题名

吲哚苯並咪唑雙聚體及咔唑苯並咪唑雙聚體衍生物之合成、性質探討以及在有機發光二極體之應用

并列篇名

Synthesis and Characterization of Bis(indole-N-benzimidazole) and Bis(carbazole-N-benzimidazole) and The Applications in Organic Light Emitting Diodes

DOI

10.6342/NTU201703749

作者

陳憶加

关键词

苯並咪唑 ; 咔唑 ; 吲哚 ; 雙偶極 ; 主體發光材料 ; 有機發光二極體(OLED) ; benzimidazole ; carbazole ; indole ; bipolar ; OLEDs ; host materials

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

梁文傑

内容语文

繁體中文

中文摘要

本篇論文利用吲哚苯並咪唑雙聚體(bis(indole-N-benzimidazole)) 及咔唑苯並咪唑雙聚體(bis(carbazole-N-benzimidazole)) 衍生物體為有機發光二極體中的主體材料,其中苯並咪唑具有促進電子傳遞及注入之特性,而咔唑本身則具有較高的三重態能階同時也具備良好的電洞傳導性質,因此選用此兩種分子做進一步的探討,而在之前的研究顯示,此兩種化合物利用碳氮鍵結相較於碳碳鍵結,碳氮鍵結可以使電子能有更佳分散效果,增加三重態能階,因此我們採用碳氮鍵結的方式來合成此系列化合物;另外,近年來吲哚在有機發光二極體之材料中也備受討論,因其同樣具有好的電洞傳遞能力以及高的三重態能階,因此本篇論文分為兩系列來討論,以這兩種傳電洞之材料在苯並咪唑(benzimidazole) 之不同位置做取代,討論位置對於整體材料之影響,同時增加化合物之分子量來提高熱穩定性。我們利用 X-ray 單晶繞射探討分子的排列及堆疊;以紫外-可見光光譜(UV-Vis)、螢光放射光譜(FL)、磷光放射光譜(Ph) 進行光物理性質探討;以循環伏安法(CV)、差式脈波伏安法(DPV) 進行電化學性質探討,並將所得之化合物作為主體發光材料摻混FIrpic 應用在藍色磷光有機發光二極體之元件製作上,而在元件的表現上,以化合物3dCBZB 為主體光材料的元件效率最佳,在電賀密度為20 mA/cm2 時的驅動電壓為6.70 V;於操作電壓為3.5V 時可達最大亮度16750 cd/m2、最大發光效率47.15 cd/A;於操作電壓為3V 時可達最大發光功率為46.57lm/W、最大外部量子效率達21.10 %。

英文摘要

In this thesis, we synthesized two series of compounds― bis(indole-N-benzimidazole) and bis(carbazole-N-benzimidazole) as the host materials in OLED. In this bipolar system, carbazole and indole groups which have high triplet energy and good hole-transporting ability as the hole-transporting moiety, and benzimidazole as the electron-transporting moiety. Directly connect two moieties and compare the effect of different substituted position. In addition, we increase molecular weights to improve their thermal stability. We have been performed Ultraviolete-visible (UV-vis) spectral, photoluminescence (PL) spectral, cyclic voltammetry (CV), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) measurements to investigate the photophysical properties, thermal properties and electrochemical properties of these materials. The results show that all these host materials have excellent thermal stability and maintain high triplet energy.The blue PhOLED device used this thesis compound as the host material and the compound 3dCBZB existed the best performance than other compounds in the device dopant 18% FIrpic. It exhibited the turn-on voltage at 20 mA/cm2 was 6.70V, maximum luminance value (16750 cd/m2), the maximum current efficiency (47.15 cd/A), the maximum power efficiency (46.57 lm/W), and the maximum external quantum efficiency (20.01 %).

