题名

台灣北部關渡濕地微生物甲烷氧化速率研究

并列篇名

Microbial Methane Oxidation Rates in Guandu Wetland of northern Taiwan

DOI

10.6342/NTU201602970

作者

游子慧

关键词

濕地 ; 甲烷氧化作用 ; 穩定碳同位素 ; wetland ; methane oxidation ; stable carbon isotope

期刊名称

臺灣大學海洋研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

王珮玲

内容语文

繁體中文

中文摘要

微生物甲烷氧化作用在全球甲烷收支扮演重要角色,可分成好氧型及厭氧型兩種。好氧型甲烷氧化作用以氧氣為電子接收者,廣泛分布在土壤表層;而厭氧型甲烷氧化作用 (Anaerobic Oxidation of Methane, AOM) 則可搭配硝酸鹽、氧化錳、氧化鐵、硫酸鹽等氧化態化合物行呼吸作用。濕地的甲烷排放量居全球排放量之冠,但其微生物作用機制及過程,以及消耗甲烷的能力皆未完全釐清,濕地位在氧氣充足的陸域環境中,以往認為以好氧型甲烷氧化作用為主,但近年來研究也開始評估 AOM 在陸域生態系中對甲烷消耗的貢獻,尤其濕地環境有缺氧條件的存在,顯然濕地的 AOM 研究不容忽略。 位於台灣北部之關渡濕地為河岸濕地,受潮汐影響每日有兩次漲、退潮。本研究利用實驗室培養實驗測量好氧與厭氧甲烷氧化速率,採集滿潮及乾潮樣本,在兩種潮位狀態皆進行好氧與厭氧培養實驗,另外也測試添加不同電子接收者對於厭氧甲烷氧化速率的影響。結果顯示乾潮期間好氧甲烷氧化速率大於滿潮期間,其速率差異應與滿潮期間低甲烷濃度使微生物活動力較小有關,而使甲烷氧化速率小於高甲烷濃度的乾潮期間。相反的,厭氧甲烷氧化速率卻是滿潮期間大於乾潮期間,由於關渡濕地位於硫酸鹽充足的半淡鹹水環境,硫酸鹽濃度並非控制 AOM 速率之主因,推測滿潮及乾潮的速率差異可能由於乾潮期間微生物異營作用能競爭過 AOM 而使其速率較小。厭氧甲烷氧化作用添加電子接收者部分,硫酸鹽與無電子接收者組別速率最大,AQDS 組別次之,氧化鐵、檸檬酸鐵、富馬酸組別最小,硝酸鹽及氧化錳組別之速率只出現在部分培養期間。添加實驗結果顯示關渡濕地的厭氧甲烷氧化作用以硫酸鹽為主要的電子接收者,檸檬酸鐵及富馬酸則由於其促進微生物產甲烷作用,因而對甲烷的移除沒有幫助。

英文摘要

Microbially-mediated methane oxidation plays an important role in global methane budgets. Aerobic methanotroph uses O2 to serve as an electron acceptor, and is widespread in ground surface. Anaerobic oxidation of methane (AOM) can couple to sulfate reduction, denitrification, iron reduction and manganese reduction, which means that SO42-, NO3-, iron oxide and manganese oxide are able to be the electron acceptors of AOM. Wetlands exist anaerobic conditions and are the largest source of methane emissions, but the AOM mechanisms and their abilities of methane removal have not been fully examined. In this study, a sub-tropical wetland in northern Taiwan, Guandu, was chosen to examine the tidal effects and effects of electron acceptors on microbial methane regulation. We conducted laboratory experiments with sediments collected during high tide and low tide periods from the Guandu wetland and both aerobic and anaerobic potential methane oxidation rates were estimated. Results showed that aerobic oxidation rates during low tide periods were higher than those during high tide periods. Because the methane concentrations in pore water were higher in low tide sediments than those in high tide sediments, the microbial activities might also be higher during low tides. On the contrary, anaerobic oxidation rates were higher during high tide periods than those during low tide periods. The difference of AOM rates between high tide and low tide periods may be due to microbial competition. Sulfate reduction coupled to organic matter oxidation may outcompete sulfate reduction coupled to methane oxidation, resulting in slow AOM rates during low tide periods. In electron acceptors addition experiments, the highest potential rates were observed in the sulfate addition and no addition treatments. The AQDS treatment showed lower rates than that in previous two treatments. The AOM rates in the iron oxide, ferric citrate and fumarate treatments were even slower. The AOM was only detected in part of the incubation periods in nitrate and manganese treatments. These results indicated that the major electron acceptor for AOM in the Guandu wetland is sulfate. The addition of two humic acids, ferric citrate and fumarate were not helpful for methane removal, because microbial methane generation was stimulated in much higher rates than those of AOM.

