题名

在電熱耦合場下之微流體與粒子操控

并列篇名

Manipulation of Fluids and Particles under an Electrothermal Field

DOI

10.6342/NTU201703643

作者

陳昱良

关键词

非對稱粒子 ; 電動力學 ; 電旋轉 ; 介電泳 ; 粒子操控 ; 電熱流 ; 熱泳 ; Janus particle ; electrokinetics ; electrorotation ; dielectrophoresis ; particle manipulation ; electrothermal flow ; thermophoresis

期刊名称

臺灣大學應用力學研究所學位論文

卷期/出版年月

2017年

学位类别

博士

导师

江宏仁

内容语文

英文

中文摘要

近年來,流體與粒子之電、熱操控技術已廣泛運用在實驗室晶片的應用上。過去的許多研究中指出可以利用熱梯度在流體與粒子週圍產生局部介電性質之非均質性並且藉由此非均值性進一步地利用外加電場驅動流體與粒子。相較於在單一物理場下的流體與粒子操控技術,在電熱耦合場下的流體與粒子操控展現了較廣大的流場與較快的運動速度。基於這些優點與特性,我們計劃利用電熱耦合場來操控流體、粒子甚至是驅動單一非對稱粒子。在本篇論文中,我們提出一種新的旋轉電熱流體操控技術,透過粒子不同的介電泳反應以及向加熱中心流動的電熱流體,可以快速地分離以及搜集不同的粒子。由於不同粒子之介電泳反應的差異,可能會被吸附在電極邊緣(正介電泳)或是被排斥遠離電極電極邊緣(負介電泳),而負介電泳反應的粒子會進一步地被電熱流所搜集,達到粒子分類與搜集的目的。此熱電耦合技術可以在鹽水溶液以及在高頻率域範圍操作,因此可克服在低頻時所發生的電滲流現象,改善在微流體晶片中操控的精確性。此技術的應用範圍廣泛,例如生醫檢測之訊號加強、光晶體的製造以及生化微感測器的應用等。 為了要進一步地利用電熱耦合場來驅動單一非對稱粒子,我們必須了解非對稱粒子在電場下的極化特性。在本篇論文中,我們利用電旋轉技術來量測金屬/二氧化矽之非對稱粒子的極化特性。根據不同的電場頻率與金屬濺鍍層的厚度,非對稱粒子的電旋轉方向會有所不同。在非對稱粒子、全金屬球殼粒子與均值介電粒子的比較中,半邊鍍金屬之非對稱粒子的幾何特性造成屏蔽效應的下降進而增加粒子的極化,因此提高非對稱粒子的特徵頻率。我們提出在非對稱粒子中存在一與濺鍍厚度相關之長度尺度,其會影響非對稱粒子在電場下的極化進而造成特徵頻率的改變。 接下來,電熱耦合場進一步地被用來驅動單一非對稱粒子。對一個在自熱泳情況下的非對稱粒子施加一交流電場,並量測其運動速度的改變。發現在同時施加電場與熱梯度的情況下,粒子的運動速度遠大於單一物理場所驅動的速度。基於此實驗結果,我們提出運動速度的增加來自於外加電場所產生的感應介達電位加強了粒子的自熱泳效應。 根據實驗結果,相較於在單一場下的操控技術,在電熱耦合場下之流體與粒子操控技術更加有效率。基於此概念,若是使用一個物理場改變流體或是粒子之物理特性,並且利用另一個物理場來驅動可能有助於操控或增強流體或粒子的運動。此種熱電耦合的操控技術在微流體晶片應用中提供了一個可以動態加強或是控制流體與粒子運動的方法。