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. 2. Pope, M.; Kallmann, H. P.; Magnante, P., Electroluminescence in Organic Crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043.
    連結:
  2. 4. Tang, C. W.; VanSlyke, S. A.; Chen, C. H., Electroluminescence of doped organic thin films. Journal of Applied Physics 1989, 65 (9), 3610-3616.
    連結:
  3. 6. Chihaya, A.; Shizuo, T.; Tetsuo, T.; Shogo, S., Organic Electroluminescent Device with a Tree-Layer Structure. Japanese Journal of Applied Physics 1988, 27 (4A), L713.
    連結:
  4. 8. Holmes, R. J.; Forrest, S. R.; Tung, Y. J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Blue organic electrophosphorescence using exothermic host-guest energy transfer. Applied Physics Letters 2003, 82, 2422-2424.
    連結:
  5. 9. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Improved energy transfer in electrophosphorescent devices. Applied Physics Letters 1999, 74, 442-444.
    連結:
  6. 10. Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E., Efficient deep-blue organic electrophosphorescence by guest charge trapping. Applied Physics Letters 2003, 83, 3818-3820.
    連結:
  7. 11. Jeon, W. S.; Kim, S. Y.; Pode, R.; Jang, J.; Kwon, J. H., Ideal host and guest system in phosphorescent OLEDs. Organic Electronics 2009, 10 (2), 240-246.
    連結:
  8. 12. Suzuki, H.; Hoshino, S., Effects of doping dyes on the electroluminescent characteristics of multilayer organic light-emitting diodes. Journal of Applied Physics 1996, 79, 8816.
    連結:
  9. 13. Dexter, D. L., A Theory of Sensitized Luminescence in Solids. Journal of Chemical Physics 1953, 21 (5), 836-850. 14. Förster, T., 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 1959, 27, 7-17.
    連結:
  10. 15. Baldo, M. A.; Adachi, C.; Forrest, S. R., Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B 2000, 62 (16), 10967-10977.
    連結:
  11. 16. Singh-Rachford, T. N.; Castellano, F. N., Photon upconversion based on sensitized triplet-triplet annihilation. Coordination Chemistry Reviews 2010, 254, 2560-2573.
    連結:
  12. 17. Reineke, S.; Walzer, K.; Leo, K., Triplet-exciton quenching in organic phosphorescent light-emitting diodes with Ir-based emitters. Physical Review B 2007, 75 (12).
    連結:
  13. 18. Ishida, T.; Kobayashi, H.; Nakato, Y., Structures and properties of electron-beam-evaporated indium tin oxide films as studied by x-ray photoelectron spectroscopy and work-function measurements. Journal of Applied Physics 1993, 73, 4344-4350.
    連結:
  14. 19. Kim, J. S.; Granström, M,; Friend, R. H.; Johansson, N.; Salaneck, W. R.; Daik, R.; Feast, W. J.; Cacialli, F., Indium-tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the devices performance. Journal of Applied Physics 1998, 84 (12), 6859-6870.
    連結:
  15. 20. So, S. K.; Choi, W. K.; Cheng, C. H.; Leung, L. M.; Kwong, C. F., Surface preparation and characterization of indium tin oxide substrates for organic electroluminescent devices. Applied Physics 1999, 68, 447-450.
    連結:
  16. 21. Mason, M. G.; Hung, L. S.; Tang, C. W.; Lee, S. T.; Wong, K. W.; Wang, M., Characterization of treated indium-tin-oxide surfaces used in electroluminescent
    連結:
  17. 22. Van Slyke, S. A.; Chen, C. H.; Tang, C. W., Organic electroluminescent devices with improved stability. Applied Physics Letters 1996, 69, 2160-2162.
    連結:
  18. 23. Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K., Multilayered organic electroluminescent device using a novel starburst molecular, 4,4’,4’’-tris(3-methylphenylphenylamino) triphenylamine, as a hole transport material. Applied Physics Letters 1994, 65 (7), 807-809.