主题分类 基礎與應用科學 > 海洋科學
理學院 > 海洋研究所
参考文献
  1. Amaral, J.A., Knowles, R., 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiology Letters, 126, 215-220.
    連結:
  2. Anthony, C., 1991. Assimilation of carbon by methylotrophs. Biology of methylotrophs, 79-109.
    連結:
  3. Armstrong, W., 1979. Aeration in higher plants. InAdvances in Botanic Research; Woolhouse, HW, Ed. Academic Press: London, UK.
    連結:
  4. Barnes, R., Goldberg, E., 1976. Methane production and consumption in anoxic marine sediments. Geology, 4, 297-300.
    連結:
  5. Beal, E.J., House, C.H., Orphan, V.J., 2009. Manganese- and Iron-Dependent Marine Methane Oxidation. Science, 325, 184-187.
    連結:
  6. Beasley, K.K., Nanny, M.A., 2012. Potential energy surface for anaerobic oxidation of methane via fumarate addition. Environmental Science & Technology, 46, 8244-8252.
    連結:
  7. Bendix, M., Tornbjerg, T., Brix, H., 1994. Internal gas transport in Typha latifolia L. and Typha angustifolia L. 1. Humidity-induced pressurization and convective throughflow. Aquatic Botany, 49, 75-89.
    連結:
  8. Benz, M., Schink, B., Brune, A., 1998. Humic acid reduction by Propionibacterium freudenreichii and other fermenting bacteria. Applied and environmental microbiology, 64, 4507-4512.
    連結:
  9. Blazewicz, S.J., Petersen, D.G., Waldrop, M.P., Firestone, M.K., 2012. Anaerobic oxidation of methane in tropical and boreal soils: Ecological significance in terrestrial methane cycling. J. Geophys. Res.-Biogeosci., 117, 9.
    連結:
  10. Blodau, C., Deppe, M., 2012. Humic acid addition lowers methane release in peats of the Mer Bleue bog, Canada. Soil Biology and Biochemistry, 52, 96-98.
    連結:
  11. Bousquet, P., Ciais, P., Miller, J.B., Dlugokencky, E.J., Hauglustaine, D.A., Prigent, C., Van der Werf, G.R., Peylin, P., Brunke, E.G., Carouge, C., Langenfelds, R.L., Lathiere, J., Papa, F., Ramonet, M., Schmidt, M., Steele, L.P., Tyler, S.C., White, J., 2006. Contribution of anthropogenic and natural sources to atmospheric methane variability. Nature, 443, 439-443.
    連結:
  12. Breznak, J.A., 1982. Intestinal microbiota of termites and other xylophagous insects. Annual Reviews in Microbiology, 36, 323-323.
    連結:
  13. Bridgham, S.D., Cadillo-Quiroz, H., Keller, J.K., Zhuang, Q.L., 2013. Methane emissions from wetlands: biogeochemical, microbial, and modeling perspectives from local to global scales. Glob. Change Biol., 19, 1325-1346.
    連結:
  14. Cervantes, F.J., de Bok, F.A., Duong‐Dac, T., Stams, A.J., Lettinga, G., Field, J.A., 2002. Reduction of humic substances by halorespiring, sulphate‐reducing and methanogenic microorganisms. Environmental Microbiology, 4, 51-57.
    連結:
  15. Chang, T.C., Yang, S.S., 2003. Methane emission from wetlands in Taiwan. Atmospheric Environment, 37, 4551-4558.
    連結:
  16. Chang, Y.H., Cheng, T.W., Lai, W.J., Tsai, W.Y., Sun, C.H., Lin, L.H., Wang, P.L., 2012. Microbial methane cycling in a terrestrial mud volcano in eastern Taiwan. Environmental Microbiology, 14, 895-908.
    連結:
  17. Cheng, W., Yagi, K., Sakai, H., Kobayashi, K., 2006. Effects of elevated atmospheric CO2 concentrations on CH4 and N2O emission from rice soil: an experiment in controlled-environment chambers. Biogeochemistry, 77, 351-373.
    連結:
