题名

植化素對大腸直腸癌之抑制機制與營養代謝體之分析

并列篇名

The inhibition mechanism and metabolic profile of phytochemicals in colorectal cancer cells

DOI

10.6342/NTU.2012.02183

作者

蔡婉琦

关键词

大腸直腸癌 ; 植化素 ; 營養代謝體學 ; p53 ; resveratrol ; colorectal cancer, phytochemicals ; metabolomics ; p53 ; resveratrol

期刊名称

國立臺灣大學食品科技研究所學位論文

卷期/出版年月

2012年

学位类别

碩士

导师

蔣丙煌

内容语文

繁體中文

中文摘要

大腸直腸癌(colorectal cancer)在全球癌症致死原因中位居第二,其發生原因與飲食、生活習慣、遺傳等因素相關。腸道的癌化機制是一系列基因突變累積的結果,包含adenomatous polyposis coli (APC)突變使β-catenin表現增加,導致細胞異常增生,產生腺瘤;K-ras的異常表現,使不正常的細胞持續生長,腺瘤加大;p53的突變使異常細胞不會凋亡,最後形成惡性腫瘤。   過去研究顯示,植物內所含的植化素(phytochemicals)具有抑制癌症發生的效果。本研究參考相關文獻,選出六種具有抑制大腸直腸癌潛力的植化素,包括epigallocatechin gallate (EGCG)、sulforaphane (SFN)、phenethyl isothiocyanate (PEITC)、6-shogaol (SG)、ursolic acid (UA)與resveratrol (RV),分別對大腸癌細胞株HT-29及HCT 116進行處理,分析這些植化素對APC、β-catenin、p53等蛋白表現的影響,篩選出能顯著影響上述蛋白表現之植化素,繼而進行代謝體學分析,以了解其作用機制。   結果顯示,resveratrol可有效抑制β-catenin增加、促進wild-type p53表現,並使mutant p53降低,效果最佳。接著進行代謝體分析後發現,resveratrol可抑制大腸癌細胞HT-29及HCT 116之taurine產生、降低HT-29之hypoxanthine與5’-methylthioadensine並提高其CMP;在HCT 116中,resveratrol可提升purine metabolism、TCA cycle及胺基酸相關代謝產物。由此推測,resveratrol可經由對wild-type p53與mutant p53之調控來影響purine metabolism及促進葡萄糖進入TCA cycle產生能量,減少其醣解作用發生,進而達到抑制癌細胞生長之效果。

英文摘要

Colorectal cancer (CRC) is the third major cause of cancer-related mortality in Taiwan. The risk factors of CRC include age, family history, inflammatory bowel diseases, and environmental and dietary procarcinogens. In genetic phase, it goes through a series of gene mutations, including APC, β-catenin and p53, from small benign precursor lesions to metastatic carcinomas. Based on information from literatures, this study chose six phytochemicals, including epigallocatechin gallate (EGCG), sulforaphane (SFN), phenethyl isothiocyanate (PEITC), 6-shogaol (SG), ursolic acid (UA) and resveratrol (RV), to investigate their effect on HT-29 and HCT 116 colorectal cancer cells in terms of regulating APC, β-catenin and p53. Then we selected the most effective one for further metabolic profile analysis. Results showed that resveratrol can suppress β-catenin, mutant p53 expression and increase wild-type p53 expression. And the metabolic profiling indicated that resveratrol can reduce taurine in both colorectal cancer cells, decrease hypoxanthine and 5’-methylthioadensine, enhance CMP in HT-29 cells. In HCT 116 cells, resveratrol is able to raise purine metabolism, TCA cycle and amino acid related metabolites. In conclusion, resveratrol may affect purine metabolism and TCA cycle by regulating wild-type p53 and mutant p53 expression.