    連結:
  19. 24. Kraft, A.; Grimsdale, A. C.; Holmes,A. B., Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. Angewandte Chemie International Edition 1998, 37 (4), 402-428.
    連結:
  20. 26. Shirota, Y., Organic materials for electronic and optoelectronic devices. Journal of Materials Chemistry 2000, 10 (1), 1-25.
    連結:
  21. 27. Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M., Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Transactions on Electron Devices 1997, 44 (8), 1245-1248.
    連結:
  22. 28. Adachi, C.; Tsutsui, T.; Saito, S., Organic electroluminescent device having a hole conductor as an emitting layer. Applied Physucs Letters 1989, 55 (15), 1489-1491.
    連結:
  23. 29. Junji, K.; Chikau, O.; Kenichi, H.; Katsuro, O.; Katsutoshi, N., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices. Japanese Journal of Applied Physics 1993, 32 (7A), L917.
    連結:
  24. 30. Hoshini, S.; Ebata, K.; Furukawa, K., Near-ultraviolet electroluminescent performance of polysilane-based light-emitting diodes with a double-layer structure. Journal of Applied Physics 2000, 87, 1968-1973.
    連結:
  25. 31. Shi, J.; Tang, C. W.; Chen, C. H., US Patent 5 1997, 646, 948.
    連結:
  26. 32. Leung, M. K.; Yang, C. C.; Lee, J. H.; Tsai, H. H.; Lin, C. F.; Huang, C. Y.; Su, Y. O.; Chiu, C. F., The Unusual Electrochemical and Photophysical Behavior of 2,2’-Bis(1,3,4-oxadiazole-2-yl)biphenyls, Effective Electron Transport Host for Phosphorescent Organic Light Emitting Diodes. Organic Letters 2007, 9 (2), 235-238.
    連結:
  27. 33. Lee, J. H.; Tsai, H. H.; Leung, M. K.; Yang, C. C.; Chao, C. C., Phosphorescent organic light-emitting device with an ambipolar oxadiazole host. Applied Physics Letters 2007, 90 (24), 243501.
    連結:
  28. 34. Lee, J. H.; Huang, C. L.; Hsiao, C. H.; Leung, M. K.; Yang, C. C.; Chao, C. C., Blue phosphorescent organic light-emitting device with double emitting layer. Applied Physics Letters 2009, 94 (22), 223301.
    連結:
  29. 35. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters 2001, 79 (13), 2082-2084.
    連結:
  30. 36. Kim, S. M.; Kim, J. H.; Jeon, S. K.; Lee, J. Y., Molecular design of host materials for stable blue phosphorescent organic light-emitting diodes. Dye and Pigments 2016, 125, 274-281.
    連結:
  31. 37. Seo, J. A.; Jeon, S. K.; Lee, J. Y., Acridine derived stable host material for long lifetime blue phosphorescent organic light-emitting diodes. Organic Electronics 2016, 34, 33-37.
    連結:
  32. 38. Lv, X.; Wong B.; Tan, J.; Huang, Z.; Zhang, Q.; Xiang, S.; Liu, W.; Zhuang, S.; Wang, L., Constructing diazacarbazole-bicarbazole bipolar hybrids by optimizing the linker group for high efficiency, low roll off electrophosphorescent devices. Dye and Pigments 2017, 136, 54-62.
    連結:
  33. 39. Gudeika, D.; Norvaisa, K.; Stainslovaityte, E.; Bezvikonnyi, O.; Volyniuk, D.; Turyk, P.; Hladka, I.; Yashchuk, V. M.; Grazulevicius, J. V., High-triplet-energy derivatives of indole and carbazole as hosts for blue phosphorescent organic light-emitting diodes. Dye and Pigments 2017, 139, 487-497.
    連結:
  34. 40. Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C., Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492 (7428), 234-8.
    連結:
  35. 41. Lin, T. A.; Chatterjee, T.; Tsai, W. L.; Lee, W. K.; Wu, M. J.; Jiao, M.; Pan, K. C.; Yi, C. L.; Chung, C. L.; Wong, K. T.; Wu, C. C., Sky-Blue Organic Light Emitting Diodes with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Advanced Materials 2016, 28 (32), 6976-6983.
