题名

利用不同光柵結構探討漸逝波於量子井紅外光偵測器之影響

并列篇名

Utilizing Different Grating Structures to Investigate the Influence of Evanescent Wave in Quantum Well Infrared Photodetector

DOI

10.6342/NTU201603052

作者

陳立錚

关键词

消逝波 ; 光柵結構 ; 量子井紅外線光偵測器 ; evanescent wave ; grating structure ; quantum-well infrared photodetector ; QWIP

期刊名称

臺灣大學電子工程學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

管傑雄

内容语文

繁體中文

中文摘要

量子井光偵測器現時於紅外線波段中廣泛應用中,其中涵括了天文、醫療、建築、軍事、安全系統等領域。如何能最有效且最省能提高其吸收效率遂成為熱門之課題。吾人冀以光柵之系統大幅改善光柵之吸能效率,並著重於了解其蝕刻深度與吸收效率之相關性。並習察得蝕刻至底電極時有較高之響應率,以此為基底,引用原理分析解釋,並做進一步之討論。 光柵者,能使光繞射,藉以使其電場可大量垂直於基板表面,大幅增加光電流之產生。光繞射入光柵溝槽後,將產生表面消逝波,能大幅增加其於主動層處之吸收,並觀察蝕刻深度之深淺,以研究蝕刻深度及響應度之變化。 目前之結果,吾人發現蝕刻至底電極時有較佳響應,但其結果仍有向上空間,分析為應是表面電子復合率高及主動層過多被蝕刻所致。除此之外,吾人亦有探討蝕刻相同深度不同光柵週期時之響應度比較,得其結果為於光柵週期2.0微米時有最高之響應率,並究其原因分析探討之。

英文摘要

The quantum-well infrared photodetector(QWIP) is widely applied in contemporary technology. It is mainly applied in the field of astronomy, medical science, architecture, military and safety system. Therefore, it became a popular topic on how to make the fabrication of QWIP costless and simultaneously promote its absorption efficiency. In this paper, we attempt to improve the absorption efficiency of QWIP by applying the grating structure. Also, the relation between the etched depth and absorption efficiency will be observed. Consequently, we learned that when the deeper the active layer is etched, the better responsivity is shown. The grating structure can make the light diffract, meaning that the proportion of the electric field direction vertical to the substrate surface can be raised. By doing so, the photocurrent can be generated faster than the previous condition. While the light is diffracted into the grating slot, the evanescent wave will be generated, which can greatly enhance the absorption at the active layer. As for the present result, we observed the highest responsivity when the active layer is etched thoroughly. Yet there are still rooms for improvement. We deduced that it may be resulted from the higher surface recombination and excessively-etching of the active layer. Besides, we also investigated the responsivity under fixed etched depth and different grating pitch. The result shows that the optimal grating pitch is 2.0 micrometer. The detail reason will be discussed in the 4th chapter.