主题分类 生物資源暨農學院 > 食品科技研究所
工程學 > 化學工業
参考文献
  1. 行政院衛生署衛生統計資訊網
    連結:
  2. 郭宇薇。2007。黃豆皂素粗萃取物對於1,2-dimethylhydrazine誘導F344大鼠結腸癌前期病變異常線窩灶的影響及機制之探討。台北醫學大學公公衛生暨營養學院保健營養學系碩士論文。
    連結:
  3. Alfaras, I.; Juan, M. E.; Planas, J. M. trans-Resveratrol reduces precancerous colonic lesions in dimethylhydrazine-treated rats. J. Agric. Food Chem. 2010, 58, 8104-8110.
    連結:
  4. Andersson, D.; Liu, J. J.; Nilsson, A.; Duan, R. D. Ursolic acid inhibits proliferation and stimulates apoptosis in HT29 cells following activation of alkaline sphingomyelinase. Anticancer Res. 2003, 23, 3317-3322.
    連結:
  5. Andersson, D.; Cheng, Y.; Duan, R. D. Ursolic acid inhibits the formation of aberrant crypt foci and affects colonic sphingomyelin hydrolyzing enzymes in azoxymethane-treated rats. J. Cancer Res. Clin. Oncol. 2008, 134, 101-107.
    連結:
  6. Ankri, S.; Mirelman, D. Antimicrobial properties of allicin from garlic. Microb. Infect. 1999, 1, 125-129.
    連結:
  7. Aoki, K.; Taketo, M. M. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor gene. J. Cell Sci. 2007, 120, 3327-3335.
    連結:
  8. Archer, S. Y.; Meng, S.; Shei, A.; Hodin, R. A. p21WAF1 is required for butyrate-mediated growth inhibition of human colon cancer cells. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 6791-6796.
    連結:
  9. Aune, D.; Lau, R.; Chan, D. S. M.; Vieira, R.; Greenwood, D. C.; Kampman, E.; Norat, T. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology. 2011, 141, 106-118.
    連結:
  10. Bensaad, K.; Tsuruta, A.; Selak, M. A.; Vidal, M.; Nakano, K.; Bartrons, R.; Gottlieb, E.; Vousden, K. H. TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell. 2006, 126, 107-120.
    連結:
  11. Bhattarai, S.; Tran, V. H.; Duke, C. C. Stability of [6]-gingerol and [6]-shogaol in simulated gastric and intestinal fluids. J. Pharm. Biomed. Anal. 2007, 45, 648-653.
    連結:
  12. Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248-254.
    連結:
  13. Brosh, R.; Rotter, V. When mutants gain new powers: news from the mutant p53 field. Nat. Rev. Cancer. 2009, 9, 701-713.
    連結:
  14. Bullock, A. N.; Fersht, A. R. Rescuing the function of mutant p53. Nat. Rev. Cancer. 2001, 1, 68-76.
    連結:
  15. Cameron, I. L.; Hardman, W. E.; Heitman, D. W. The nonfermentable dietary fiber lignin alters putative colon cancer risk factors but does not protect against DMH-induced colon cancer in rats. Nutr. Cancer. 1997, 28, 170-176.
    連結:
  16. Chan, E. C. Y.; Koh, P. K.; Mal, M.; Cheah, P. Y.; Eu, K. W.; Backshall, A.; Cavill, R.; Nicholson, J. K.; Keun, H. C. Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS). J. Proteome Res. 2008, 8, 352-361.
    連結:
  17. Chen, C.; Shen, G.; Hebbar, V.; Hu, R.; Owuor, E. D.; Kong, A. N. T. Epigallocatechin-3-gallate-induced stress signals in HT-29 human colon adenocarcinoma cells. Carcinogenesis. 2003, 24, 1369-1378.
    連結:
  18. Chen, H.; Lv, L.; Soroka, D.; Warin, R. F.; Parks, T. A.; Hu, Y.; Zhu, Y.; Chen, X.; Sang, S. Metabolism of [6]-shogaol in mice and in cancer cells. Drug Metab. Dispos. 2012a, 40, 742-753.
    連結:
  19. Chen, M. J.; Tang, W. Y.; Hsu, C. W.; Tsai, Y. T.; Wu, J. F.; Lin, C. W.; Cheng, Y. M.; Hsu, Y. C. Apoptosis induction in primary human colorectal cancer cell lines and retarded tumor growth in SCID mice by sulforaphane. Evid.-based Complement Altern. Med. 2012b, 2012, 1-13.
    連結:
  20. Chen, S.; Andreasson, E. Update on glucosinolate metabolism and transport. Plant Physiol. Biochem. 2001, 39, 743-758.
