参考文献
|
-
1. WHO. Hepatitis C. 2 October 2017; Available from: http://www.who.int/news-room/fact-sheets/detail/hepatitis-c.
-
2. Ferlay J, S.I., Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray, F. Cancer Incidence and Mortality Worldwide. IARC CancerBase No. 11 [Internet] 2013; Available from: http://globocan.iarc.fr.
-
3. Shlomai, A., Y.P. de Jong, and C.M. Rice, Virus associated malignancies: the role of viral hepatitis in hepatocellular carcinoma. Semin Cancer Biol, 2014. 26: p. 78-88.
-
4. Ryerson, A.B., et al., Annual Report to the Nation on the Status of Cancer, 1975-2012, featuring the increasing incidence of liver cancer. Cancer, 2016. 122(9): p. 1312-37.
-
5. WHO. Cancer. 1 February 2018; Available from: http://www.who.int/news-room/fact-sheets/detail/cancer.
-
6. Chen, S.L. and T.R. Morgan, The natural history of hepatitis C virus (HCV) infection. Int J Med Sci, 2006. 3(2): p. 47-52.
-
7. Lange, C.M., et al., Emerging therapies for the treatment of hepatitis C. EMBO Mol Med, 2014. 6(1): p. 4-15.
-
8. Bartenschlager, R., et al., Critical challenges and emerging opportunities in hepatitis C virus research in an era of potent antiviral therapy: Considerations for scientists and funding agencies. Virus Res, 2018. 248: p. 53-62.
-
9. Pineda, J.A., et al., Hepatitis C virus reinfection after sustained virological response in HIV-infected patients with chronic hepatitis C. Journal of Infection, 2015. 71(5): p. 571-577.
-
10. Zuniga, E.I., et al., Innate and Adaptive Immune Regulation During Chronic Viral Infections. Annu Rev Virol, 2015. 2(1): p. 573-97.
-
11. Midgard, H., et al., HCV epidemiology in high-risk groups and the risk of reinfection. Journal of Hepatology, 2016. 65(1, Supplement): p. S33-S45.
-
12. Scheel, T.K. and C.M. Rice, Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med, 2013. 19(7): p. 837-49.
-
13. Dubuisson, J. and F.L. Cosset, Virology and cell biology of the hepatitis C virus life cycle: an update. J Hepatol, 2014. 61(1 Suppl): p. S3-s13.
-
14. Simmonds, P., et al., Consensus proposals for a unified system of nomenclature of hepatitis C virus genotypes. Hepatology, 2005. 42(4): p. 962-73.
-
15. Negro, F. and A. Alberti, The global health burden of hepatitis C virus infection. Liver Int, 2011. 31 Suppl 2: p. 1-3.
-
16. Hajarizadeh, B., J. Grebely, and G.J. Dore, Epidemiology and natural history of HCV infection. Nat Rev Gastroenterol Hepatol, 2013. 10(9): p. 553-62.
-
17. Moradpour, D., F. Penin, and C.M. Rice, Replication of hepatitis C virus. Nat Rev Microbiol, 2007. 5(6): p. 453-63.
-
18. Dubuisson, J., F. Penin, and D. Moradpour, Interaction of hepatitis C virus proteins with host cell membranes and lipids. Trends Cell Biol, 2002. 12(11): p. 517-23.
-
19. McLauchlan, J., et al., Intramembrane proteolysis promotes trafficking of hepatitis C virus core protein to lipid droplets. Embo j, 2002. 21(15): p. 3980-8.
-
20. Hijikata, M., et al., Two distinct proteinase activities required for the processing of a putative nonstructural precursor protein of hepatitis C virus. J Virol, 1993. 67(8): p. 4665-75.
-
21. Sakai, A., et al., The p7 polypeptide of hepatitis C virus is critical for infectivity and contains functionally important genotype-specific sequences. Proc Natl Acad Sci U S A, 2003. 100(20): p. 11646-51.
-
22. Pietschmann, T., et al., Construction and characterization of infectious intragenotypic and intergenotypic hepatitis C virus chimeras. Proc Natl Acad Sci U S A, 2006. 103(19): p. 7408-13.
-
23. Yao, N., et al., Molecular views of viral polyprotein processing revealed by the crystal structure of the hepatitis C virus bifunctional protease-helicase. Structure, 1999. 7(11): p. 1353-63.
-
24. Lohmann, V., et al., Biochemical properties of hepatitis C virus NS5B RNA-dependent RNA polymerase and identification of amino acid sequence motifs essential for enzymatic activity. J Virol, 1997. 71(11): p. 8416-28.
-
25. Salonen, A., T. Ahola, and L. Kaariainen, Viral RNA replication in association with cellular membranes. Curr Top Microbiol Immunol, 2005. 285: p. 139-73.
-
26. El-Hage, N. and G. Luo, Replication of hepatitis C virus RNA occurs in a membrane-bound replication complex containing nonstructural viral proteins and RNA. J Gen Virol, 2003. 84(Pt 10): p. 2761-9.
-
27. Gosert, R., et al., Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J Virol, 2003. 77(9): p. 5487-92.
-
28. Kim, J.H., et al., Interaction of stomatin with hepatitis C virus RNA polymerase stabilizes the viral RNA replicase complexes on detergent-resistant membranes. J Microbiol Biotechnol, 2014. 24(12): p. 1744-54.
