题名

結球白菜幼苗於高溫淹水逆境下之生理性狀

并列篇名

The physiological characters of Chinese cabbage (Brassica rapa L. var. pekinensis Rupr.) seedlings under heat and/or waterlogging stresses

DOI

10.6342/NTU201603019

作者

陳薇

关键词

結球白菜 ; 丙二醛 ; 過氧化氫 ; 葉綠素a/b ; 抗壞血酸過氧化酶 ; 過氧化氫酶 ; Chinese cabbage ; malondialdehyde ; hydrogen peroxide ; chlorophyll a/b ; ascorbate peroxidase ; catalase.

期刊名称

國立臺灣大學園藝暨景觀學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

羅筱鳳

内容语文

繁體中文

中文摘要

臺灣夏季高溫多濕限制結球白菜(Brassica rapa L. var. pekinensis Rupr.)生產,選育具高溫淹水耐受性之結球白菜品種為目前產業所需,適當之苗期生理指標將可作為選拔耐高溫淹水品種的依據。本研究以17個結球白菜品種/系為材料,分別進行夏季、秋季田間產量試驗以及21天齡苗於25°C /20°C常溫、25°C /20°C淹水、35°C /30°C高溫及35°C /30°C淹水處理之生理指標試驗。經比較103年秋作與104年夏作之葉球鮮重後,選出夏季高產之耐高溫品種ʻ慶農200ʼ及ʻ玉豐ʼ,其幼苗於35°C/30°C與35°C/30°C淹水處理下,丙二醛(malondialdehyde, MDA)及過氧化氫(hydrogen peroxide, H2O2)含量顯著低於熱敏感品種ʻ瑞樺12號ʼ與ʻ瑞農720ʼ。在35°C/30°C高溫淹水2天期間,ʻ慶農200ʼ幼苗之抗壞血酸過氧化酶(ascorbate peroxidase, APX)相對活性皆高於熱敏感品種ʻ瑞農720ʼ,且較ʻ瑞農720ʼ更快提升其過氧化氫酶(catalase, CAT)之相對活性。自交系cc-st 03、cc-st 21、cc-st 23、cc-st 24、cc-st 25、cc-st 26與cc-st 29於夏季高溫環境下仍能結球,可視為具有耐熱潛力之品系;秋作淹水後葉球較輕之品系cc-st 09與cc-st 22,其幼苗經25°C/20°C常溫淹水後恢復48 h,葉綠素b含量下降、葉綠素a/b較高。而幼苗各處理後之地上部與根部相對乾重、葉綠素計讀值(SPAD)、葉綠素螢光Fv/Fm與細胞膜相對熱傷害值(relative injury, RI),和夏、秋作葉球鮮重之間則無顯著相關性。綜之,結球白菜21天齡苗之生理指標,包括葉片APX與CAT之相對活性、葉綠素a/b、MDA及H2O2含量,可與其夏、秋兩作田間試驗之葉球產量相呼應,可做為篩選結球白菜高溫及/或淹水逆境耐受性之苗期生理指標,以縮短育種時間。