  18. Cicerone, R.J., Oremland, R.S., 1988. Biogeochemical aspects of atmospheric methane. Global biogeochemical cycles, 2, 299-327.
    連結:
  19. Conrad, R., 2009. The global methane cycle: recent advances in understanding the microbial processes involved. Environmental Microbiology Reports, 1, 285-292.
    連結:
  20. Dorodnikov, M., Knorr, K.H., Kuzyakov, Y., Wilmking, M., 2011. Plant-mediated CH4 transport and contribution of photosynthates to methanogenesis at a boreal mire: a C-14 pulse-labeling study. Biogeosciences, 8, 2365-2375.
    連結:
  21. Dunfield, P.F., Yuryev, A., Senin, P., Smirnova, A.V., Stott, M.B., Hou, S., Ly, B., Saw, J.H., Zhou, Z., Ren, Y., 2007. Methane oxidation by an extremely acidophilic bacterium of the phylum Verrucomicrobia. Nature, 450, 879-882.
    連結:
  22. Ettwig, K.F., Butler, M.K., Le Paslier, D., Pelletier, E., Mangenot, S., Kuypers, M.M.M., Schreiber, F., Dutilh, B.E., Zedelius, J., de Beer, D., Gloerich, J., Wessels, H., van Alen, T., Luesken, F., Wu, M.L., van de Pas-Schoonen, K.T., den Camp, H., Janssen-Megens, E.M., Francoijs, K.J., Stunnenberg, H., Weissenbach, J., Jetten, M.S.M., Strous, M., 2010. Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464, 543.
    連結:
  23. Graham, D.W., Chaudhary, J.A., Hanson, R.S., Arnold, R.G., 1993. Factors affecting competition between type I and type II methanotrophs in two-organism, continuous-flow reactors. Microbial Ecology, 25, 1-17.
    連結:
  24. Gupta, V., Smemo, K.A., Yavitt, J.B., Fowle, D., Branfireun, B., Basiliko, N., 2013. Stable Isotopes Reveal Widespread Anaerobic Methane Oxidation Across Latitude and Peatland Type. Environmental Science & Technology, 47, 8273-8279.
    連結:
  25. Haroon, M.F., Hu, S., Shi, Y., Imelfort, M., Keller, J., Hugenholtz, P., Yuan, Z., Tyson, G.W., 2013. Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500, 567.
    連結:
  26. Heitmann, T., Blodau, C., 2006. Oxidation and incorporation of hydrogen sulfide by dissolved organic matter. Chemical Geology, 235, 12-20.
    連結:
  27. Hinrichs, K.-U., Boetius, A., 2002. The anaerobic oxidation of methane: new insights in microbial ecology and biogeochemistry, Ocean Margin Systems. Springer, pp. 457-477.
    連結:
  28. Hinrichs, K.-U., Hayes, J.M., Sylva, S.P., Brewer, P.G., DeLong, E.F., 1999. Methane-consuming archaebacteria in marine sediments. Nature, 398, 802-805.
    連結:
  29. Hoehler, T., Alperin, M., 1996. Anaerobic methane oxidation by a methanogen-sulfate reducer consortium: geochemical evidence and biochemical considerations, Microbial Growth on C1 compounds. Springer, pp. 326-333.
    連結:
  30. Hoehler, T.M., Alperin, M.J., Albert, D.B., Martens, C.S., 1994. Field and laboratory studies of methane oxidation in an anoxic marine sediment - evidence for a methanogen-sulfate reducer consortium. Global Biogeochemical Cycles, 8, 451-463.
    連結:
  31. Islam, T., Jensen, S., Reigstad, L.J., Larsen, Ø., Birkeland, N.-K., 2008. Methane oxidation at 55 C and pH 2 by a thermoacidophilic bacterium belonging to the Verrucomicrobia phylum. Proceedings of the National Academy of Sciences, 105, 300-304.
    連結:
  32. Juncher J?rgensen, C., Jacobsen, O.S., Elberling, B., Aamand, J., 2009. Microbial oxidation of pyrite coupled to nitrate reduction in anoxic groundwater sediment. Environmental Science & Technology, 43, 4851-4857.
