotube strain sensor for structural health monitoring," Smart materials and structures, vol. 15, p. 737, 2006.
    連結:
  50. [54] K. J. Loh, J. P. Lynch, B. Shim, and N. Kotov, "Tailoring piezoresistive sensitivity of multilayer carbon nanotube composite strain sensors," Journal of Intelligent Material Systems and Structures, vol. 19, pp. 747-764, 2008.
    連結:
  51. [55] K. J. Loh, J. Kim, J. P. Lynch, N. W. S. Kam, and N. A. Kotov, "Multifunctional layer-by-layer carbon nanotube–polyelectrolyte thin films for strain and corrosion sensing," Smart Materials and Structures, vol. 16, p. 429, 2007.
    連結:
  52. [56] G. T. Pham, Y.-B. Park, Z. Liang, C. Zhang, and B. Wang, "Processing and modeling of conductive thermoplastic/carbon nanotube films for strain sensing," Composites Part B: Engineering, vol. 39, pp. 209-216, 2008.
    連結:
  53. [57] M. H. Wichmann, S. T. Buschhorn, L. Böger, R. Adelung, and K. Schulte, "Direction sensitive bending sensors based on multi-wall carbon nanotube/epoxy nanocomposites," Nanotechnology, vol. 19, p. 475503, 2008.
    連結:
  54. [58] M. H. Wichmann, S. T. Buschhorn, J. Gehrmann, and K. Schulte, "Piezoresistive response of epoxy composites with carbon nanoparticles under tensile load," Physical Review B, vol. 80, p. 245437, 2009.
    連結:
  55. [59] N. Hu, Y. Karube, M. Arai, T. Watanabe, C. Yan, Y. Li, et al., "Investigation on sensitivity of a polymer/carbon nanotube composite strain sensor," Carbon, vol. 48, pp. 680-687, 2010.
    連結:
  56. [60] N. Hu, T. Itoi, T. Akagi, T. Kojima, J. Xue, C. Yan, et al., "Ultrasensitive strain sensors made from metal-coated carbon nanofiller/epoxy composites," Carbon, vol. 51, pp. 202-212, 2013.
    連結:
  57. [61] A. Oliva-Avilés, F. Avilés, and V. Sosa, "Electrical and piezoresistive properties of multi-walled carbon nanotube/polymer composite films aligned by an electric field," Carbon, vol. 49, pp. 2989-2997, 2011.
    連結:
  58. [62] M. Park, H. Kim, and J. P. Youngblood, "Strain-dependent electrical resistance of multi-walled carbon nanotube/polymer composite films," Nanotechnology, vol. 19, p. 055705, 2008.
    連結:
  59. [63] F. Xu, X. Wang, Y. Zhu, and Y. Zhu, "Wavy ribbons of carbon nanotubes for stretchable conductors," Advanced Functional Materials, vol. 22, pp. 1279-1283, 2012.
    連結:
  60. [64] K. Jiang, J. Wang, Q. Li, L. Liu, C. Liu, and S. Fan, "Superaligned carbon nanotube arrays, films, and yarns: a road to applications," Advanced Materials, vol. 23, pp. 1154-1161, 2011.
    連結:
  61. [65] M. Schulz, Y. Song, A. Hehr, and V. Shanov, "Embedded carbon nanotube thread piezoresistive strain sensor performance," Sensor Review, vol. 34, pp. 209-219, 2014.
    連結:
  62. [66] T. Yamada, Y. Hayamizu, Y. Yamamoto, Y. Yomogida, A. Izadi-Najafabadi, D. N. Futaba, et al., "A stretchable carbon nanotube strain sensor for human-motion detection," Nature nanotechnology, vol. 6, pp. 296-301, 2011.
    連結:
  63. [68] J.-I. Lee, Y. Eun, J. Choi, D.-S. Kwon, and J. Kim, "Using Confined Self-Adjusting Carbon Nanotube Arrays as High-Sensitivity Displacement Sensing Element," ACS applied materials & interfaces, vol. 6, pp. 10181-10187, 2014.
    連結:
  64. [69] Y. Song, J.-I. Lee, S. Pyo, Y. Eun, J. Choi, and J. Kim, "A highly sensitive flexible strain sensor based on the contact resistance change of carbon nanotube bundles," Nanotechnology, vol. 27, p. 205502, 2016.
    連結:
  65. [70] T. Tsai, C. Lee, N. Tai, and W. Tuan, "Transfer of patterned vertically aligned carbon nanotubes onto plastic substrates for flexible electronics and field emission devices," Applied physics letters, vol. 95, p. 013107, 2009.
    連結:
  66. [71] M. K. Shin, J. Oh, M. Lima, M. E. Kozlov, S. J. Kim, and R. H. Baughman, "Elastomeric conductive composites based on carbon nanotube forests," Advanced materials, vol. 22, pp. 2663-2667, 2010.
    連結:
  67. [72] C.-F. Hu, J.-Y. Wang, Y.-C. Liu, M.-H. Tsai, and W. Fang, "Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application," Nanotechnology, vol. 24, p. 444006, 2013.
    連結:
  68. [73] U.-H. Shin, D.-W. Jeong, S.-M. Park, S.-H. Kim, H. W. Lee, and J.-M. Kim, "Highly stretchable conductors and piezocapacitive strain gauges based on simple contact-transfer patterning of carbon nanotube forests," Carbon, vol. 80, pp. 396-404, 2014.
    連結:
  69. [74] 陳致中, "可抑制表面自然對流之奈米碳管叢表面隔熱元件," 臺灣大學機械工程學研究所學位論文, pp. 1-93, 2015.
    連結:
  70. [75] H.-M. So, J. W. Sim, J. Kwon, J. Yun, S. Baik, and W. S. Chang, "Carbon nanotube based pressure sensor for flexible electronics," Materials Research Bulletin, vol. 48, pp. 5036-5039, 2013.
    連結:
  71. [76] E. Carter, P. Brown, R. Smith, and J. Griffin, "Pressure sensing using vertically aligned carbon nanotubes on a flexible substrate," arXiv preprint arXiv:1606.03190, 2016.
    連結:
  72. [2]H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, "C 60: buckminsterfullerene," Nature, vol. 318, pp. 162-163, 1985.
  73. [7]R. Saito, M. Fujita, G. Dresselhaus, and u. M. Dresselhaus, "Electronic structure of chiral graphene tubules," Applied physics letters, vol. 60, pp. 2204-2206, 1992.
  74. [23] Y. Saito, T. Yoshikawa, M. Okuda, N. Fujimoto, S. Yamamuro, K. Wakoh, et al., "Iron particles nesting in carbon cages grown by arc discharge," Chemical physics letters, vol. 212, pp. 379-383, 1993.
  75. [28] T. Mühl, D. Elefant, A. Graff, R. Kozhuharova, A. Leonhardt, I. Mönch, et al., "Magnetic properties of aligned Fe-filled carbon nanotubes," Journal of applied physics, vol. 93, pp. 7894-7896, 2003.
  76. [67] J.-I. Lee, S. Pyo, M.-O. Kim, T. Chung, H.-K. Lee, S.-C. Lim, et al., "Development of flexible tactile sensor based on contact resistance of integrated carbon nanotubes," in Micro Electro Mechanical Systems (MEMS), 2013 IEEE 26th International Conference on, 2013, pp. 37-40.