英文摘要

Hot and wet summer in Taiwan limited the production of Chinese cabbage (Brassica rapa L. var. pekinensis Rupr.). Selecting heat- and waterlogging-tolerant Chinese cabbage were needed for current industry. Proper physiological indexes of seedlings could be useful tools to screen heat and/or waterlogging tolerant cultivars. This research used 17 cultivars/lines of Chinese cabbage as materials, conducted the field yield trail in summer and autumn and the physiological index experiments on 21 days seedlings treated with 25°C/20°C, waterlogging at 25°C/20°C, 35°C/30°C, and waterlogging at 35°C/30°C, respectively. Comparing with the head fresh weight in 2014 autumn and 2015 summer trails, ʻChing-Long 200ʼ and ʻYu-Fong ʼcould be regarded as the heat-tolerant cultivars, due to high head fresh weight in summer. Seedlings of these two cultivars also showed significantly lower contents of malondialdehyde (MDA) and hydrogen peroxide (H2O2) than the heat-sensitive cultivars ʻRuey-Hua No. 12ʼ and ʻRuey-Long 720ʼ after 35°C/30°C and waterlogging at 35°C/30°C treatments in seedling stage. The relative ascorbate peroxidase (APX) activity in ʻChing-Long 200ʼ seedlings were higher than the heat sensitive cultivar, in the waterlogging at 35°C/30°C treatment. The relative catalase activity in ʻChing-Long 200ʼ also raised faster than ʻRuey-Long 720ʼ. Inbred lines cc-st 03, cc-st 21, cc-st 23, cc-st 24, cc-st 25, cc-st 26 and cc-st 29 could be regarded as the potential heat-tolerant lines, since they formed head in the summer. Inbred lines cc-st 09 and cc-st 22, which had relatively low head fresh weight in autumn waterlogging trail, chlorophyll b content declined but chlorophyll a/b raised after waterlogging at 25°C/20°C treatment followed by recovery 48 h in the seedling stage. However, the seedling indexes in heat and/or waterlogging treatments, such as the relative dry weight of shoot and root, SPAD, chlorophyll fluorescence Fv/Fm and cell membrane relative injury, did not show significant correlations with the head fresh weight in summer and autumn. In conclusion, the physiological index, relative activity of leaf APX and CAT, chlorophyll a/b, MDA and H2O2 contents, in 21 days Chinese cabbage seedlings were consistent with the head fresh weight in autumn and summer. These physiological indexes might be used to screen heat- and/or waterlogging-tolerant Chinese cabbage lines and shorten the breeding time.