英文摘要

Electrically and thermally based manipulations of fluids or particles has been a technological trend used in lab-on-a-chip applications in last decades. In particular, several studies report that it could generate local inhomogeneities of electric propertiy on fluids and particles by a thermal gradient and further drive the fluids and particles by an electric field acting these inhomogeneities, such as electrothermal flow. Compared with the manipualtion of fluids and particles under a single physical field, the manipulation under an electrothermal field reveals a wide range flow pattern and fast velocity. Based on these features, we plan to apply an electrothermal coupled field to manipulate fluids, particles and even a single asymmetric particle. In this thesis, we demonstrate a functional rotating electrothermal technique for rapidly concentrating and sorting a large number of particles on the microchip by the combination of particle dielectrophoresis (DEP) and inward rotating electrothermal (RET) flows. Different kinds of particles can be attracted (positive DEP) to or repelled (negative DEP) from the electrode edges, and then the n-DEP responsive particles are further concentrated at the heated region by RET flows. This multi-field technique can be operated in salt solutions and at higher frequency without external flow pressure. It can avoid the electrokinetic phenomena at low frequency to improve manipulation accuracy for lab-on-chip applications. To further apply the electrothermal field to drive a single asysmmetric particle (Janus particle), the characters of polarization of particles under an electric field must be understood in advance. In this thesis, the polarization of metal-coated Janus particles is characterized by electrorotation (EROT) measurements. The rotational direction of Janus particles following or countering the direction of the rotating electric field are observed depending on the field frequency and thickness of metallic coating. The comparison of Janus, metallic, and dielectric particles reveals that the hemispherical coating reduces the screening effect and promotes polarization, thereby exhibiting a higher characteristic frequency. We propose that there is a special length scale introduced by metallic coating in the polarization of Janus particle. Subsequently, the electrothermal field is used to drive a singlemetal-coated Janus particle. By applying an AC electric field on self-thermophoretic Janus particles in a defocused laser beam, the velocity becomes faster than that of usual self-thermophoretic Janus particles. We propose that the enhancement of self-thermophoresis could be explained by the induced zeta potential resulting from applying an AC electric field. Based on the experimental results, the manipulation technique under an electrothermal field is more effective than the technique under a single physical field. It would be useful if the properties of fluids and particles can be dynamically tuned by one field and driven by the other field. The functional manipulation technique under an electrothermal field may give a new way to power and control the motion of particles and fluids in a microchip.