主题分类 電機資訊學院 > 電子工程學研究所
工程學 > 電機工程
工程學 > 電機工程
参考文献
  1. 2. E. Dupont, “Optimization of lamellar gratings for quantum-well infrared photodetectors,” J. Appl. Phys. 88, 5 (2000).
    連結:
  2. 3. C. H . Kuan, W. H. Hsieh, S. Y. Lin, C. C. Chen, and J. M. Chen, “Proceedings of SPIE ”The International Society for optical Engineering,” v4288, p151-162 (2001)
    連結:
  3. 5. Y. Fu, M. Willander, W. Lu, and Wenlan Xu, “Optical coupling in quantum well infrared photodetector by diffraction grating,” J. Appl. Phys. 84 , 10 (1998).
    連結:
  4. 7. Richard D. Hudson, Jr. & Jacqueline Wordsworth Hudson, Infrared Detectors, Dowden, Hutchinson & Ross ; New York : distributed by Halsted Press, (1975)
    連結:
  5. 8. K. K. Choi , The Physics of Quantum Well Infrared Photodetectors, (1997).
    連結:
  6. 10. Sarath D. Gunapala, Jin S. Park, Gabby Sarusi, True-Lon Lin, John K. Liu, Paul D. Maker, Richard E. Muller, Craig A. Shott, and Ted Hoelter, “15-μm 128*128 GaAs /AlxGa1-xAs Quantum Well Infrared Photodetector Focal Plane Array Camera,”IEEE Transactions on Electron Devices, Vol. 44, No. 1, (1997)
    連結:
  7. 11. Semiconductor Integrated Circuit Processing Technology, by Addison Wesley
    連結:
  8. 13. K. K. Choi “The Physics of Quantum Well Infrared Photodetectors”, Published by World Scientific.
    連結:
  9. 15. Solid State Physics, by Ashcroft and Mermin
    連結:
  10. 16. Optical Radiation Detector, by Eustace L. Dereniak and Devon G. Crowe
    連結:
  11. 17. “Gallium Arsenide Materials, Devices, and Circuits,” by M. J. Howes and D. V. Morgan (1985)
    連結:
  12. 18. “Intersubband Transitions in Quantum Wells,” edited by H. C. Lin (2000)
    連結:
  13. 21. “The Physics of Quantum Well Infrared Photodetectors,” edited by K. K. Choi (1997)
    連結:
  14. 22. H. C. Liu, Z. R. Wasilewski, and M. Buchanan, “Segregation of Si doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current–voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. vol. 63, pp. 761–763 (1993)
    連結:
  15. 23. Takashi Asano, Susumu Noda, and Katsuhiro Tomoda, Appl. Phys. Lett. 74, 10, pp. 1418.
    連結:
  16. 24. H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, “Surface plasmons enhance optical transmission through subwavelength holes,” Phys. Rev. B. 58, 6779 (1998)
    連結:
  17. 25. Hans Lochbihler, “Surface polaritions on gold-wire gratins,” Phys. Rev. B. 50, 7 (1994)
    連結:
  18. 26. Choi, K. K. “Electromagnetic modeling of edge coupled quantum well infrared photodetectors.” Journal of Applied Physics 111.12 (2012): 124507.
    連結:
  19. 27. Wei, Wu et al. ”A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance”. (2010)
    連結:
  20. 28. S. Kalchmair, et al. “Photonic crystal slab quantum well infrared photodetector” (2011)
    連結:
  21. 29. M.Z. Tidrow, et al “Grating coupled multicolor quantum well infrared photodetectors” (1995)
    連結:
  22. 30. Wikipedia, “Evanescent Field” https://en.wikipedia.org/wiki/Evanescent_field
    連結:
  23. 32. Seigo Tarucha, Yoshiji Horikoshi and Hiroshi Okamoto, “Optical absorption characteristics of GaAs – AlGaAs multi-quantum-well heterostructure waveguides”, (1983)
    連結:
  24. 33. R.W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”. Philos. Mag. 4, 396–402 (1902)
    連結:
  25. 34. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, and P.A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays”. Nature 391, 667 (1998)
    連結:
  26. 35. Wook Jae Yoo, Kyoung Won Jang, Jeong Ki Seo, Jinsoo Moon, Ki-Tek Han, Jang-Yeon Park, Byung Gi Park and Bongsoo Lee, “Development of a 2-channel embedded infrared fiber-optic temperature sensor using silver halide optical fibers”, Sensors (2011)
    連結:
  27. 36. “The Physics of Quantum Well Infrared Photodetectors”, edited by K. K. Choi (World Scientific Publisher, Singapore, 1997)
    連結:
  28. 1. B. F. Levine, K. K. Choi, C. G. Bethea, J. Walker and R. J. Malik, Appl. Phys. Lett. 50, 1092 (1987)
  29. 4. H. C. Chen. “Multicolor Intersubband Infrared Photodetectors applied for Temperature Sensing”, “Spectral Metering and Thermal Imaging,”
  30. 6. Eustance L. Dereniak and Devon G, Crowe, Optical Radiation Detectors, John Wiley & Sons, Inc. , New York, (1984).
  31. 9. H. C. Liu, B. F. Levine, and J. Y. Anderson, Quantum Well Intersubband Transition Physics and Devices, Luwer Academic Publiisher, Dordercht, (1994)
  32. 12. Gallium Arsenide Processing Techniques, by Ralph E. Williams
  33. 14. Ralph E. Williams, “Gallium Arsenide Processing Techniques,” published by the Artech House Microwave Library, copyright (1984).
  34. 19. Meimei Z Tidrow, “Materials Science and Engineering,” B47, pp. 45-51 (2000)
  35. 20. J. Y. Andersson, J. Appl. Phys. 78(10), 15, pp. 6298 (1995)
  36. 31. H.C. Liu, “H.C. Liu’s handouts” http://www.physique.univ-paris-diderot.fr/iqclsw/Presentation/HC_Liu_IQCLSW'10.pdf
  37. 37. Wikipedia, “近紅外線影像技術” https://zh.wikipedia.org/wiki/%E8%BF%91%E7%B4%85%E5%A4%96%E7%B7%9A%E5%BD%B1%E5%83%8F%E6%8A%80%E8%A1%93