主题分类 生物資源暨農學院 > 園藝暨景觀學系
生物農學 > 農業
参考文献
  1. 石佩玉、施任青、張連宗、羅筱鳳. 2013. 花椰菜高溫淹水耐受性之生理指標. 臺灣園藝 59:191-204.
    連結:
  2. 張連宗. 1985. 結球白菜耐熱性育種. 夏季蔬菜生產改進研討會專輯. p. 35-53. 行政院農業委員會桃園區農業改良場. 桃園.
    連結:
  3. 陳葦伶. 2012. 作物耐熱性篩選指標之建立. 臺中區農業改良場一0一年專題討論專集. p. 217-220. 臺中.
    連結:
  4. 陳葦伶、郭孚燿、陳榮五. 2009. 利用細胞膜熱穩定性技術篩選高耐熱性葉用蘿蔔. 臺中區農業改良場研究彙報. 102:15-29.
    連結:
  5. 陳美蘭. 2010. 青花菜AV531耐熱特性之探討. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
    連結:
  6. 陳姵華、謝明憲、羅筱鳳. 2014. 甘藍對高溫淹水之生理反應. 臺灣園藝. 60:265-286
    連結:
  7. 趙翊琹. 2013. 青花菜耐熱性探討. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
    連結:
  8. 姚靜樺. 2014. 選拔耐高溫淹水花椰菜及其相關形態與生理指標. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
    連結:
  9. 謝明芳. 2012. 結球白菜高溫淹水耐受性之篩選與生理反應. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
    連結:
  10. 謝明憲、劉依昌、許涵鈞、林棟樑、王仕賢. 2008. 十字花科蔬菜耐熱育種及採種. 農業生技產業應用研討會專刊. p.67-78. 行政院農業委員會臺南區農業改良場. 臺南.
    連結:
  11. 邱奕璇. 2012. 菊花耐淹水指標與水分生理. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北.
    連結:
  12. Ahmed, S., E. Nawata, M. Hosokawa, Y. Domae, and T. Sakuratani. 2002. Alterations in photosynthesis and some antioxidant enzymatic activities of mungbean subjected to waterlogging. Plant Sci. 163:117-123.
    連結:
  13. Aloni, B., M. Peet, M. Pharr, and L. Karni. 2001. The effect of high temperature and high CO2 on carbohydrate changes in bell pepper (Capsicum annum) pollen in relation to its germination. Physiol. Plant. 112:505-512.
    連結:
  14. Anton, J.M., C.H. Marjolein, J.B. Joris, A.M. Robert, B. Jordi, and A.C. Laurentius. 2002. Submergence research using Rumex palustris as a model: Looking back and going forward. J. Exp. Bot. 53:391-398.
    連結:
  15. Arbona, V., Z. Hossain, M.F. Lòpez-Climent, R.M. Pèrez-Clemente, and A. Gómez-Cadenas. 2008. Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiol. Plant. 132:452-466.
    連結:
  16. Arbona, V., M.F. Lòpez-Climent, R.M. Pèrez-Clemente, and A. Gómez-Cadenas. 2009. Maintenance of high photosynthetic performance is linked to flooding tolerance in citrus. Environ. Expt. Bot. 66:135-142.
    連結:
  17. Azia, F., and K.A. Stewart. 2001. Relationships between extractable chlorophyll and spad values in muskmelon leaves. J. Plant Nutr. 24:961-966.
    連結:
  18. Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J. Expt. Bot. 55:1607-1621.
    連結:
  19. Balakhnina, T., R. Bennicelli, Z. Stępniewska, W. Stępniewski, A. Borkowska, and I. Fomina. 2012. Stress responses of spring rape plants to soil flooding. Int. Agrophys. 26:347-353.
    連結:
  20. Bethke, P.C. and R.L. Jones. 2001. Cell death of barley aleurone protoplasts is mediated by reactive oxygen species. Plant J. 25:19-29.
    連結:
  21. Blokhina, O., E. Virolainen, and K.V. Fagerstedt. 2002. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Annals Bot. 91:179-194.
    連結:
  22. Björkman, T. and B. Demming. 1987. Photo yield of O2 evolution and chlorophyll fluorescence characteristics at 77K among vascular plants of diverse origins. Planta 170:489-504.
    連結:
  23. Camejo, D., P. Rodríguez, M.A. Morales, J.M. Dell’Amico, A. Torrecillas, and J.J. Alarcón. 2005. High temperature effects on photosynthetic activity of two tomato cultivars with different heat susceptibility. J. Plant Physiol. 162: 281-289.
    連結:
  24. Chang, S.X. and D.J. Robison. 2003. Nondestructive and rapid estimation of hardwood foliar nitrogen status using the SPAD-502 chlorophyll meter. Forest Ecol. Manage. 181:331-338.