主题分类 基礎與應用科學 > 物理
工學院 > 應用力學研究所
参考文献
  1. 1 Hu, Jie, Wang, ShuQi, Wang, Lin, Li, Fei, Pingguan-Murphy, Belinda, Lu, Tian Jian & Xu, Feng. Advances in paper-based point-of-care diagnostics. Biosensors and Bioelectronics. 54 585-597 (2014).
    連結:
  2. 2 Lei, Kin Fong. Microfluidic Systems for Diagnostic Applications A Review. Journal of laboratory automation. 17 (5), 330-347 (2012).
    連結:
  3. 3 Ehrmeyer, Sharon S & Laessig, Ronald H. Point-of-care testing, medical error, and patient safety: a 2007 assessment. Clinical Chemical Laboratory Medicine. 45 (6), 766-773 (2007).
    連結:
  4. 4 Bissonnette, L & Bergeron, MG. Diagnosing infections––current and anticipated technologies for point‐of‐care diagnostics and home‐based testing. Clinical Microbiology and Infection. 16 (8), 1044-1053 (2010).
    連結:
  5. 5 Sun, Jiashu, Xianyu, Yunlei & Jiang, Xingyu. Point-of-care biochemical assays using gold nanoparticle-implemented microfluidics. Chemical Society Reviews. 43 (17), 6239-6253 (2014).
    連結:
  6. 7 Salgado, Gonçalo Martim Gomes Branco Mafra. Barriers to the diffusion of microfluidics from research to market, (2016).
    連結:
  7. 8 Paustian, Joel S, Pascall, Andrew J, Wilson, Neil M & Squires, Todd M. Induced charge electroosmosis micropumps using arrays of Janus micropillars. Lab on a Chip. 14 (17), 3300-3312 (2014).
    連結:
  8. 9 Nakano, Michihiko, Katsura, Shinji, Touchard, Grard G, Takashima, Kazunori & Mizuno, Akira. Development of an optoelectrostatic micropump using a focused laser beam in a high-frequency electric field. IEEE Transactions on Industry Applications. 43 (1), 232-237 (2007).
    連結:
  9. 10 Harnett, Cindy K, Templeton, Jeremy, Dunphy-Guzman, Katherine A, Senousy, Yehya M & Kanouff, Michael P. Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab on a Chip. 8 (4), 565-572 (2008).
    連結:
  10. 12 Okamoto, Yukihiro, Kitagawa, Fumihiko & Otsuka, Koji. Online concentration and affinity separation of biomolecules using multifunctional particles in capillary electrophoresis under magnetic field. Analytical chemistry. 79 (8), 3041-3047 (2007).
    連結:
  11. 13 Würger, Alois. Thermal non-equilibrium transport in colloids. Reports on Progress in Physics. 73 (12), 126601 (2010).
    連結:
  12. 14 Piazza, R & Parola, A. Thermophoresis in colloidal suspensions. Journal of Physics: Condensed Matter. 20 (15), 153102 (2008).
    連結:
  13. 15 Yamada, Masumi & Seki, Minoru. Hydrodynamic filtration for on-chip particle concentration and classification utilizing microfluidics. Lab on a Chip. 5 (11), 1233-1239 (2005).
    連結:
  14. 16 Hughes, Michael Pycraft. AC electrokinetics: applications for nanotechnology. Nanotechnology. 11 (2), 124 (2000).
    連結:
  15. 17 Sajeesh, P & Sen, Ashis Kumar. Particle separation and sorting in microfluidic devices: a review. Microfluidics and nanofluidics. 17 (1), 1-52 (2014).
    連結:
  16. 18 Green, Nicolas G, Ramos, Antonio, González, Antonio, Castellanos, Antonio & Morgan, Hywel. Electric field induced fluid flow on microelectrodes: the effect of illumination. Journal of Physics D: Applied Physics. 33 (2), L13 (2000).
    連結:
  17. 19 Hughes, Michael P. Strategies for dielectrophoretic separation in laboratory‐on‐a‐chip systems. Electrophoresis. 23 (16), 2569-2582 (2002).
    連結:
  18. 21 Hwang, Hyundoo & Park, Je-Kyun. Rapid and selective concentration of microparticles in an optoelectrofluidic platform. Lab on a Chip. 9 (2), 199-206 (2009).
    連結:
  19. 22 Yuan, Quan & Wu, Jie. Thermally biased AC electrokinetic pumping effect for Lab-on-a-chip based delivery of biofluids. Biomedical microdevices. 15 (1), 125-133 (2013).
    連結:
  20. 23 Hwang, Hyundoo & Park, Je-Kyun. Optoelectrofluidic manipulation of nanoparticles and biomolecules. Advances in OptoElectronics. 2011 (2011).
