题名

奈米矽晶微碟全光開關元件之特性研究

并列篇名

All Optical Switching in a Silicon-Nanocrystal-Based Microdisk Resonator

DOI

10.6342/NTU201603058

作者

曾冠學

关键词

微碟共振腔 ; 全光開關 ; 奈米矽晶 ; 錐形光纖 ; 激發-探測 ; Microdisk ; All optical switching ; Si nanocrystal ; Tapered fiber ; Pump probe measurement

期刊名称

臺灣大學電子工程學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

毛明華

内容语文

繁體中文

中文摘要

我們以奈米矽晶為主要材料製作微碟全光開關元件,以錐形光纖耦合的方式進行量測,以中心波長1541nm之寬頻光源SLD (Super Luminescent Diode)進行穿透頻譜量測,驗證微碟共振腔的製程完整度及確定回音廊模態位置;另外以脈衝產生器配合藍光雷射達成波長405nm的脈衝雷射,可調整脈衝寬度及頻率,以其作激發─探測量測,觀察在小時間尺度下載子接受激發光之能量後產生的折射率擾動,以及回音廊模態波長位移現象,以此現象討論材料作為光開關元件的合適性。 首先以電漿增強式化學氣相沈積法成長富矽介電質,並在1200度高溫熱退火下形成奈米矽晶的薄膜,黃光製程將定義的圖形轉化至奈米矽晶薄膜,最後六氟化硫乾式蝕刻完成了內含奈米矽晶的20μm微碟共振腔,在穿透頻譜量測下,觀察到一階及二階徑向模態產生,Q值分別為2500及2100。 激發─探測實驗觀察到元件的開關速度相較於奈米矽晶之載子生命周期已有近十倍的提升,佐證元件的製作對其速度提升有所助益,如何再調整材料的成長來增快開關的速度,將是一大挑戰。

英文摘要

We successfully fabricated an all-optical switch using a Si nanocrystal microdisk resonator and we used the tapered fiber coupling method for measurement. The transmission spectrum is measured with a Super Luminescent Diode whose center wavelength is 1541nm. This diode can be used to verify the perfection of microdisk resonators fabrication and show the characteristic modal structure of whispering-gallery modes. Furthermore, we combined a pulse generator and a blue laser as a 405nm pulse laser whose pulse width and frequency can be adjusted. Then we used it in the pump-probe measurement and observed the refractive index variation that caused by the pumped carriers under short-time scale. The refractive index variation causes the wavelength shift of WGMs. In the summary, we discussed the appropriateness of this material based on our measured results. First we deposited Si-rich oxide by plasma enhanced chemical vapor deposition (PECVD). Then we used the 1200ᵒC post-annealing process to form the Si nanocrystals thin film. Subsequently, we used standard lithography to transform our patterns onto the nanocrystals thin film and dry etched the underlying Si substrate by SF6 . Finally, we successfully fabricated a 20μm microdisk resonator. From the transmission spectrum, we can observe first and second order radial modes. The quality factors are 2500 and 2100, respectively. The switching time of Si nanocrystal microdisk resonators is ten times better than the carrier lifetime of nanocrystal. It indicates that the fabrication of microdisk devices is helpful for improving the switching speed.