    連結:
  36. 42. Huang, H.; Yang, X.; Pan, B.; Wang, L.; Chen, J.; Ma, D.; Yang, C., Benzimidazole-carbazole-based bipolar hosts for high efficiency blue and white electrophosphorescence applications. Journal of Materials Chemistry 2012, 22 (26), 13223.
    連結:
  37. 43. Pan, B.; Wang, B.; Wang, Y.; Xu, P.; Wang, L.; Chen, J.; Ma, D., A simple carbazole-N-benzimidazole bipolar host material for highly efficient blue and single layer white phosphorescence organic light-emitting diodes. Journal of Materials Chemistry C 2014, 2 (14), 2466.
    連結:
  38. 45. Dong, Q.; Lian, H.; Gao, Z.; Guo, Z.; Xiang, N.; Zhong, Z.; Guo, H.; Huang, J.; Wong, W. Y., Novel spirofluorene/indole/carbazole-based hole transport materials with high triplet energy for efficient green phosphorescent organic light-emitting diodes. Dye and Pigments 2017, 137, 84-90.
    連結:
  39. 46. Hanan, E. J.; Chan, B. K.; Estrada, A. A.; Anthony, A.; Shore, D. G.; Lyssikatos, J. P., Mild and General One-Pot Reduction and Cyclization of Aromatic and Heteroaromatic 2-Nitroamines to Bicyclic 2H-Imidazole. Synlett 2010, (18), 2759-2764.
    連結:
  40. 47. Tanaka, I.; Tabata, Y.; Tokito, S., Unusual Phosphorescence Characteristic of Ir(ppy)3 in a Solid Matrix at Low Temperatures. Japanese Journal of Applied
    連結:
  41. Physics 2004, 43, L1601.
    連結:
  42. 48. Goushi, K.; Kwong, R.; Brown, J. J.; Sasabe, H.; Adachi, C., Triplet exciton confinement and unconfinement by adjacent hole-transport layer. Japanese Journal of Applied Physics 2004, 95, 7798.
    連結:
  43. 49. Huang, J. J.; Leung, M. K.; Chiu, T. L.; Chuang, Y. T.; Chou, P. T.; Hung, Y. H., Novel Benzimidazole Derivatives as Electron-Transporting Type Host To Achieve Highly Efficient Sky-Blue Phosphorescent Organic Light-Emitting Diode (PHOLED) Device. Organic Leters 2014, 16 (20), 5398-5401.
    連結:
  44. 50. Dandrade, B.; Datta, S.; Forrest, S.; Djurovich, P.; Polikarpov, E.; Thompson, M., Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Organic Electronics 2005, 6 (1), 11-20.
    連結:
  45. 51. Rausch, A. F.; Thompson, M. E.; Yersin, H., Matrix Effects on the Triplet State of the OLED Emitter Ir(4,6-dFppy)2(pic) (FIrpic) : Investigations by High-Resolution Optical Spectroscopy. Inorganic Chemistry 2009, 10 (3), 515-520.
    連結:
  46. 52. Hofbeck, T.; Yersin, H., The Triplet State of fac-Ir(ppy)3. Inorganic Chemistry 2010, 49, 9290-9299.
    連結:
  47. 53. He, J.; Liu, H.; Dai, Y.; Qu, X.; Wang, J.; Tao, S.; Zhang, X.; Wang, P.; Ma, D., Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs. The Journal of Physical Chemistry C 2009, 113 (16), 6761-6767.
    連結:
  48. 54. Jones II, G.; Jackson W. R.; Choi, C.; Bergmark, W. R., Solvent effects on emission yield and lifetime for coumarin laser dyes. Requirements for a rotatory decay mechanism. The Journal of Physical Chemistry 1985, 89, 294-300.
    連結:
  49. 參考文獻
  50. 1. 陳金鑫; 黃孝文., OLED 有機電致發光材料與器件. 2007.
  51. 3. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Applied Physics Letters 1962, 1, 82-83.
  52. 5. Burroughes, J. H.; Bardley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B., Light-emitting diodes based on conjugated polymers. Nature 1990, 347, 539-541.
  53. 7. Baldo, M. A.; O’Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic
  54. electroluminescent devices. Nature 1998, 395 (6698), 151-154.
  55. devices. Journal of Applied Physics 1999, 86, 1688-1692.
  56. 25. Van Slyke, S. A.; Tang, C. W., US Patent 5 1991, 061, 569.
  57. 44. 張書昀, 咔唑與苯並咪唑碳氮連接之雙極性衍生物之合成、性質探討以及在有機發光二極體之應用. 台灣大學, 2016.