    連結:
  21. 24 Yuan, Quan, Yang, Kai & Wu, Jie. Optimization of planar interdigitated microelectrode array for biofluid transport by AC electrothermal effect. Microfluidics and nanofluidics. 16 (1-2), 167-178 (2014).
    連結:
  22. 25 Wang, Kuan-Chih, Kumar, Aloke, Williams, Stuart J, Green, Nicolas G, Kim, Kyung Chun & Chuang, Han-Sheng. An optoelectrokinetic technique for programmable particle manipulation and bead-based biosignal enhancement. Lab on a Chip. 14 (20), 3958-3967 (2014).
    連結:
  23. 26 Mizuno, Akira, Nishioka, Masateru, Ohno, Yuji & Dascalescu, L-D. Liquid microvortex generated around a laser focal point in an intense high-frequency electric field. IEEE transactions on industry applications. 31 (3), 464-468 (1995).
    連結:
  24. 27 Nakano, Michihiko, Kurita, Hirofumi, Komatsu, Jun, Mizuno, Akira & Katsura, Shinji. Stretching of long DNA molecules in the microvortex induced by laser and ac electric field. Applied physics letters. 89 (13), 3901 (2006).
    連結:
  25. 28 González, Antonio, Ramos, Antonio, Morgan, Hywel, Green, Nicolas G & Castellanos, Antonio. Electrothermal flows generated by alternating and rotating electric fields in microsystems. Journal of Fluid Mechanics. 564 415-433 (2006).
    連結:
  26. 29 Kumar, Aloke, Kwon, Jae-Sung, Williams, Stuart J, Green, Nicolas G, Yip, Nung Kwan & Wereley, Steven T. Optically modulated electrokinetic manipulation and concentration of colloidal particles near an electrode surface. Langmuir. 26 (7), 5262-5272 (2010).
    連結:
  27. 30 Williams, Stuart J, Kumar, Aloke, Green, Nicolas G & Wereley, Steven T. A simple, optically induced electrokinetic method to concentrate and pattern nanoparticles. Nanoscale. 1 (1), 133-137 (2009).
    連結:
  28. 31 Kwon, Jae-Sung & Wereley, Steven T. Light-actuated electrothermal microfluidic motion: experimental investigation and physical interpretation. Microfluidics and Nanofluidics. 19 (3), 609-619 (2015).
    連結:
  29. 32 Gagnon, Zachary R & Chang, Hsueh-Chia. Electrothermal ac electro-osmosis. Applied Physics Letters. 94 (2), 024101 (2009).
    連結:
  30. 33 Ng, Alex Siu Wai, Hau, Winky Lap Wing, Lee, Yi-Kuen & Zohar, Yitshak. Electrokinetic generation of microvortex patterns in a microchannel liquid flow. Journal of micromechanics and microengineering. 14 (2), 247 (2004).
    連結:
  31. 34 Kumar, Aloke, Williams, Stuart J & Wereley, Steven T. Experiments on opto-electrically generated microfluidic vortices. Microfluidics and Nanofluidics. 6 (5), 637-646 (2009).
    連結:
  32. 35 Han, Dongsik & Park, Je-Kyun. Optoelectrofluidic enhanced immunoreaction based on optically-induced dynamic AC electroosmosis. Lab on a Chip. 16 (7), 1189-1196 (2016).
    連結:
  33. 36 Hwang, Hyundoo, Park, Youn-Hee & Park, Je-Kyun. Optoelectrofluidic control of colloidal assembly in an optically induced electric field. Langmuir. 25 (11), 6010-6014 (2009).
    連結:
  34. 37 Chiou, Pei-Yu, Ohta, Aaron T, Jamshidi, Arash, Hsu, Hsin-Yi & Wu, Ming C. Light-actuated AC electroosmosis for nanoparticle manipulation. Journal of Microelectromechanical Systems. 17 (3), 525-531 (2008).
    連結:
  35. 38 Jamshidi, Arash, Pauzauskie, Peter J, Schuck, P James, Ohta, Aaron T, Chiou, Pei-Yu, Chou, Jeffrey, Yang, Peidong & Wu, Ming C. Dynamic manipulation and separation of individual semiconducting and metallic nanowires. Nature Photonics. 2 (2), 86-89 (2008).
    連結:
  36. 40 Casagrande, C, Fabre, P, Raphael, E & Veyssié, M. “Janus Beads”: realization and behaviour at water/oil interfaces. EPL (Europhysics Letters). 9 (3), 251 (1989).
    連結:
  37. 41 Yi, Yi, Sanchez, Lucero, Gao, Yuan & Yu, Yan. Janus particles for biological imaging and sensing. Analyst. 141 (12), 3526-3539 (2016).
    連結:
  38. 43 Smoukov, Stoyan K, Gangwal, Sumit, Marquez, Manuel & Velev, Orlin D. Reconfigurable responsive structures assembled from magnetic Janus particles. Soft Matter. 5 (6), 1285-1292 (2009).
    連結:
  39. 44 Ren, Bin, Ruditskiy, Aleksey, Song, Jung Hun & Kretzschmar, Ilona. Assembly behavior of iron oxide-capped Janus particles in a magnetic field. Langmuir. 28 (2), 1149-1156 (2011).
    連結:
  40. 45 Ruditskiy, Aleksey, Ren, Bin & Kretzschmar, Ilona. Behaviour of iron oxide (Fe 3 O 4) Janus particles in overlapping external AC electric and static magnetic fields. Soft Matter. 9 (38), 9174-9181 (2013).
    連結:
  41. 46 Jiang, Hong-Ren, Yoshinaga, Natsuhiko & Sano, Masaki. Active motion of a Janus particle by self-thermophoresis in a defocused laser beam. Physical review letters. 105 (26), 268302 (2010).
    連結:
  42. 47 Bickel, Thomas, Majee, Arghya & Würger, Alois. Flow pattern in the vicinity of self-propelling hot Janus particles. Physical Review E. 88 (1), 012301 (2013).
    連結:
  43. 48 Ebbens, Stephen J & Howse, Jonathan R. Direct observation of the direction of motion for spherical catalytic swimmers. Langmuir. 27 (20), 12293-12296 (2011).
    連結:
  44. 49 Gibbs, JG & Zhao, YP. Autonomously motile catalytic nanomotors by bubble propulsion. Applied Physics Letters. 94 (16), 163104 (2009).
    連結:
  45. 50 Ebbens, S, Gregory, DA, Dunderdale, G, Howse, JR, Ibrahim, Y, Liverpool, TB & Golestanian, R. Electrokinetic effects in catalytic platinum-insulator Janus swimmers. EPL (Europhysics Letters). 106 (5), 58003 (2014).
    連結:
  46. 51 Gangwal, Sumit, Cayre, Olivier J, Bazant, Martin Z & Velev, Orlin D. Induced-charge electrophoresis of metallodielectric particles. Physical review letters. 100 (5), 058302 (2008).
    連結:
  47. 52 Peng, Chenhui, Lazo, Israel, Shiyanovskii, Sergij V & Lavrentovich, Oleg D. Induced-charge electro-osmosis around metal and Janus spheres in water: Patterns of flow and breaking symmetries. Physical Review E. 90 (5), 051002 (2014).
    連結:
  48. 53 Gangwal, Sumit, Cayre, Olivier J & Velev, Orlin D. Dielectrophoretic assembly of metallodielectric Janus particles in AC electric fields. Langmuir. 24 (23), 13312-13320 (2008).
    連結:
  49. 54 Zhang, Lu & Zhu, Yingxi. Directed assembly of janus particles under high frequency ac-electric fields: Effects of medium conductivity and colloidal surface chemistry. Langmuir. 28 (37), 13201-13207 (2012).
    連結:
  50. 55 Zhang, Lu & Zhu, Yingxi. Dielectrophoresis of Janus particles under high frequency ac-electric fields. Applied Physics Letters. 96 (14), 141902 (2010).
    連結:
  51. 56 Boymelgreen, Alicia, Yossifon, Gilad, Park, Sinwook & Miloh, Touvia. Spinning Janus doublets driven in uniform ac electric fields. Physical Review E. 89 (1), 011003 (2014).
    連結:
  52. 57 Chen, Jiliang, Zhang, Hongyan, Zheng, Xu & Cui, Haihang. Janus particle microshuttle: 1D directional self-propulsion modulated by AC electrical field. AIP Advances. 4 (3), 031325 (2014).
    連結:
  53. 58 Walther, Andreas & Müller, Axel HE. Janus particles. Soft Matter. 4 (4), 663-668 (2008).
    連結:
  54. 60 Love, J Christopher, Gates, Byron D, Wolfe, Daniel B, Paul, Kateri E & Whitesides, George M. Fabrication and wetting properties of metallic half-shells with submicron diameters. Nano Letters. 2 (8), 891-894 (2002).
    連結:
  55. 61 Hong, Liang, Jiang, Shan & Granick, Steve. Simple method to produce Janus colloidal particles in large quantity. Langmuir. 22 (23), 9495-9499 (2006).
    連結:
  56. 62 Bhaskar, Srijanani, Hitt, Jonathon, Chang, Sei‐Won Laura & Lahann, Joerg. Multicompartmental microcylinders. Angewandte Chemie International Edition. 48 (25), 4589-4593 (2009).
    連結:
  57. 63 Roh, Kyung-Ho, Martin, David C & Lahann, Joerg. Biphasic Janus particles with nanoscale anisotropy. Nature materials. 4 (10), 759-763 (2005).