    連結:
  21. Cheung, K. L.; Khor, T. O.; Yu, S.; Kong, A. N. T. PEITC induces G1 cell cycle arrest on HT-29 cells through the activation of p38 MAPK signaling pathway. AAPS J. 2008, 10, 277-281.
    連結:
  22. Dahm, C. C.; Keogh, R. H.; Spencer, E. A.; Greenwood, D. C.; Key, T. J.; Fentiman, I. S.; Shipley, M. J.; Brunner, E. J.; Cade, J. E.; Burley, V. J. Dietary fiber and colorectal cancer risk: a nested case-control study using food diaries. J. Natl. Cancer Inst. 2010, 102, 614-626.
    連結:
  23. Denizot, F.; Lang, R. Rapid colorimetric assay for cell growth and survival: modifications to the tetrazolium dye procedure giving improved sensitivity and reliability. J. Immunol. Methods 1986, 89, 271-277.
    連結:
  24. Denkert, C.; Budczies, J.; Weichert, W.; Wohlgemuth, G.; Scholz, M.; Kind, T.; Niesporek, S.; Noske, A.; Buckendahl, A.; Dietel, M. Metabolite profiling of human colon carcinoma-deregulation of TCA cycle and amino acid turnover. Mol. Cancer. 2008, 7, 72-87.
    連結:
  25. Dumaz, N.; Meek, D. W. Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. Embo J. 1999, 18, 7002-7010.
    連結:
  26. Eaden, J.; Abrams, K.; Mayberry, J. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut. 2001, 48, 526-535.
    連結:
  27. Fahey, J. W.; Zalcmann, A. T.; Talalay, P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry. 2001, 56, 5-51.
    連結:
  28. Feng, Z.; Zhang, H.; Levine, A. J.; Jin, S. The coordinate regulation of the p53 and mTOR pathways in cells. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 8204-8209.
    連結:
  29. Fimognari, C.; Hrelia, P. Sulforaphane as a promising molecule for fighting cancer. Mutat. Res.-Rev. Mutat. Res. 2007, 635, 90-104.
    連結:
  30. Fung, T. T.; Hu, F. B.; Wu, K.; Chiuve, S. E.; Fuchs, C. S.; Giovannucci, E. The mediterranean and dietary approaches to stop hypertension (DASH) diets and colorectal cancer. Am. J. Clin. Nutr. 2010, 92, 1429-1435.
    連結:
  31. Furtado, R. A.; Rodrigues, P.; Araujo, F. R. R.; Oliveira, W. L.; Furtado, M. A.; Castro, M. B.; Cunha, W. R.; Tavares, D. C. Ursolic acid and oleanolic acid suppress preneoplastic lesions induced by 1, 2-dimethylhydrazine in rat colon. Toxicol. Pathol. 2008, 36, 576-580.
    連結:
  32. Gan, F. F.; Nagle, A. A.; Ang, X.; Ho, O. H.; Tan, S. H.; Yang, H.; Chui, W. K.; Chew, E. H. Shogaols at proapoptotic concentrations induce G2/M arrest and aberrant mitotic cell death associated with tubulin aggregation. Apoptosis. 2011, 16, 856-867.
    連結:
  33. Gatz, S. A.; Keimling, M.; Baumann, C.; Dork, T.; Debatin, K. M.; Fulda, S.; Wiesmuller, L. Resveratrol modulates DNA double-strand break repair pathways in an ATM/ATR-p53- and -Nbs1-dependent manner. Carcinogenesis. 2008a, 29, 519-527.
    連結:
  34. Gatz, S. A.; Wiesmuller, L. Take a break-resveratrol in action on DNA. Carcinogenesis. 2008b, 29, 321-332.
    連結:
  35. Giovannucci, E. Tomatoes, tomato-based products, lycopene, and cancer: review of the epidemiologic literature. J. Natl. Cancer Inst. 1999, 91, 317-331.
    連結:
  36. Glade, M. J. Food, nutrition, and the prevention of cancer: a global perspective. Nutrition. 1999, 15, 523-526.
    連結:
  37. Goss, K. H.; Groden, J. Biology of the adenomatous polyposis coli tumor suppressor. J. Clin. Oncol. 2000, 18, 1967-1979.
    連結:
  38. Gunter, M. J.; Leitzmann, M. F. Obesity and colorectal cancer: epidemiology, mechanisms and candidate genes. J. Nutr. Biochem. 2006, 17, 145-156.