    連結:
  33. Keller, J.K., Weisenhorn, P.B., Megonigal, J.P., 2009. Humic acids as electron acceptors in wetland decomposition. Soil Biology and Biochemistry, 41, 1518-1522.
    連結:
  34. Klupfel, L., Piepenbrock, A., Kappler, A., Sander, M., 2014. Humic substances as fully regenerable electron acceptors in recurrently anoxic environments. Nat. Geosci., 7, 195-200.
    連結:
  35. Knittel, K., Boetius, A., 2009. Anaerobic Oxidation of Methane: Progress with an Unknown Process, Annual Review of Microbiology, pp. 311-334.
    連結:
  36. Laanbroek, H.J., 2010. Methane emission from natural wetlands: interplay between emergent macrophytes and soil microbial processes. A mini-review. Annals of Botany, 105, 141-153.
    連結:
  37. Le Mer, J., Roger, P., 2001. Production, oxidation, emission and consumption of methane by soils: a review. European Journal of Soil Biology, 37, 25-50.
    連結:
  38. Liu, Y., Whitman, W.B., 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann N Y Acad Sci, 1125, 171-189.
    連結:
  39. Lovley, D.R., Coates, J.D., Blunt-Harris, E.L., Phillips, E.J., Woodward, J.C., 1996. Humic substances as electron acceptors for microbial respiration. Nature, 382, 445-448.
    連結:
  40. Meijide, A., Manca, G., Goded, I., Magliulo, V., Tommasi, P.d., Seufert, G., Cescatti, A., 2011. Seasonal trends and environmental controls of methane emissions in a rice paddy field in Northern Italy. Biogeosciences, 8, 3809-3821.
    連結:
  41. Meulepas, R.J., Jagersma, C.G., Khadem, A.F., Stams, A.J., Lens, P.N., 2010. Effect of methanogenic substrates on anaerobic oxidation of methane and sulfate reduction by an anaerobic methanotrophic enrichment. Applied microbiology and biotechnology, 87, 1499-1506.
    連結:
  42. Moore, T.R., De Young, A., Bubier, J.L., Humphreys, E.R., Lafleur, P.M., Roulet, N.T., 2011. A multi-year record of methane flux at the Mer Bleue Bog, Southern Canada. Ecosystems, 14, 646-657.
    連結:
  43. Moran, J.J., Beal, E.J., Vrentas, J.M., Orphan, V.J., Freeman, K.H., House, C.H., 2008. Methyl sulfides as intermediates in the anaerobic oxidation of methane. Environmental Microbiology, 10, 162-173.
    連結:
  44. Moran, J.J., House, C.H., Freeman, K.H., Ferry, J.G., 2005. Trace methane oxidation studied in several Euryarchaeota under diverse conditions. Archaea, 1, 303-309.
    連結:
  45. Moran, J.J., House, C.H., Thomas, B., Freeman, K.H., 2007. Products of trace methane oxidation during nonmethyltrophic growth by Methanosarcina. Journal of Geophysical Research: Biogeosciences, 112.
    連結:
  46. Morita, R.Y., 1975. Psychrophilic bacteria. Bacteriological reviews, 39, 144.
    連結:
  47. Nauhaus, K., Boetius, A., Krüger, M., Widdel, F., 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environmental Microbiology, 4, 296-305.
    連結:
  48. Nauhaus, K., Treude, T., Boetius, A., Krüger, M., 2005. Environmental regulation of the anaerobic oxidation of methane: a comparison of ANME‐I and ANME‐II communities. Environmental Microbiology, 7, 98-106.
    連結:
  49. Neubauer, S.C., Givler, K., Valentine, S., Megonigal, J.P., 2005. Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology, 86, 3334-3344.
    連結:
  50. Ogawa, H., Tanoue, E., 2003. Dissolved organic matter in oceanic waters. Journal of Oceanography, 59, 129-147.