    連結:
  58. 64 Nie, Zhihong, Li, Wei, Seo, Minseok, Xu, Shengqing & Kumacheva, Eugenia. Janus and ternary particles generated by microfluidic synthesis: design, synthesis, and self-assembly. Journal of the American Chemical Society. 128 (29), 9408-9412 (2006).
    連結:
  59. 65 Kralchevsky, Peter A & Denkov, Nikolai D. Capillary forces and structuring in layers of colloid particles. Current Opinion in Colloid & Interface Science. 6 (4), 383-401 (2001).
    連結:
  60. 68 Grahame, David C. The electrical double layer and the theory of eletrocapillarity. Chem. Rev. 41 441-501 (1947).
    連結:
  61. 69 Hanaor, Dorian, Michelazzi, Marco, Leonelli, Cristina & Sorrell, Charles C. The effects of carboxylic acids on the aqueous dispersion and electrophoretic deposition of ZrO 2. Journal of the European Ceramic Society. 32 (1), 235-244 (2012).
    連結:
  62. 70 Russel, William Bailey, Saville, Dudley Albert & Schowalter, William Raymond. Colloidal dispersions. (Cambridge university press, 1989).
    連結:
  63. 71 Squires, Todd M & Bazant, Martin Z. Induced-charge electro-osmosis. Journal of Fluid Mechanics. 509 217-252 (2004).
    連結:
  64. 74 García-Sánchez, Pablo, Ren, Yukun, Arcenegui, Juan J, Morgan, Hywel & Ramos, Antonio. Alternating current electrokinetic properties of gold-coated microspheres. Langmuir. 28 (39), 13861-13870 (2012).
    連結:
  65. 75 Honegger, Thibault, Berton, K, Picard, E & Peyrade, D. Determination of Clausius–Mossotti factors and surface capacitances for colloidal particles. Applied Physics Letters. 98 (18), 181906 (2011).
    連結:
  66. 76 Huang, Ying, Holzel, Ralph, Pethig, Ronald & Wang, Xiao-B. Differences in the AC electrodynamics of viable and non-viable yeast cells determined through combined dielectrophoresis and electrorotation studies. Physics in medicine and biology. 37 (7), 1499 (1992).
    連結:
  67. 77 Grosse, Constantino & Shilov, Vladimir Nikolaievich. Theory of the low-frequency electrorotation of polystyrene particles in electrolyte solution. The Journal of Physical Chemistry. 100 (5), 1771-1778 (1996).
    連結:
  68. 78 Bazant, Martin Z & Squires, Todd M. Induced-charge electrokinetic phenomena: theory and microfluidic applications. Physical Review Letters. 92 (6), 066101 (2004).
    連結:
  69. 79 Bazant, Martin Z. in Electrokinetics and Electrohydrodynamics in Microsystems 221-297 (Springer, 2011).
    連結:
  70. 80 Liu, Weiyu, Shao, Jinyou, Jia, Yankai, Tao, Ye, Ding, Yucheng, Jiang, Hongyuan & Ren, Yukun. Trapping and chaining self-assembly of colloidal polystyrene particles over a floating electrode by using combined induced-charge electroosmosis and attractive dipole–dipole interactions. Soft matter. 11 (41), 8105-8112 (2015).
    連結:
  71. 82 Wu, Yupan, Ren, Yukun, Tao, Ye, Hou, Likai & Jiang, Hongyuan. Large-Scale Single Particle and Cell Trapping based on Rotating Electric Field Induced-Charge Electroosmosis. Analytical Chemistry. 88 (23), 11791-11798 (2016).
    連結:
  72. 83 Ren, Yukun, Liu, Weiyu, Liu, Jiangwei, Tao, Ye, Guo, Yongbo & Jiang, Hongyuan. Particle rotational trapping on a floating electrode by rotating induced-charge electroosmosis. Biomicrofluidics. 10 (5), 054103 (2016).
    連結:
  73. 84 Ren, Yukun, Liu, Jiangwei, Liu, Weiyu, Lang, Qi, Tao, Ye, Hu, Qingming, Hou, Likai & Jiang, Hongyuan. Scaled particle focusing in a microfluidic device with asymmetric electrodes utilizing induced-charge electroosmosis. Lab on a Chip. 16 (15), 2803-2812 (2016).
    連結:
  74. 85 Chen, Jiajie, Cong, Hengji, Loo, Fong-Chuen, Kang, Zhiwen, Tang, Minghui, Zhang, Haixi, Wu, Shu-Yuen, Kong, Siu-Kai & Ho, Ho-Pui. Thermal gradient induced tweezers for the manipulation of particles and cells. Scientific Reports. 6 (2016).
    連結:
  75. 86 Green, Nicolas G, Ramos, Antonio, Gonzalez, Antonio, Castellanos, Antonio & Morgan, Hywel. Electrothermally induced fluid flow on microelectrodes. Journal of Electrostatics. 53 (2), 71-87 (2001).
    連結:
  76. 87 Schnelle, Th, Müller, T, Reichle, C & Fuhr, G. Combined dielectrophoretic field cages and laser tweezers for electrorotation. Applied Physics B. 70 (2), 267-274 (2000).
    連結:
  77. 88 Pawar, Amar B & Kretzschmar, Ilona. Multifunctional patchy particles by glancing angle deposition. Langmuir. 25 (16), 9057-9063 (2009).
    連結:
  78. 89 Vijayshankar, Dandapani, Mammen, Lena, Papadopoulos, Periklis & Vollmer, Doris. Nanorough silica coatings by chemical vapor deposition. RSC Advances. 4 (25), 12737-12742 (2014).
    連結:
  79. 90 Deng, Xu, Mammen, Lena, Butt, Hans-Jürgen & Vollmer, Doris. Candle soot as a template for a transparent robust superamphiphobic coating. Science. 335 (6064), 67-70 (2012).
    連結:
  80. 91 Yang, Shunlong, Xu, Baofeng, Zhang, Jiaqi, Huang, Xiaodan, Ye, Jianshan & Yu, Chenzhong. Controllable adsorption of reduced graphene oxide onto self-assembled alkanethiol monolayers on gold electrodes: tunable electrode dimension and potential electrochemical applications. The Journal of Physical Chemistry C. 114 (10), 4389-4393 (2010).
    連結:
  81. 92 Willey, Trevor M, Vance, Andrew L, Van Buuren, T, Bostedt, C, Terminello, LJ & Fadley, CS. Rapid degradation of alkanethiol-based self-assembled monolayers on gold in ambient laboratory conditions. Surface Science. 576 (1), 188-196 (2005).
    連結:
  82. 93 Dubois, Lawrence H, Zegarski, Bernard R & Nuzzo, Ralph G. Fundamental studies of microscopic wetting on organic surfaces. 2. Interaction of secondary adsorbates with chemically textured organic monolayers. Journal of the American chemical Society. 112 (2), 570-579 (1990).
    連結:
  83. 94 Ederth, Thomas, Claesson, Per & Liedberg, Bo. Self-assembled monolayers of alkanethiolates on thin gold films as substrates for surface force measurements. Long-range hydrophobic interactions and electrostatic double-layer interactions. Langmuir. 14 (17), 4782-4789 (1998).
    連結:
  84. 95 Wang, Chung-Huei K & Pun, Suzie H. Substrate-mediated nucleic acid delivery from self-assembled monolayers. Trends in biotechnology. 29 (3), 119-126 (2011).
    連結:
  85. 96 Hale, George M & Querry, Marvin R. Optical constants of water in the 200-nm to 200-μm wavelength region. Applied optics. 12 (3), 555-563 (1973).
    連結:
  86. 98 Duhr, Stefan & Braun, Dieter. Thermophoretic depletion follows Boltzmann distribution. Physical review letters. 96 (16), 168301 (2006).
    連結:
  87. 99 Duhr, S, Arduini, S & Braun, D. Thermophoresis of DNA determined by microfluidic fluorescence. The European Physical Journal E. 15 (3), 277-286 (2004).
    連結:
  88. 103 Arcenegui, Juan J, García-Sánchez, Pablo, Morgan, Hywel & Ramos, Antonio. Electric-field-induced rotation of Brownian metal nanowires. Physical Review E. 88 (3), 033025 (2013).
    連結:
  89. 104 Arcenegui, Juan J, García-Sánchez, Pablo, Morgan, Hywel & Ramos, Antonio. Electro-orientation and electrorotation of metal nanowires. Physical Review E. 88 (6), 063018 (2013).
    連結:
  90. 105 Nakano, Michihiko, Katsura, Shinji, Touchard, Gérard G, Takashima, Kazunori & Mizuno, Akira. Development of an optoelectrostatic micropump using a focused laser beam in a high-frequency electric field. Industry Applications, IEEE Transactions on. 43 (1), 232-237 (2007).
    連結:
  91. 106 Adamiak, Kazimierz, Mizuno, Akira & Nakano, Michihiko. Electrohydrodynamic flow in optoelectrostatic micropump: experiment versus numerical simulation. Industry Applications, IEEE Transactions on. 45 (2), 615-622 (2009).
    連結:
  92. 107 Mizuno, Akira, Nishioka, Masateru, Ohno, V & Dascalescu, L-D. Liquid microvortex generated around a laser focal point in an intense high-frequency electric field. Industry Applications, IEEE Transactions on. 31 (3), 464-468 (1995).