    連結:
  39. Hillary, R. A.; Pegg, A. E. Decarboxylases involved in polyamine biosynthesis and their inactivation by nitric oxide. Biochim. Biophys. Acta. 2003, 1647, 161-166.
    連結:
  40. Hope, C.; Planutis, K.; Planutiene, M.; Moyer, M. P.; Johal, K. S.; Woo, J.; Santoso, C.; Hanson, J. A.; Holcombe, R. F. Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: Implications for colon cancer prevention. Mol. Nutr. Food Res. 2008, 52, S52-S61.
    連結:
  41. Hu, R.; Kim, B. R.; Chen, C.; Hebbar, V.; Kong, A. N. T. The roles of JNK and apoptotic signaling pathways in PEITC-mediated responses in human HT-29 colon adenocarcinoma cells. Carcinogenesis. 2003, 24, 1361-1367.
    連結:
  42. Huncharek, M.; Muscat, J.; Kupelnick, B. Colorectal cancer risk and dietary intake of calcium, vitamin D, and dairy products: a meta-analysis of 26,335 cases from 60 observational studies. Nutr. Cancer. 2008, 61, 47-69.
    連結:
  43. Hwang, J. T.; Ha, J.; Park, I. J.; Lee, S. K.; Baik, H. W.; Kim, Y. M.; Park, O. J. Apoptotic effect of EGCG in HT-29 colon cancer cells via AMPK signal pathway. Cancer Lett. 2007, 247, 115-121.
    連結:
  44. Iacopetta, B. TP53 mutation in colorectal cancer. Hum. Mutat. 2003, 21, 271-276.
    連結:
  45. Ilyas, M.; Tomlinson, I. Genetic pathways in colorectal cancer. Histopathology 1996, 28, 389-399.
    連結:
  46. Ishiyama, M.; Miyazono, Y.; Sasamoto, K.; Ohkura, Y.; Ueno, K. A highly water-soluble disulfonated tetrazolium salt as a chromogenic indicator for NADH as well as cell viability. Talanta. 1997, 44, 1299-1305.
    連結:
  47. Ju, J.; Hong, J.; Zhou, J.; Pan, Z.; Bose, M.; Liao, J.; Yang, G.; Liu, Y. Y.; Hou, Z.; Lin, Y. Inhibition of intestinal tumorigenesis in Apcmin/+ mice by (-)-epigallocatechin-3-gallate, the major catechin in green tea. Cancer Res. 2005, 65, 10623-10631.
    連結:
  48. Juan, M. E.; Alfaras, I.; Planas, J. M. Colorectal cancer chemoprevention by trans-resveratrol. Pharmacol. Res. 2012, 65, 584-591.
    連結:
  49. Kapadia, G. J.; Tokuda, H.; Konoshima, T.; Nishino, H. Chemoprevention of lung and skin cancer by Beta vulgaris (beet) root extract. Cancer Lett. 1996, 100, 211-214.
    連結:
  50. Key, T. J.; Allen, N. E.; Spencer, E. A.; Travis, R. C. The effect of diet on risk of cancer. Lancet. 2002, 360, 861-868.
    連結:
  51. Khor, T. O.; Cheung, W. K. L.; Prawan, A.; Reddy, B. S.; Kong, A. N. T. Chemoprevention of familial adenomatous polyposis in ApcMin/+ mice by phenethyl isothiocyanate (PEITC). Mol. Carcinog. 2008, 47, 321-325.
    連結:
  52. Kinzler, K. W.; Vogelstein, B. Lessons from hereditary review colorectal cancer. Cell. 1996, 87, 159-170.
    連結:
  53. Kueck, A.; Opipari Jr, A. W.; Griffith, K. A.; Tan, L.; Choi, M.; Huang, J.; Wahl, H.; Liu, J. R. Resveratrol inhibits glucose metabolism in human ovarian cancer cells. Gynecol. Oncol. 2007, 107, 450-457.
    連結:
  54. Kundu, J. K.; Surh, Y. J. Cancer chemopreventive and therapeutic potential of resveratrol: mechanistic perspectives. Cancer Lett. 2008, 269, 243-261.
    連結:
  55. Lambert, P. F.; Kashanchi, F.; Radonovich, M. F.; Shiekhattar, R.; Brady, J. N. Phosphorylation of p53 serine 15 increases interaction with CBP. J. Biol. Chem. 1998, 273, 33048-33053.
    連結:
  56. Larsson, S. C.; Wolk, A. Obesity and colon and rectal cancer risk: a meta-analysis of prospective studies. Am. J. Clin. Nutr. 2007, 86, 556-565.
    連結:
  57. Lean, C. L.; Newland, R.; Ende, D.; Bokey, E.; Smith, I. C. P.; Mountford, C. E. Assessment of human colorectal biopsies by 1H MRS: correlation with histopathology. Magn. Reson. Med. 1993, 30, 525-533.
    連結:
  58. Levine, A. J.; Puzio-Kuter, A. M. The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science. 2010, 330, 1340-1344.
    連結:
  59. Levine, B.; Abrams, J. p53: The Janus of autophagy? Nat. Cell Biol. 2008, 10, 637-639.
    連結:
  60. Li, J.; Guo, W. J.; Yang, Q. Y. Effects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15. World J. Gastroenterol. 2002, 8, 493-495.
    連結:
  61. Li, Y.; Zhang, T.; Korkaya, H.; Liu, S.; Lee, H. F.; Newman, B.; Yu, Y.; Clouthier, S. G.; Schwartz, S. J.; Wicha, M. S. Sulforaphane, a dietary component of broccoli/broccoli sprouts, inhibits breast cancer stem cells. Clin. Cancer Res. 2010, 16, 2580-2590.
    連結:
  62. Limami, Y.; Pinon, A.; Leger, D. Y.; Mousseau, Y.; Cook-Moreau, J.; Beneytout, J. L.; Delage, C.; Liagre, B.; Simon, A. HT-29 colorectal cancer cells undergoing apoptosis overexpress COX-2 to delay ursolic acid-induced cell death. Biochimie. 2011, 93, 749-757.
    連結:
  63. Liu, G.; Hu, X.; Chakrabarty, S. Vitamin D mediates its action in human colon carcinoma cells in a calcium-sensing receptor-dependent manner: downregulates malignant cell behavior and the expression of thymidylate synthase and survivin and promotes cellular sensitivity to 5-FU. Int. J. Cancer. 2010, 126, 631-639.
    連結:
  64. Lund, E. K.; Wharf, S. G.; Fairweather-Tait, S. J.; Johnson, I. T. Oral ferrous sulfate supplements increase the free radical-generating capacity of feces from healthy volunteers. Am. J. Gastroenterol. 1999, 69, 250-255.
    連結:
  65. Maddocks, O. D. K.; Vousden, K. H. Metabolic regulation by p53. Int. J. Mol. Med. 2011, 89, 237-245.
    連結:
  66. Massimi, M.; Tomassini, A.; Sciubba, F.; Sobolev, A. P.; Devirgiliis, L. C.; Miccheli, A. Effects of resveratrol on HepG2 cells as revealed by 1H-NMR based metabolic profiling. Biochim. Biophys. Acta. 2011, 1820, 1-8.
    連結:
  67. Matoba, S.; Kang, J. G.; Patino, W. D.; Wragg, A.; Boehm, M.; Gavrilova, O.; Hurley, P. J.; Bunz, F.; Hwang, P. M. p53 regulates mitochondrial respiration. Science. 2006, 312, 1650-1653.
    連結:
  68. Morin, P. J.; Sparks, A. B.; Korinek, V.; Barker, N.; Clevers, H.; Vogelstein, B.; Kinzler, K. W. Activation of β-catenin-Tcf signaling in colon cancer by mutations in β-catenin or APC. Science. 1997, 275, 1787-1790.
    連結:
  69. Nathke, I. Cytoskeleton out of the cupboard: colon cancer and cytoskeletal changes induced by loss of APC. Nat. Rev. Cancer. 2006, 6, 967-974.
    連結:
  70. Newmark, H.; Yang, K.; Lipkin, M.; Kopelovich, L.; Liu, Y.; Fan, K.; Shinozaki, H. A Western-style diet induces benign and malignant neoplasms in the colon of normal C57Bl/6 mice. Carcinogenesis. 2001, 22, 1871-1875.
    連結:
  71. Nguyen, A. V.; Martinez, M.; Stamos, M. J.; Moyer, M. P.; Planutis, K.; Hope, C.; Holcombe, R. F. Results of a phase I pilot clinical trial examining the effect of plant-derived resveratrol and grape powder on Wnt pathway target gene expression in colonic mucosa and colon cancer. Cancer Manag. Res. 2009, 1, 25-37.
    連結:
  72. Nomura, A. M. Y.; Wilkens, L. R.; Murphy, S. P.; Hankin, J. H.; Henderson, B. E.; Pike, M. C.; Kolonel, L. N. Association of vegetable, fruit, and grain intakes with colorectal cancer: the Multiethnic Cohort Study. Am. J. Clin. Nutr. 2008, 88, 730-737.