    連結:
  51. Op den Camp, H.J., Islam, T., Stott, M.B., Harhangi, H.R., Hynes, A., Schouten, S., Jetten, M.S., Birkeland, N.K., Pol, A., Dunfield, P.F., 2009. Environmental, genomic and taxonomic perspectives on methanotrophic Verrucomicrobia. Environmental Microbiology Reports, 1, 293-306.
    連結:
  52. Orcutt, B., Meile, C., 2008. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions. Biogeosciences Discussions, 5, 1933-1967.
    連結:
  53. Pol, A., Heijmans, K., Harhangi, H.R., Tedesco, D., Jetten, M.S., den Camp, H.J.O., 2007. Methanotrophy below pH 1 by a new Verrucomicrobia species. Nature, 450, 874-878.
    連結:
  54. Reeburgh, W.S., 2007. Oceanic Methane Biogeochemistry. Chemical Reviews, 107, 486-513.
    連結:
  55. Roslev, P., King, G.M., 1996. Regulation of methane oxidation in a freshwater wetland by water table changes and anoxia. FEMS Microbiology Ecology, 19, 105-115.
    連結:
  56. Rutherford, J., Hynes, H., 1987. Dissolved organic carbon in streams and groundwater. Hydrobiologia, 154, 33-48.
    連結:
  57. Scheller, S., Yu, H., Chadwick, G.L., McGlynn, S.E., Orphan, V.J., 2016. Artificial electron acceptors decouple archaeal methane oxidation from sulfate reduction. Science, 351, 703-707.
    連結:
  58. Segarra, K.E., Schubotz, F., Samarkin, V., Yoshinaga, M.Y., Hinrichs, K.U., Joye, S.B., 2015. High rates of anaerobic methane oxidation in freshwater wetlands reduce potential atmospheric methane emissions. Nature communications, 6, 7477.
    連結:
  59. Segarra, K.E.A., Comerford, C., Slaughter, J., Joye, S.B., 2013. Impact of electron acceptor availability on the anaerobic oxidation of methane in coastal freshwater and brackish wetland sediments. Geochim. Cosmochim. Acta, 115, 15-30.
    連結:
  60. Shannon, R.D., White, J.R., Lawson, J.E., Gilmour, B.S., 1996. Methane efflux from emergent vegetation in peatlands. Journal of Ecology, 239-246.
    連結:
  61. Shima, S., Thauer, R.K., 2005. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea. Current opinion in microbiology, 8, 643-648.
    連結:
  62. Sivan, O., Adler, M., Pearson, A., Gelman, F., Bar-Or, I., John, S.G., Eckert, W., 2011. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnology and Oceanography, 56, 1536-1544.
    連結:
  63. Smemo, K.A., Yavitt, J.B., 2011. Anaerobic oxidation of methane: an underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences, 8, 779-793.
    連結:
  64. Tornberg, T., Bendix, M., Brix, H., 1994. Internal gas transport in Typha latifolia L. and Typha angustifolia L. 2. Convective throughflow pathways and ecological significance. Aquatic Botany, 49, 91-105.
    連結:
  65. Trotsenko, Y.A., Murrell, J.C., 2008. Metabolic Aspects of Aerobic Obligate Methanotrophy⋆. Advances in applied microbiology, 63, 183-229.
    連結:
  66. Turetsky, M., Treat, C., Waldrop, M., Waddington, J., Harden, J., McGuire, A., 2008. Short‐term response of methane fluxes and methanogen activity to water table and soil warming manipulations in an Alaskan peatland. Journal of Geophysical Research: Biogeosciences, 113.
    連結:
  67. Updegraff, K., Bridgham, S.D., Pastor, J., Weishampel, P., Harth, C., 2001. Response of CO2 and CH4 emissions from peatlands to warming and water table manipulation. Ecological Applications, 11, 311-326.