    連結:
  25. Chauhan, S.Y. and T. Senboku. 1996. Thermostabilities of cell-membrane and photosynthesis in cabbage cultivars differing in heat tolerance. J. Plant Physiol. 149:729-734.
    連結:
  26. Cheeseman, J.M. 2006. Hydrogen peroxide concentrations in leaves under natural conditions. J.Expt. Bot. 57:2435-2444.
    連結:
  27. Chen, W.L., W.J. Yang, H.F. Lo, and D.M. Yeh. 2014. Physiology, anatomy, and cell membrane thermostability selection of leafy radish (Raphanus sativus var. oleiformis Pers.) with different tolerance under heat stress. Sci. Hort. 179:367-375.
    連結:
  28. del Rio, L.A., L.M. Sandalio, D.A. Altomare, and B.A. Zilinskas. 2003. Mitochondrial and peroxisomal magnese superoxide dismutase:differential expression during leaf senescence. J. Exp. Bot. 54:923-933.
    連結:
  29. Fujime, Y., and N. Okuda. 1996. The physiology of flowering in Brassicas, especially about cauliflower and broccoli. Acta Hort. 407:247-254.
    連結:
  30. Gill, S.S., and N. Tuteja, 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930.
    連結:
  31. Han, Y., S. Fan, Q. Zhang, and Y. Wang. 2013. Effect of heat stress on the MDA, proline and soluble sugar content in leaf lettuce seedlings. Agr. Sci. 4:112-115.
    連結:
  32. Heath, R.L., and L .Packer. 1968. Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 125:189-198.
    連結:
  33. Hetherington, S.E., J. He, and R.M. Smillie. 1989. Photoinhibition at low temperature in chilling-sensitive and -resistant plants. Plant Physiol. 90:1609-1615.
    連結:
  34. Hernandez, M., N. Fernandez-Garcia, P. Diaz-Vivancos, and E. Olmos. 2010. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. J. Expt. Bot. 61:521-535.
    連結:
  35. Irfan, M., S. Hayat, Q. Hayat, S. Afroz, and A. Ahmad. 2010. Physiological and biochemical changes in plants under waterlogging. Protoplasma 241:3-17.
    連結:
  36. Islam, M.R., K.M.S. Haque, N. Akter, and M.A. Karim. 2014. Leaf chlorophyll dynamics in wheat based on SPAD meter reading and its relationship with grain yield. Sci. Agri. 8:13-18.
    連結:
  37. Jana, S. and M.A. Choudhuri. 1982. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquat. Bot. 12:345-354.
    連結:
  38. Joo, J.J., Y.S. Bae, and J.S. Lee. 2001. Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol. 126:1055-1060.
    連結:
  39. Kato, M. and S. Shimizu. 1987. Chlorophyll metabolism in higher plants. VII. Chlorophyll degradation in senescing tobacco leaves: Phenolic-dependent peroxidative degradation. Can. J. Bot. 65:729-735.
    連結:
  40. Krause, G.H. and E. Weis. 1984. Chlorophyll fluorescence as a tool in plant physiology. II. Interpretation of fluorescence signals. Photosynth. Res. 5:139-157.
    連結:
  41. Krause, G.H. and E. Weis. 1991. Chlorophyll fluorescence and photosynthesis: the basics. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:313-349.
    連結:
  42. Kuo, C.G., B.J. Shen, H.M. Chen, H.C. Chen, and R.T. Opeña. 1988. Associations between heat tolerance, water consumption, and morphological characters in Chinese cabbage. Euphytica 39:65-73.
    連結:
  43. Lin, K.H.R., C.C. Weng, H.F. Lo, and J.T. Chen. 2004. Study of the root antioxidative system of tomatoes and eggplants under waterlogged conditions. Plant Sci. 167:355-365.
    連結:
  44. Lin, K.H., H.C. Huang, and C.Y. Lin. 2010. Cloning, expression and physiological analysis of broccoli catalase gene and Chinese cabbage ascorbate peroxidase gene under heat stress. Plant cell rep. 29:575-593.