-
29. Penin, F., et al., Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. J Biol Chem, 2004. 279(39): p. 40835-43.
-
30. Pawlotsky, J.M., NS5A inhibitors in the treatment of hepatitis C. J Hepatol, 2013. 59(2): p. 375-82.
-
31. Ross-Thriepland, D. and M. Harris, Hepatitis C virus NS5A: enigmatic but still promiscuous 10 years on! J Gen Virol, 2015. 96(Pt 4): p. 727-38.
-
32. Lim, P.J., et al., Correlation between NS5A dimerization and hepatitis C virus replication. J Biol Chem, 2012. 287(36): p. 30861-73.
-
33. Huang, Y., et al., Phosphorylation of hepatitis C virus NS5A nonstructural protein: a new paradigm for phosphorylation-dependent viral RNA replication? Virology, 2007. 364(1): p. 1-9.
-
34. Appel, N., et al., Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog, 2008. 4(3): p. e1000035.
-
35. Chong, W.M., et al., Phosphoproteomics Identified an NS5A Phosphorylation Site Involved in Hepatitis C Virus Replication. J Biol Chem, 2016. 291(8): p. 3918-31.
-
36. Evans, M.J., C.M. Rice, and S.P. Goff, Phosphorylation of hepatitis C virus nonstructural protein 5A modulates its protein interactions and viral RNA replication. Proc Natl Acad Sci U S A, 2004. 101(35): p. 13038-43.
-
37. Appel, N., T. Pietschmann, and R. Bartenschlager, Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol, 2005. 79(5): p. 3187-94.
-
38. Ross-Thriepland, D., J. Mankouri, and M. Harris, Serine phosphorylation of the hepatitis C virus NS5A protein controls the establishment of replication complexes. J Virol, 2015. 89(6): p. 3123-35.
-
39. Hsu, S.C., et al., Serine 235 Is the Primary NS5A Hyperphosphorylation Site Responsible for Hepatitis C Virus Replication. J Virol, 2017. 91(14).
-
40. Eyre, N.S., et al., Phosphorylation of NS5A Serine-235 is essential to hepatitis C virus RNA replication and normal replication compartment formation. Virology, 2016. 491: p. 27-44.
-
41. Flotow, H., et al., Phosphate groups as substrate determinants for casein kinase I action. J Biol Chem, 1990. 265(24): p. 14264-9.
-
42. Quintavalle, M., et al., Hepatitis C virus NS5A is a direct substrate of casein kinase I-alpha, a cellular kinase identified by inhibitor affinity chromatography using specific NS5A hyperphosphorylation inhibitors. J Biol Chem, 2007. 282(8): p. 5536-44.
-
43. Masaki, T., et al., Involvement of hepatitis C virus NS5A hyperphosphorylation mediated by casein kinase I-alpha in infectious virus production. J Virol, 2014. 88(13): p. 7541-55.
-
44. Goonawardane, N., et al., Phosphorylation of Serine 225 in Hepatitis C Virus NS5A Regulates Protein-Protein Interactions. J Virol, 2017. 91(17).
-
45. Lee, K.Y., et al., Phosphorylation of Serine 235 of the Hepatitis C Virus Non-Structural Protein NS5A by Multiple Kinases. PLoS One, 2016. 11(11): p. e0166763.
-
46. Chang, J., et al., Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol, 2008. 82(16): p. 8215-23.
-
47. Steinmann, E. and T. Pietschmann, Cell culture systems for hepatitis C virus. Curr Top Microbiol Immunol, 2013. 369: p. 17-48.
-
48. Knippschild, U., et al., The casein kinase 1 family: participation in multiple cellular processes in eukaryotes. Cell Signal, 2005. 17(6): p. 675-89.
-
49. Rena, G., et al., D4476, a cell-permeant inhibitor of CK1, suppresses the site-specific phosphorylation and nuclear exclusion of FOXO1a. EMBO Rep, 2004. 5(1): p. 60-5.
-
50. Ross-Thriepland, D. and M. Harris, Insights into the complexity and functionality of hepatitis C virus NS5A phosphorylation. J Virol, 2014. 88(3): p. 1421-32.
-
51. Masaki, T., et al., Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol, 2008. 82(16): p. 7964-76.
-
52. Fukuhara, T., et al., Expression of microRNA miR-122 facilitates an efficient replication in nonhepatic cells upon infection with hepatitis C virus. J Virol, 2012. 86(15): p. 7918-33.
-
53. Neddermann, P., A. Clementi, and R. De Francesco, Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. J Virol, 1999. 73(12): p. 9984-91.
-
54. Shimakami, T., et al., Effect of interaction between hepatitis C virus NS5A and NS5B on hepatitis C virus RNA replication with the hepatitis C virus replicon. J Virol, 2004. 78(6): p. 2738-48.
-
55. Shirota, Y., et al., Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. J Biol Chem, 2002. 277(13): p. 11149-55.
-
56. Dujardin, M., et al., Interaction study between HCV NS5A-D2 and NS5B using (19)F NMR. J Biomol NMR, 2018. 70(1): p. 67-76.
-
57. Bessa, L.M., et al., NMR reveals the intrinsically disordered domain 2 of NS5A protein as an allosteric regulator of the hepatitis C virus RNA polymerase NS5B. J Biol Chem, 2017. 292(44): p. 18024-18043.
-
58. Miller, M.L., et al., Linear motif atlas for phosphorylation-dependent signaling. Sci Signal, 2008. 1(35): p. ra2.
|