    連結:
  68. Valentine, D.L., Reeburgh, W.S., 2000. New perspectives on anaerobic methane oxidation. Environmental Microbiology, 2, 477-484.
    連結:
  69. van der Nat, F.-J.W., Middelburg, J.J., 1998b. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquatic Botany, 61, 95-110.
    連結:
  70. Wang, P.L., Chiu, Y.P., Cheng, T.W., Chang, Y.H., Tu, W.X., Lin, L.H., 2014. Spatial variations of community structures and methane cycling across a transect of Lei-Gong-Hou mud volcanoes in eastern Taiwan. Front Microbiol, 5, 121.
    連結:
  71. Whiting, G., Chanton, J., 1993. Primary production control of methane emission from wetlands. Nature 364, 794 - 795
    連結:
  72. Whiting, G. J., and Chanton, J. P. 1993. Primary production control of methane emission from wetlands. Nature, 794-795.
    連結:
  73. Whiting, G.J., Chanton, J.P., 1992. Plant‐dependent CH4 emission in a subarctic Canadian fen. Global Biogeochemical Cycles, 6, 225-231.
    連結:
  74. Zehnder, A., Brock, T., 1979. Methane formation and methane oxidation by methanogenic bacteria. Journal of Bacteriology, 137, 420-432.
    連結:
  75. Boetius, A., Ravenschlag, K., Schubert, C.J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., J?rgensen, B.B., Witte, U., Pfannkuche, O., 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature, 407, 623-626.
  76. Crowe, S., Katsev, S., Leslie, K., Sturm, A., Magen, C., Nomosatryo, S., Pack, M., Kessler, J., Reeburgh, W., Roberts, J., 2011. The methane cycle in ferruginous Lake Matano. Geobiology, 9, 61-78.
  77. Dlugokencky, E.J., Nisbet, E.G., Fisher, R., Lowry, D., 2011. Global atmospheric methane: budget, changes and dangers. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 369, 2058-2072.
  78. Frenzel, P., Rudolph, J., 1998. Methane emission from a wetland plant: the role of CH4 oxidation in Eriophorum. Plant and Soil, 202, 27-32.
  79. LaFage, J., Nutting, W., 1978. Food and feeding habits of termites. Nutrient Dynamics of Termites, 165-232.
  80. Lee, K.E., Wood, T.G., 1971. Termites and soils. Academic Press: London, UK.
  81. Milucka, J., Ferdelman, T.G., Polerecky, L., Franzke, D., Wegener, G., Schmid, M., Lieberwirth, I., Wagner, M., Widdel, F., Kuypers, M.M.M., 2012. Zero-valent sulphur is a key intermediate in marine methane oxidation. Nature, 491, 541-+.
  82. Raghoebarsing, A.A., Pol, A., van de Pas-Schoonen, K.T., Smolders, A.J.P., Ettwig, K.F., Rijpstra, W.I.C., Schouten, S., Damste, J.S.S., Op den Camp, H.J.M., Jetten, M.S.M., Strous, M., 2006. A microbial consortium couples anaerobic methane oxidation to denitrification. Nature, 440, 918-921.
  83. S?rensen, K., Finster, K., Ramsing, N., 2001. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles. Microbial ecology, 42, 1-10.
  84. Segers, R., 1998. Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry, 41, 23-51.
  85. Van Der Nat, F.-J.W., Middelburg, J.J., 1998a. Effects of two common macrophytes on methane dynamics in freshwater sediments. Biogeochemistry, 43, 79-104.
  86. Whittenbury, R., Dalton, H., 1981. The methylotrophic bacteria, The prokaryotes. Springer, pp. 894-902.
  87. Whittenbury, R., Dalton, H., Eccleston, M., Reed, H., 1975. The different types of methane-oxidizing bacteria and some of their more unusual properties. Microbial growth on C, 1-9.