    連結:
  45. Lichtenthaler, H.K., and A.R. Wellburn. 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem. Soc. T. 11:591-592.
    連結:
  46. Liu, X. and B. Huang. 2000. Heat stress injury in relation to membrane lipid peroxidation in creeping bentgrass. Crop Sci. 40:503-510.
    連結:
  47. Liu, A.X., J.Q. Zhu, and T. Jin. 2013. Advance of the research on crop suffering from waterlogged stress. p. 227-230. In: Intelligent System Design and Engineering Applications (ISDEA). IEEE.
    連結:
  48. Marcum, K.B. 1998. Cell membrane thermostability and whole plant heat tolerance of Kentucky bluegrass. Crop Sci. 38:1214-1218.
    連結:
  49. Martineau, J.R., J.E. Specht, J.H. Williams, and C.Y. Sullivan. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78.
    連結:
  50. Michel, H., M. Tellenbach, and A. Boschetti. 1983. A chlorophyll b-less mutant of Chlamydomonas reinhardii lacking in the light-harvesting chlorophyll ab-protein complex but not in its apoproteins. BBA-Bioenergetics 725:417-424.
    連結:
  51. Mittler, R. 2002. Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci. 7: 405-410.
    連結:
  52. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22:876-880.
    連結:
  53. Neill, S.J., R. Desikan, A. Clarke, R. Hurst, and J. Hancock. 2002. Hydrogen peroxide and nitric oxide as signalling molecules in plants. J. Expt. Bot. 53: 1237-1247.
    連結:
  54. Nishijima, T. and N. Fukino. 2005. Geometrical analysis of development of erect leaves as a factor in head formation of Brassica rapa L.: (I) Geometrical change of growing leaves in head cultivars. Scientia Hort. 104:407-419.
    連結:
  55. Nestle, M. 1998. Broccoli sprouts in cancer prevention. Nutr. Rev. 56:127-130.
    連結:
  56. Nyarko, G., P.G. Alderson, J. Craigon, E. Murchie, and D.L. Sparkers. 2008. Comparison of cell membrane thermostability and chlorophyll fluorescence parameters for the determination of heat tolerance in ten cabbage lines. J. Hort. Sci. Biotechnol. 83:678-682
    連結:
  57. Okuda, T., Y. Matsuda, A. Yamanaka, and S. Sagisaka. 1991. Abrupt increase in the level of hydrogen peroxide in leaves of winter wheat id caused by cold treatment. Plant Physiol. 97:1256-1267.
    連結:
  58. Pagamas, P. and E. Nawata. 2008. Sensitive stages of fruit and seed development of chili pepper (Capsicum annum L. var. Shishito) exposed to high-temperature stress. Sci. Hort. 117:21-25.
    連結:
  59. Porter, J.R. 2005. Rising temperatures are likely to reduce crop yield. Nature 436:174.
    連結:
  60. Podse̘dek, A. 2007. Natural antioxidants and antioxidant capacity of Brassica vegetables: A review. LWT-Food Sci. Tech. 40:1-11.
    連結:
  61. Reynolds, M.P., R.P. Singh, A. Ibrahim, O.A. Ageeb, A. Larqué-Saavedar, and J.S. Quick. 1998. Evaluating physiological traits to complement empirical selection for wheat in warm environments. Euphytica 100:85-94.
    連結:
  62. Sauer, M., K.H. Drexhage, C. Zander, and J. Wolfrum. Diode laser based detection of single molecules in solutions. Chem. Phys. Lett. 254:223-228.
    連結:
  63. Sharma, P., A.B. Jha, R.S. Dubey, and M. Pessarakli. 2012. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J. Bot. 2012:1-26.
    連結:
  64. Smethurst, C.F. and S. Shabala. 2003. Screening methods for waterlogging tolerance in lucerne: Comparative analysis of waterlogging effects on chlorophyll fluorescence, photosynthesis, biomass and chlorophyll content. Funct. Plant Biol. 30:335-343.