    連結:
  73. Okamura, S.; Ng, C. C.; Koyama, K.; Takei, Y.; Arakawa, H.; Monden, M.; Nakamura, Y. Identification of seven genes regulated by wild-type p53 in a colon cancer cell line carrying a well-controlled wild-type p53 expression system. Oncol. Res. 1999, 11, 281-285.
    連結:
  74. Pan, M. H.; Hsieh, M. C.; Kuo, J. M.; Lai, C. S.; Wu, H.; Sang, S.; Ho, C. T. 6-shogaol induces apoptosis in human colorectal carcinoma cells via ROS production, caspase activation, and GADD 153 expression. Mol. Nutr. Food Res. 2008, 52, 527-537.
    連結:
  75. Pan, M. H.; Lai, C. S.; Wu, J. C.; Ho, C. T. Molecular mechanisms for chemoprevention of colorectal cancer by natural dietary compounds. Mol. Nutr. Food Res. 2011, 55, 32-45.
    連結:
  76. Parnaud, G.; Li, P. F.; Cassar, G.; Rouimi, P.; Tulliez, J.; Combaret, L.; Gamet-Payrastre, L. Mechanism of sulforaphane-induced cell cycle arrest and apoptosis in human colon cancer cells. Nutr. Cancer 2004, 48, 198-206.
    連結:
  77. Patel, K. R.; Brown, V. A.; Jones, D. J. L.; Britton, R. G.; Hemingway, D.; Miller, A. S.; West, K. P.; Booth, T. D.; Perloff, M.; Crowell, J. A. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res. 2010, 70, 7392-7399.
    連結:
  78. Piotto, M.; Moussallieh, F. M.; Dillmann, B.; Imperiale, A.; Neuville, A.; Brigand, C.; Bellocq, J. P.; Elbayed, K.; Namer, I. Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1H magnetic resonance spectroscopy. Metabolomics. 2009, 5, 292-301.
    連結:
  79. Potter, J. D.; Slattery, M. L.; Bostick, R. M.; Gapstur, S. M. Colon cancer: a review of the epidemiology. Epidemiol. Rev. 1993, 15, 499-545.
    連結:
  80. Potter, J. D. Colorectal cancer: molecules and populations. J. Natl. Cancer Inst. 1999, 91, 916-932.
    連結:
  81. Pozarowski, P.; Darzynkiewicz, Z. Analysis of cell cycle by flow cytometry. Methods Mol. Biol. 2004, 281, 301-312.
    連結:
  82. Rodrigues, N. R.; Rowan, A.; Smith, M.; Kerr, I. B.; Bodmer, W. F.; Gannon, J. V.; Lane, D. P. p53 mutations in colorectal cancer. Proc. Natl. Acad. Sci. 1990, 87, 7555-7559.
    連結:
  83. Rudolf, E.; Andelova, H.; Cervinka, M. Activation of several concurrent proapoptic pathways by sulforaphane in human colon cancer cells SW620. Food Chem. Toxicol. 2009, 47, 2366-2373.
    連結:
  84. Sang, S.; Hong, J.; Wu, H.; Liu, J.; Yang, C. S.; Pan, M. H.; Badmaev, V.; Ho, C. T. Increased growth inhibitory effects on human cancer cells and anti-inflammatory potency of shogaols from Zingiber officinale relative to gingerols. J. Agric. Food Chem. 2009, 57, 10645-10650.
    連結:
  85. Shahidi, F.; Janitha, P.; Wanasundara, P. Phenolic antioxidants. Crit. Rev. Food Sci. Nutr. 1992, 32, 67-103.
    連結:
  86. Shan, J.; Xuan, Y.; Zheng, S.; Dong, Q.; Zhang, S. Ursolic acid inhibits proliferation and induces apoptosis of HT-29 colon cancer cells by inhibiting the EGFR/MAPK pathway. J. Zhejiang Univ.-SCI. B 2009, 10, 668-674.
    連結:
  87. Shapiro, A. L.; Vinuela, E.; Maizel Jr, J. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. Biophys. Res. Commun. 1967, 28, 815.
    連結:
  88. Shen, G.; Xu, C.; Chen, C.; Hebbar, V.; Kong, A. N. T. p53-independent G1 cell cycle arrest of human colon carcinoma cells HT-29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1. Cancer Chemother. Pharmacol. 2006, 57, 317-327.
    連結:
  89. Shen, G.; Khor, T. O.; Hu, R.; Yu, S.; Nair, S.; Ho, C. T.; Reddy, B. S.; Huang, M. T.; Newmark, H. L.; Kong, A. N. T. Chemoprevention of familial adenomatous polyposis by natural dietary compounds sulforaphane and dibenzoylmethane alone and in combination in ApcMin/+ mouse. Cancer Res. 2007, 67, 9937-9944.
    連結:
  90. Shieh, S. Y.; Ikeda, M.; Taya, Y.; Prives, C. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell. 1997, 91, 325-334.
    連結:
  91. Shimizu, M.; Shirakami, Y.; Sakai, H.; Adachi, S.; Hata, K.; Hirose, Y.; Tsurumi, H.; Tanaka, T.; Moriwaki, H. (-)-Epigallocatechin gallate suppresses azoxymethane-induced colonic premalignant lesions in male C57BL/KsJ-db/db Mice. Cancer Prev. Res. 2008, 1, 298-304.
    連結:
  92. Sies, H.; Stahl, W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 1995, 62, 1315S-1321S.
    連結:
  93. Silagy, C. A.; Neil, H. A meta-analysis of the effect of garlic on blood pressure. J. Hypertens. 1994, 12, 463-468.
    連結:
  94. Siliciano, J. D.; Canman, C. E.; Taya, Y.; Sakaguchi, K.; Appella, E.; Kastan, M. B. DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev. 1997, 11, 3471-3481.
    連結:
  95. Srivastava, K. Evidence for the mechanism by which garlic inhibits platelet aggregation. Prostaglandins. Leukot. Med. 1986, 22, 313-321.
    連結:
  96. Stambolsky, P.; Weisz, L.; Shats, I.; Klein, Y.; Goldfinger, N.; Oren, M.; Rotter, V. Regulation of AIF expression by p53. Cell Death Differ. 2006, 13, 2140-2149.
    連結:
  97. Stewart, M. S.; Spallholz, J. E.; Neldner, K. H.; Pence, B. C. Selenium compounds have disparate abilities to impose oxidative stress and induce apoptosis. Free Radical Biol. Med. 1999, 26, 42-48.
    連結:
  98. Tejpar, S.; Cutsem, E. V. Molecular and genetic defects in colorectal tumorigenesis. Best Pract. Res. Clin. Gastroenterol. 2002, 16, 171-185.
    連結:
  99. Thomas, T.; Thomas, T. J. Polyamines in cell growth and cell death: molecular mechanisms and therapeutic applications. Cell. Mol. Life Sci. 2001, 58, 244-258.
    連結:
  100. Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. U. S. A. 1979, 76, 4350-4354.
    連結:
  101. Unger, T.; Sionov, R. V.; Moallem, E.; Yee, C. L.; Howley, P. M.; Oren, M.; Haupt, Y. Mutations in serines 15 and 20 of human p53 impair its apoptotic activity. Oncogene. 1999, 18, 3205-3212.
    連結:
  102. van Duijnhoven, F. J. B.; Bueno-De-Mesquita, H. B.; Ferrari, P.; Jenab, M.; Boshuizen, H. C.; Ros, M. M.; Casagrande, C.; Tjonneland, A.; Olsen, A.; Overvad, K. Fruit, vegetables, and colorectal cancer risk: the European prospective investigation into cancer and nutrition. Am. J. Clin. Nutr. 2009, 89, 1441-1452.
    連結:
  103. Vasen, H.; Mecklin, J. P.; Meera Khan, P.; Lynch, H. The international collaborative group on hereditary non-polyposis colorectal cancer (ICG-HNPCC). Dis. Colon Rectum. 1991, 34, 424-425.
    連結:
  104. von Roon, A. C.; Karamountzos, L.; Purkayastha, S.; Reese, G. E.; Darzi, A. W.; Teare, J. P.; Paraskeva, P.; Tekkis, P. P. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy. Am. J. Gastroenterol. 2007, 102, 803-813.
    連結:
  105. Wallace, H. M.; Caslake, R. Polyamines and colon cancer. Eur. J. Gastroenterol. Hepatol. 2001, 13, 1033-1039.
    連結:
  106. Wang, X.; Di Pasqua, A. J.; Govind, S.; McCracken, E.; Hong, C.; Mi, L.; Mao, Y.; Wu, J. Y. C.; Tomita, Y.; Woodrick, J. C. Selective depletion of mutant p53 by cancer chemopreventive isothiocyanates and their structure-activity relationships. J. Med. Chem. 2011, 54, 809-816.
    連結:
  107. White, B. D.; Chien, A. J.; Dawson, D. W. Dysregulation of Wnt/beta-catenin signaling in gastrointestinal cancers. Gastroenterology. 2012, 142, 219-232.
    連結:
  108. Whitfield, J. F. Calcium, calcium-sensing receptor and colon cancer. Cancer Lett. 2009, 275, 9-16.
    連結:
  109. Wolter, F.; Turchanowa, L.; Stein, J. Resveratrol-induced modification of polyamine metabolism is accompanied by induction of c-Fos. Carcinogenesis. 2003, 24, 469-474.
    連結:
  110. Wong, R. P.; Tsang, W. P.; Chau, P. Y.; Co, N. N.; Tsang, T. Y.; Kwok, T. T. p53-R273H gains new function in induction of drug resistance through down-regulation of procaspase-3. Mol. Cancer Ther. 2007, 6, 1054-1061.
    連結:
  111. Xavier, C. P. R.; Lima, C. F.; Preto, A.; Seruca, R.; Fernandes-Ferreira, M.; Pereira-Wilson, C. Luteolin, quercetin and ursolic acid are potent inhibitors of proliferation and inducers of apoptosis in both KRAS and BRAF mutated human colorectal cancer cells. Cancer Lett. 2009, 281, 162-170.
    連結:
  112. Xiao, J.; Kai, G. A review of dietary polyphenol-plasma protein interactions: characterization, influence on the bioactivity, and structure-affinity relationship. Crit. Rev. Food Sci. Nutr. 2012, 52, 85-101.
    連結:
  113. Yang, C. S.; Wang, H. Mechanistic issues concerning cancer prevention by tea catechins. Mol. Nutr. Food Res. 2011, 55, 819-831.
    連結:
  114. Zeng, X.; Yan, T.; Schupp, J. E.; Seo, Y.; Kinsella, T. J. DNA mismatch repair initiates 6-thioguanine--induced autophagy through p53 activation in human tumor cells. Clin. Cancer Res. 2007, 13, 1315-1321.
    連結:
  115. Zong, W. X.; Moll, U. p53 in autophagy control. Cell Cycle. 2008, 7, 2947-2948.
    連結:
  116. 吳哲誠。2011。以Wnt/β-catenin訊息路徑探討薑中活性成分對於大腸直腸癌預防功效與機轉之研究。國立台灣大學生物資源暨農學院食品科技研究所碩士論文。
  117. Abdullah, S.; Abidin, S. A. Z.; Murad, N. A.; Makpol, S.; Ngah, W. Z. W.; Yusof, Y. A. M. Ginger extract (Zingiber officinale) triggers apoptosis and G0/G1 cells arrest in HCT 116 and HT 29 colon cancer cell lines. Afr. J. Chem. Res. 2010, 4, 134-142.
  118. Ertel, A.; Verghese, A.; Byers, S. W.; Ochs, M.; Tozeren, A. Pathway-specific differences between tumor cell lines and normal and tumor tissue cells. Mol. Cancer. 2006, 5, 55-68.
  119. Hong, J.; Lu, H.; Meng, X.; Ryu, J. H.; Hara, Y.; Yang, C. S. Stability, cellular uptake, biotransformation, and efflux of tea polyphenol (-)-epigallocatechin-3-gallate in HT-29 human colon adenocarcinoma cells. Cancer Res. 2002, 62, 7241-7246.
  120. Kromhout, D. The importance of N-6 and N-3 fatty acids in carcinogenesis. Med. Oncol. 1990, 7, 173-176.
  121. Labianca, R.; Beretta, G. D.; Kildani, B.; Milesi, L.; Merlin, F.; Mosconi, S.; Pessi, M. A.; Prochilo, T.; Quadri, A.; Gatta, G.; de Braud, F.; Wils, J. Colon cancer. Crit. Rev. Oncol./Hematol. 2010, 74, 106-133.
  122. Loukola, A.; Eklin, K.; Laiho, P.; Salovaara, R.; Kristo, P.; Jarvinen, H.; Mecklin, J. P.; Launonen, V.; Aaltonen, L. A. Microsatellite marker analysis in screening for hereditary nonpolyposis colorectal cancer (HNPCC). Cancer Res. 2001, 61, 4545-4549.
  123. McKeown-Eyssen, G. Epidemiology of colorectal cancer revisited: are serum triglycerides and/or plasma glucose associated with risk? Cancer Epidemiol. Biomarkers Prev. 1994, 3, 687-695.
  124. Vahsen, N.; Cande, C.; Briere, J. J.; Benit, P.; Joza, N.; Larochette, N.; Mastroberardino, P. G.; Pequignot, M. O.; Casares, N.; Lazar, V. AIF deficiency compromises oxidative phosphorylation. EMBO J. 2004, 23, 4679-4689.