    連結:
  93. 108 in Fundamentals of Interface and Colloid Science Vol. Volume 2 eds A. de Keizer B. H. Bijsterbosch G. J. Fleer J. J. Lyklema & M. A. Cohen Stuart) 1-135 (Academic Press, 1995).
    連結:
  94. 109 Dukhin, S. S. Non-equilibrium electric surface phenomena. Advances in Colloid and Interface Science. 44 (0), 1-134, (1993).
    連結:
  95. 110 Studer, Vincent, Pépin, Anne, Chen, Yong & Ajdari, Armand. An integrated AC electrokinetic pump in a microfluidic loop for fast and tunable flow control. Analyst. 129 (10), 944-949 (2004).
    連結:
  96. 112 Patel, Saurin, Showers, Daniel, Vedantam, Pallavi, Tzeng, Tzuen-Rong, Qian, Shizhi & Xuan, Xiangchun. Microfluidic separation of live and dead yeast cells using reservoir-based dielectrophoresis. Biomicrofluidics. 6 (3), 034102 (2012).
    連結:
  97. 113 Squires, Todd M & Bazant, Martin Z. Breaking symmetries in induced-charge electro-osmosis and electrophoresis. Journal of Fluid Mechanics. 560 65-101 (2006).
    連結:
  98. 6 Yole Developpement. Microfluidic applications in the pharmaceutical, life sciences, in vitro diagnostic, and medical device markets. (2015).
  99. 11 Gossett, Daniel R, Weaver, Westbrook M, Mach, Albert J, Hur, Soojung Claire, Tse, Henry Tat Kwong, Lee, Wonhee, Amini, Hamed & Di Carlo, Dino. Label-free cell separation and sorting in microfluidic systems. Analytical and bioanalytical chemistry. 397 (8), 3249-3267 (2010).
  100. 20 Ramos, Antonio, García-Sánchez, Pablo & Morgan, Hywel. AC electrokinetics of conducting microparticles: A review. Current Opinion in Colloid & Interface Science. 24 79-90 (2016).
  101. 39 Jamshidi, Arash, Neale, Steven L, Yu, Kyoungsik, Pauzauskie, Peter J, Schuck, Peter James, Valley, Justin K, Hsu, Hsan-Yin, Ohta, Aaron T & Wu, Ming C. NanoPen: dynamic, low-power, and light-actuated patterning of nanoparticles. Nano letters. 9 (8), 2921-2925 (2009).
  102. 42 de Gennes, Pierre‐Gilles. Soft matter (Nobel lecture). Angewandte Chemie International Edition in English. 31 (7), 842-845 (1992).
  103. 59 Perro, Adeline, Reculusa, Stéphane, Ravaine, Serge, Bourgeat-Lami, Elodie & Duguet, Etienne. Design and synthesis of Janus micro-and nanoparticles. Journal of materials chemistry. 15 (35-36), 3745-3760 (2005).
  104. 66 Honegger, T, Lecarme, O, Berton, K & Peyrade, D. Rotation speed control of Janus particles by dielectrophoresis in a microfluidic channel. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 28 (6), C6I14-C16I19 (2010).
  105. 67 Instruments, Malvern. Zetasizer Nano series technical note. MRK654-01.
  106. 72 Jones, Thomas B & Jones, Thomas Byron. Electromechanics of particles. (Cambridge University Press, 2005).
  107. 73 Morganti, Diego. AC electrokinetic analysis of chemically modified microparticles, University of Southampton, (2012).
  108. 81 Ren, Yukun, Liu, Weiyu, Jia, Yankai, Tao, Ye, Shao, Jinyou, Ding, Yucheng & Jiang, Hongyuan. Induced-charge electroosmotic trapping of particles. Lab on a Chip. 15 (10), 2181-2191 (2015).
  109. 97 VAISSIÉ, LAURENT. Bright laser diodes combat cancer. (2009).
  110. 100 Bazant, Martin Z & Squires, Todd M. Induced-charge electrokinetic phenomena. Current Opinion in Colloid & Interface Science. 15 (3), 203-213 (2010).
  111. 101 Morgan, Hywel & Green, Nicolas G. AC electrokinetic: colloids and nanoparticles. (2002).
  112. 102 Ren, Yu K, Morganti, Diego, Jiang, Hong Y, Ramos, Antonio & Morgan, Hywel. Electrorotation of metallic microspheres. Langmuir. 27 (6), 2128-2131 (2011).
  113. 111 Bazant, Martin Z, Kilic, Mustafa Sabri, Storey, Brian D & Ajdari, Armand. Nonlinear electrokinetics at large applied voltages. arXiv preprint cond-mat/0703035. (2007).