    連結:
  65. Smethurst, C.F., T. Garnett, and S. Shabala. 2005. Nutritional and chlorophyll fluorescence responses of lucerne (Medicago sativa) to waterlogging and subsequent recovery. Plant Soil 270:31-45.
    連結:
  66. Smillie, R.M. and S.E. Hetherington. 1983. Stress tolerance and stress-induced injury in crop plants measured by chlorophyll fluorescence in vivo. Plant Physiol. 72:1043-1050.
    連結:
  67. Strasser, R.J., A. Srivastava, and P.G. Govindjee. 1995. Polyphasic chlorophyll a fleorescence transient in plant and cyanobacteria. Photochem. Photobiol. 61:32-42.
    連結:
  68. Strasser, R.J., A. Srivastava, and M. Tsimilli-Michael. 2000. The fluorescence transient as a tool to characterize and screen photosynthetic samples. p. 445-483. In: M. Yunus, U. Pathre, and P. Mohanty. (eds.) Probing photosynthesis: mechanism, regulation and adaptation. Taylor and Francis Press, London.
    連結:
  69. Strasser, R.J., A. Srivastava, and M. Tsimilli-Michael. 2004. Analysis of the chlorophyll a fluorescence transient. p. 1-42. In: P.G. Govindjee (eds.) Advances in photosynthesis and respiration. KAP Press, Netherlands.
    連結:
  70. Tan, D.K.Y., C.J. Birch, A.H. Wearing, and K.G. Rickert. 2000. Predicting broccoli development: I. development is predominantly determined by temperature rather than photoperiod. Scientia Hort. 84: 227-243.
    連結:
  71. Tseng, M.J., C.-W. Liu, and J.-C. Yiu. 2007. Enhanced tolerance to sulfur dioxide and salt stress of transgenic Chinese cabbage plants expressing both superoxide dismutase and catalase in chloroplasts. Plant Physio. Biochem. 45:822-833.
    連結:
  72. van Kooten, O. and J.F. Snal. 1990. The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth. Res. 25:147-150.
    連結:
  73. Wang, K., and Y. Jiang. 2007. Antioxidant responses of creeping bentgrass roots to waterlogging. Crop Sci. 47:585-592.
    連結:
  74. Wang, Q., J. Chen, R.H. Stamps, and Y. Li. 2005. Correlation of visual quality grading and SPAD reading of green-leaved foliage plants. J. Plant Nutr. 28:1215-1225.
    連結:
  75. Welker, O.A. and S, Furuya. 1994. Influence of heat stress on growth and leaf epicuticular structure of cabbages. J. Agron. Crop Sci. 174:53-62.
    連結:
  76. Wu, M.T. and S.J. Wallner. 1993. Heat stress response in cultures plant cells: development and comparison of viability test. Plant Physiol. 72:817-820.
    連結:
  77. Xu, X., H.H. Wang, X.H. Qi, Q. Xu, and X.H. Chen. 2014. Waterlogging-induced in fermentation and related gene expression in the root of cucumber (Cucumis sativus L.). Sci. Hort. 179:388-395.
    連結:
  78. Yan, D.M., Q.J. Dai, X.Z. Liu, S.B. Huang, and Z.X. Wang. 1996. Flooding-induced membrane damage, lipid oxidation and activated oxygen generation in corn leaves. Plant Soil. 179:261-268.
    連結:
  79. Yan, J., N. Tsuichihara, T. Etoh, and S. Iwai. 2007. Reactive oxygen species and nitric oxide are involved in ABA inhibition of stomatal opening. Plant Cell Envior. 30:1320-1325.
    連結:
  80. Yin, D.M., S.M. Chen, F.D. Chen, Z.Y. Guan, and W.M. Fang. 2009. Morphological and physiological responses of two chrysanthemum cultivars differing in their tolerance to waterlogging. Eviron. Expt. Bot. 67:87-93.
    連結:
  81. Yin, Y., S. Li, W. Liao, Q. Lu, X. Wen, and C. Lu. 2010. Photosystem II photochemistry, photoinhibition, and the xanthophyll cycle in heat-stressed rice leaves. J. Plant Physiol. 167:959-966.
    連結:
  82. Yordanova, R.Y. and L.P. Popova. 2007. Flooding-induced changes in photosynthesis and oxidative status in maize plants. Acta Physiol. Plant. 29:535-541.
    連結:
  83. Yordanova, R.Y., K.N. Christov, and L.P. Popova. 2004. Antioxidative enzyme in barey plants subjected to soil flooding. Environ. Expt. Bot. 51:93-101.
    連結:
  84. 行政院農業委員會. 2014. 結球白菜. p. 54. 刊於:行政院農業委員會編著. 102年農業統計年報. 行政院農業委員會編印. 臺北.
  85. 行政院農業委員會. 2014. 農業災害-農作物被害狀況-結球白菜. p. 237. 刊於:行政院農業委員會編著. 102年農業統計年報. 行政院農業委員會編印. 臺北.
  86. 行政院衛生福利部食品藥物管理署. 2014. 食品營養成分資料庫-結球白菜平均值. 行政院衛生福利部食品藥物管理署. 11. June 2015.
  87. 張連宗. 1996. 白菜類蔬菜育種. 蔬菜育種技術研討會專輯. p. 161-190. 臺灣省農業試驗所. 臺中.
  88. 張連宗. 2005. 結球白菜. p. 377-384. 刊於:臺灣農家要覽增修訂三版策劃委員編著. 臺灣農家要覽 農作篇(二). 財團法人豐年社. 臺北.
  89. 陈机. 1984. 大白菜的起源与分类 p102-107. 刊於:陈机等著. 大白菜形態學. 科學出版社. 北京.
  90. 宋元林. 1999. 大白菜特征特性 p5-12. 刊於: 宋元林、王倩等著. 大白菜、白菜、甘藍. 科学技术文献出版社. 北京.
  91. 徐文玲、何启伟、王翠花、牟晋华. 2009. 大白菜起源与演化研究的进展. 中国果菜. 9:20-22.
  92. 曹幸之、羅筱鳳. 2001. 結球葉菜栽培技術. p.93-103. 刊於:曹幸之、羅筱鳳編著. 蔬菜(II). 復文書局. 臺南.
  93. Blankenship, R.E. 2006. Photosynthesis: the light reactions. p. 126-158. In: Taiz and Zeiger (Eds.) Plant physiology. 4th ed. Sinauer Assoc. Sunderland, MA.
  94. Björkman, T. and K.J. Pearson. 1995. Sensitivity of broccoli inflorescence development to high temperature. Hortscience 30:885.
  95. Dixon, G.R. 2007. Origins and diversity of Brassica and its relatives. p. 26-30. In: Dixon, G.R. ed. Vegetable Brassicas and related crucifers. CABI Pub. Cambridge. UK.
  96. Dufault, R.J. 1997. Determining heat unit requirements for broccoli harvest in coastal South Carolina. J. Amer. Soc. Hortic. Sci. 122:169-174.
  97. Hall, A.E. 2001. Crop responses to environment. CRC press, Boca Raton, Florida.
  98. Han, X., R. Li, and J. Wang. 1997. Cellular structural comparison between different thermo-resistant cultivars of Raphanus sativus L. under heat stress. J. Wuhan Bot. Res. 15:173-178.
  99. Hasanuzzaman, M., M. Hossain, J.T. da Silva, and M. Fujita. 2012. Plant response and tolerance to abiotic oxidative stress: antioxidant defense is a key factor, p. 261-315. In: B. Venkateswarlu, A.K. Shanker, C. Shanker and M. Maheswari (eds.). Crop stress and its management: Perspectives and strategies. springer, The Netherlands.
  100. Heather, D.W., J.B. Sieczka, M.H. Dickson, and D.W. Wolfe. 1992. Heat tolerance and holding ability in broccoli. J. Amer. Soc. Hort. Sei. 117:887-892.
  101. Iwama, S., N. Hamashima, and M. Serizawa. 1952. Ecological studies on vegetables at regions of different altitude. I. Ecological behaviors of cabbage (Brassica oleracea L. var. capitata L.). J. Jpn. Soc. Hort. Sci. 21:241-250.
  102. Kalb, T. and L.C. Chang. 2005. Suggested cultural practices for heading Chinese cabbage. p.1-6. In:Asian Vegetable Research and Development Center (Eds.) AVRDC pub #5-642 International cooperators’ guide. Asian Vegetable Research and Development Center. Shanhua, Tainan, Taiwan.
  103. Kautsky, H. and A. Hirsch. 1931. Das Fluorescence greiner Pflanzen. Biochem. Zeitschrift 274:422-434.
  104. Kuo, C. and J. Tsay. 1981. Physiological responses of Chinese cabbage under high temperature. p. 217-224. In Asian Vegetable Research and Development Center (Eds.) Proceedings of the 1st International Symposium on Chinese cabbage. AVRDC. Shanhua, Tainan, Taiwan.