主题分类 電機資訊學院 > 電子工程學研究所
工程學 > 電機工程
工程學 > 電機工程
参考文献
  1. [1] M. L. Gorodetsky and V. S. Ilchenko, “High-Q optical whispering-gallery microresonators: precession approach for spherical mode analysis and emission patterns with prism couplers,” Opt. Commun., vol. 113, no. 1–3, pp. 133–143,(1994)
    連結:
  2. [2] V. S. Ilchenko, X. S. Yao, and L. Maleki, “Pigtailing the high-Q microsphere cavity: a simple fiber coupler for optical whispering-gallery modes,” Opt. Lett., vol. 24, no. 11, pp. 723–725(1999)
    連結:
  3. [3] N. Dubreuil, J. C. Knight, D. K. Leventhal, V. Sandoghdar, J. Hare, and V.Lefèvre, “Eroded monomode optical fiber for whispering-gallery mode excitation in fused-silica microspheres,” Opt. Lett., vol. 20, no. 8, pp. 813–815(1995)
    連結:
  4. [4] Kartik Srinivasan, Oskar Painter,“Mode coupling and cavity–quantum-dot interactions in a fiber-coupled microdisk cavity” PHYSICAL REVIEW A, 75, 023814 (2007)
    連結:
  5. [5] Brent E. Little, J.-P. Laine, and Hermann A. Haus,“Analytic Theory of Coupling from Tapered Fibers and Half-Blocks into Microsphere Resonators”JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 17, NO. 4(1999)
    連結:
  6. [6] Matthew Borselli, Kartik Srinivasan, Paul E. Barclay, and Oskar Painter,“Rayleigh scattering, mode coupling, and optical loss in silicon microdisks” Applied Physics Letters 85, 3693 (2004)
    連結:
  7. [8] K. J. Vahala “Optical microcavities” Nature, vol. 424, no. 6950, pp. 839–846 (2003)
    連結:
  8. [9] T. J. Kippenberg, S. M. Spillane, D. K. Armani, and K. J. Vahala “Fabrication and coupling to planar high-Q silica disk microcavities”, Appl. Phys. Lett., vol. 83, no.4, pp. 797–799 (2003)
    連結:
  9. [10] P. E. Barclay, K. Srinivasan, O. Painter, B. Lev, and H. Mabuchi “Integration of fiber-coupled high-Q SiNx microdisk with atom chips”, Appl. Phys. Lett., vol. 89, no. 13, pp. 131108-1–131108-3 (2006)
    連結:
  10. [13]V. Zwiller, S. Fälth, J. Persson, W. Seifert, L. Samuelson, and G. Björk “Fabrication and time-resolved studies of visible microdisk lasers”, Appl. Phys.,vol. 93, no. 4, pp. 2307–2309 (2003)
    連結:
  11. [14]E. D. Haberer, R. Sharma, C. Meier, A. R. Stonas, S. Nakamura, S. P. DenBaars,and E. L. Hu “Free-standing, optically pumped, GaN/InGaN microdisk lasers fabricated by photoelectrochemical etching”, Appl. Phys. Lett., vol. 85, no. 22,pp. 5179–5181 (2004)
    連結:
  12. [15] J. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. He, D. R. Chen, and L. Yang “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator”, Nature Photon., vol. 4. no. 1, pp. 46–49 (2010)
    連結:
  13. [16]W. Kim, Ş. K. Özdemir, J. Zhu, L. He, and L. Yang “Demonstration of mode splitting in an optical microcavity in aqueous environment”, Appl. Phys. Lett., vol. 97, no. 7, pp. 071111-1–0711113 (2010)
    連結:
  14. [17] M. Gregor, C. Pyrlik, R. Henze, A. Wicht, A. Peters, and O. Benson “An alignment-free fiber-coupled microsphere resonator for gas sensing applications”, Appl. Phys. Lett., vol. 96, no. 23, pp. 231102-1–231102-3 (2010)
    連結:
  15. [18]C. H. Dong, L. He, Y. F. Xiao, V. R. Gaddam, S. K. Ozdemir, Z. F. Han, G. C.Guo, and L. Yang “Fabrication of high-Q polydimethylsiloxane optical microspheres for thermal sensing”, Appl. Phys. Lett., vol. 94, no. 23, pp. 231119-1–231119-3 (2008)
    連結:
  16. [19]V. R. Almeida, C. A. Barrios, R. R. Panepucci, and M. Lipson, “All-optical control of light on a silicon chip,” Nature, vol. 431, no. 7012, pp. 1081–1084,(2004).
    連結:
  17. [20]V. Van, T. A. Ibrahim, K. Ritter, P. P. Absil, F. G. Johnson, R. Grover, J. Goldhar, and P.-T. Ho, “All-optical nonlinear switching in GaAs-AlGaAs microring resonators,” IEEE Photon. Technol. Lett., vol. 14, no. 1, pp. 74–76 (2002).
    連結:
  18. [21]T. A. Ibrahim, V. Van, and P.-T. Ho, “All-optical time-division demultiplexing and spatial pulse routing with a GaAs/AlGaAs microring resonator,” Opt. Lett.,vol. 27, no. 10, pp. 803–805(2002).
    連結:
  19. [23] Canham, L. T. “Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers”, Applied Physics Letters 57.10 (1990): 1046-1048.
    連結:
  20. [24] Filonov A. B., Ossicini S., Bassani F., and Arnaud d'Avitaya F. ” Effect of oxygen on the optical properties of small silicon pyramidal clusters”, Phys. Rev. B 65, 195317 (2002)
    連結:
  21. [25] Wolkin M. V., Jorne J., Fauchet P. M., Allan G., and Delerue c. ” Electronic States and Luminescence in Porous Silicon Quantum Dots: The Role of Oxygen”, Phys. Rev. Lett. 82,197 (1999)
    連結:
  22. [26] Zhou F., and Head J. D. ” Role of Si=O in the Photoluminescence of Porous Silicon”, J. Phys. Chem. B 104,9981 (2000)