  105. Li, C.G., H.Y. Song, J.J. Lei, M. Song, X.S. Ren, and X. Xiang. 1998. Identification of heat tolerance in cabbage. J. Southwest Agr. Univ. 20:298-301.
  106. Licthenthaler, H.K., and S. Burkart. 1999. Photosynthesis and high light stress. Bulg. J. Plant Physiol. 25:3-16.
  107. Liu, W.X. and S.C. Cao. 1992. Influences of high temperature on cell membrane permeability, peroxidase activity and other biochemical indices in non-heading Chinese cabbage. J. Nanijing Agri. Univ. 15:115-117.
  108. Liu, Y.Y., H.L. Shen, and Y.Q. Liu. 2005. A study on the relationship between the growth and physiology of pak choi and heat tolerance. Acta Agri. Boreali Sinica. 20:25-29.
  109. Loh, F.C.W., J.C. Grabosky, and N.L. Bassuk. 2002. Using the SPAD 502 meter to assess chlorophyll and nitrogen content of Benjamin fig and cottonwood leaves. Horttechnology. 12:682-686.
  110. Meng, H.W., Y.F. Zhang, Z.H. Cheng, J. Su, and H.W. Cui. 2000. The physiological reaction to heat stress and screening of eat tolerance index in cucumber. Acta Agri. Sinica 9:96-99.
  111. Opeña, R.T., and S.H. Lo. 1979. Genetics of heat tolerance in heading Chinese cabbage. HortScience 14:33-34.
  112. Opeña, R.T., and S.H. Lo. 1981. Breeding for heat tolerance in heading Chinese cabbage. In Talekar, N.S. and T.D. Griggs (Eds.) Proceedings of the 1st international symposium on Chinese cabbage. Asian Vegetable Research and Development Center. Shanhua, Tainan, Taiwan.
  113. Raison, J.K., J.A. Berry, P.A. Armond, and C.S. Pike. 1980. Membrane properties in relation to the adaptation of plants to temperature stress. p. 261-273. In: N.C. Turner and P.J. Kramer (eds.). Adaptation of plants to water and high temperature stress. Stanford, California, USA.
  114. Wang, B., X. Min, and J. Cao. 2005. Effect of seeding date and cultivars on plant growth and abnormal curd in early cauliflower. China Veg. 5:13-15.
  115. Wang, C.H., D.M. Yeh, and C.S. Sheu. 2008. Heat tolerance and flowering-heat-delay sensitivity in relation to cell membrane thermostability in chrysanthemum. J. Amer. Soc. Hort. Sci. 133:754-759.
  116. Willits, D.H. and M.M. Peet. 2001. Measurement of clorophyll fluorescence as a heat stress indicator in tomato : Laboratory and greenhouse comparisons. J. Amer. Soc. Hort. Sci. 126:188-194.
  117. Yao, Y.G., X.H. Shi, J.G. Yang, and S.Y. Wang. 2000. Relations of the permeability of plasma memberane of leaves and the contents of several biochemical matter to heat tolerance of pepper. J. Hunan Agri. Univ. 26:97-99.
  118. Ye, C.L., Y.Q. Ke, and W. Chen. 1997. A study on the physiology of heat tolerance in Chinese cabbage III. Ability to scavenge active oxygen of enzyme and non-enzyme system and heat tolerance. J. Fujian Agri. Univ. 26:498-501.
  119. Yeh, D.M. and H.F. Lin. 2003. Thermostability of cell membrane as a measure of heat tolerance and relationship of flowering delay in chrysanthemum. J. Amer. Soc. Hort. Sci. 128:656-660.
  120. Yin, X.G., Q.X. Luo, W.Q. Wang, Y. Zhang, G.H. Pan, Q.F. Yang, and S.L. Yin. 2001. Studies on method for identification of heat tolerance of tomato. Southwest China J. Agri. Sci. 14:62-65.
  121. Yao, Y.G., X.H. Shi, J.G. Yang, and S.Y. Wang. 2000. Reations of the permeability of plasma membrane of leaves and the contents of serveral biochemical matter to heat tolerance of pepper. J. Hunan Agri. Univ. 26:97-99.