    連結:
  23. [27] Baierle R.J., Caldas M.J., Molinari E., and Ossicini S. ”Optical emission from small Si particles”, Solid State Communications 102,545 (1997)
    連結:
  24. [28] Puzder A., Williamson A.J., Grossman J.C., and Galli G. ”Surface Chemistry of Silicon Nanoclusters”, Phys. Rev. Lett. 88, 97401 (2002)
    連結:
  25. [29] Kobitski A. Yu, Zhuravlev K. S., Wagner H. P., and Zahn D. R. T. ” Self-trapped exciton recombination in silicon nanocrystals”, Phys. Rev. B. 63, 115423 (2001)
    連結:
  26. [30] Kanemitsu Y., Ogawa T., Shiraishi K., Takeda K. ” Visible photoluminescence from oxidized Si nanometer-sized spheres: Exciton confinement on a spherical shell”, Phys. Rev. B. 48, 4883 (1993)
    連結:
  27. [31] Klimov V. I., Schwarz Ch. J., McBranch D. W., White C. W. ” Initial carrier relaxation dynamics in ion-implanted Si nanocrystals: Femtosecond transient absorption study”, Appl. Phys. Lett. 73,18,2603 (1998)
    連結:
  28. [33] L. Brus, "Electronic wave functions in semiconductor clusters: experiment and theory," The Journal of Physical Chemistry 90, 2555-2560 (1986).
    連結:
  29. [34] O. Debieu, "Optical characterization of luminescent silicon nanocrystals embedded in glass matrices," Friedrich-Schiller-Universität Jena, Diss. (2008).
    連結:
  30. [36]S. L. Chuang, Physics of Photonic Devices, 2nd ed. Hoboken, NJ: John Wiley & Sons, (2009).
    連結:
  31. [38]T. Kipp, K. Petter, C. Heyn, D. Heitmann, and C. Schuller, “Broadband emission and low absorption in microdisks with AlGaAs quantum wells,” Appl. Phys. Lett., vol. 84, no. 9, pp. 1477–1479, Mar.(2004).
    連結:
  32. [39]H. Cao, J. Y. Xu, W. H. Xiang, Y. Ma, S. H. Chang, S. T. Ho, and G. S. Solomon,“Optically pumped InAs quantum dot microdisk lasers,” Appl. Phys. Lett., vol. 76, no. 24, pp. 3519–3521, Jun. 2000.
    連結:
  33. [40] S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan “Whispering-gallery mode microdisk lasers”, Appl. Phys. Lett., vol. 60, no. 3, 289–291 (1992)
    連結:
  34. [41] R. E. Slusher, A. F. J. Levi, U. Mohiideen, S. L. McCall, S. J. Pearton, and R. A. Logan “Threshold characteristics of semiconductor microdisk lasers”, Appl. Phys. Lett., vol. 63, no. 10, pp. 1310–1312 (1993)
    連結:
  35. [43] M. Borselli, T. J. Johnson, and O. Painter “Beyond the Rayleigh scattering limit in high-Q silicon microdisks: theory and experiment”, Opt. Express, vol. 13, no.5, pp. 1515–1530 (2005)
    連結:
  36. [45] 馬群哲,「以電漿增強式化學氣相沈積法成長奈米矽晶及其特性研究」國立台灣大學碩士論文(2014)
    連結:
  37. [46] T. E. Dimmick, G. Kakarantzas, T. A. Birks, and P. S. J. Russell, “Carbon dioxide laser fabrication of fused-fiber couplers and tapers,” Appl. Opt., vol. 38, no. 33, pp. 6845–6848,(1999).
    連結:
  38. [47] Catherine Louise Bonner “Multi-watt, diode pumped planar waveguide lasers.”,doctoral dissertation, University of Southampton, United Kingdom. (2000).
    連結:
  39. [48] Tim Creazzo, Brandon Redding, Elton Marchena, Shouyuan Shi, and Dennis W.Prather,“Free-carrier absorption modulation in silicon nanocrystal slot waveguides” Optics Lett., Vol. 35, No. 21 (2010)
    連結:
  40. [49] D. Navarro-Urrios, A. Pitanti, N. Daldosso,F. Gourbilleau,R. Rizk,G. Pucker,and L. Pavesi, “Quantification of the carrier absorption losses in Si-nanocrystal rich rib waveguides at 1.54 μm, ” Appl. Phys. Lett., 92, 051101(2008)
    連結:
  41. [50] De Boer, W. D. A. M., et al. “Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals.” Nature nanotechnology ,878-884 (2010)
    連結:
  42. [7] 林彥志,「以激發-探測法研究微碟共振腔之載子動力學」國立台灣大學博士論文(2015)。
  43. [11] M. Kuwata-Gonokami, R. H. Jordan, A. Dodabalapur, H. E. Katz, M. L.Schilling, R. E. Slusher, and S. Ozawa “Polymer microdisk and microring lasers”, Opt. Lett., vol. 20, no. 20, pp. 2093–2095 (1995)
  44. [12] U. Mohideen, W. S. Hobson, S. J. Pearton, F. Ren, and R. E. Slusher “GaAs/AlGaAs microdisk lasers”, Appl. Phys. Lett., vol. 64, no. 15, pp. 1911–1913 (1994)
  45. [22] Greg. Sun. ”Advances in Lasers and Electro Optics”, chap 13 (2010)
  46. [32] E. U. Rafailov, The Physics and Engineering of Compact Quantum Dot-based Lasers for Biophotonics (Wiley, 2014).
  47. [35] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed. New York, NY: Oxford University Press,( 2007).
  48. [37]J. M. Liu, Photonic Devices. Cambridge, UK: Cambridge University Press, (2005).
  49. [42] B. E. A. Saleh and M. C. Teich ”Fundamentals of Photonics”, Hoboken, NJ: John Wiley & Sons (1991)
  50. [44] J. T. Verdeyen, Laser electronics, 3rd ed. Englewood Cliffs, NJ: Prentice Hall(1995)