题名

5G通訊應用之40奈米CMOS混頻器及衛星應用之可調式高鏡像抑制調變器研製

并列篇名

Research of Mixer for 5G Communications in 40-nm CMOS and High Image Rejection Ratio Modulators with Tunable Mechanism for Satellite Communications

DOI

10.6342/NTU201603212

作者

林聖維

关键词

5G ; 次諧波混頻器 ; 鏡像抑制 ; 可調式 ; 衛星通訊 ; 5G ; sub-harmonic mixer ; satellite communications ; image rejection ratio (IRR) ; tunable

期刊名称

臺灣大學電信工程學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

黃天偉

内容语文

英文

中文摘要

此論文分為主要兩大設計類型,其中皆為由互補式金氧半場效電晶體製程實現,第一部份即為利用40奈米設計次諧波降頻混頻器,其中設計頻率為未來5G可行通訊頻段(38 GHz)。第二部分為高鏡像抑制調變器,利用180奈米實現可調式主動分波器之調變器應用於衛星通訊(17.5-21GHz、27.5-31GHz),現今無線通訊和網絡,更重視於高數據率傳輸及高頻譜效率,使用高階QAM的成本而提高頻譜效率,需要更高的訊雜比(SNR)與錯誤碼率性能,同時由於 Multi-gigabit無線傳輸的需求,許多研究紛紛投入寬頻毫米波(MMW) 的通訊系統,而為了達到更高的資料傳輸量則需要更多的頻寬。若欲達及上述目標,主要必須具備良好的IQ平衡,既而產生有效的鏡像抑制以利提供高訊號品質。 首先,降頻混頻器有多種混頻架構,而此次設計,使用40奈米互補式金氧半場效電晶體(CMOS)製程,採用Source-Driven之混頻架構以輸入本地震盪訊號,另外,在第一級倍頻器之輸出級加上一級放大器以利推動混頻器,而於輸出級再加上電流操縱(Current Steering)之可調增益之放大器(Variable Gain Amplifier)輸出IF訊號。本地訊號功率為9dBm,操作頻率為32GHz至40GHz及本地訊號頻率為18GHz到22GHz,此設計之混頻器提供 2~8 dB 之可調增益,在操作頻率38GHz之下,提供-5.12 dBm (OP1dB)。 另加提出以180奈米互補式金氧半場效電晶體(CMOS)製程,欲設計出寬頻18-50GHz且可調式之高鏡像抑制調變器,以往設計,多以被動電路分配相位及振幅達及高鏡像抑制效果,而在此次設計分為兩個部分,增加可調電容及可調電阻調整振幅及相位之機制,得以在特定頻率皆可維持高鏡像抑制表現,在於輸入損耗及可調線性度之權衡。第一調變器實現於17-25GHz之-6±2 dB轉換損耗、26-50GHz之-17±2 dB轉換損耗,分別於操作頻率21GHz和23GHz,提供-8.16 dBm及-9.03 dBm之輸出功率,於23GHz可達30 dB鏡像抑制。第二調變器實現於17-25GHz之-7±2 dB轉換損耗、26-50GHz之-17±2 dB轉換損耗,可於操作頻率21GHz,提供較高之輸出功率-6.51 dBm,於29GHz可達42dB高鏡像抑制

英文摘要

The thesis presents two design parts. In the first part, the down-conversion mixer is designed in 40-nm CMOS process. The frequency is at 38 GHz which is potential for 5G communication in the future. In the second part, the modulators are designed for satellite communications with active divider in 180-nm CMOS process at downlink frequencies from 17.5 to 21 GHz and uplink frequencies from 27.5 to 31 GHz. Currently, high data rate and high spectral efficiency is the main trend for wireless communication. The cost of using higher order QAM to improve spectral efficiency is that the system requires a higher signal to noise ratio (SNR) to achieve the same BER performance. Meanwhile, the demand of broad bandwidth to deliver multi-gigabit data transmission is significantly increased. There are many research papers reported about multi-gigabit data rates through multi-gigahertz channel. For high date rate, wide bandwidth is also needed. In order to achieve the goal, IQ match is the most important to deliver the high quality of high image rejection ratio (IRR) signal. First of all, there are various types of down-mixers with different driven techniques. In this design, the Source-Driven technique in 40-nm CMOS process is chosen. In addition, a buffer is designed for pushing mixer core behind the output stage of doubler. The variable gain amplifier (VGA) with the structure of current steering is added at the IF port. The proposed down-conversion mixer with IF VGA provides 2~8 dB conversion gain with acceptable tuning linearity from RF frequency of 32-40 GHz and LO frequency of 18-22 GHz. It also provides OP1dB of –5.12 dBm output power at RF frequency of 38GHz and IF frequency of 3.6 GHz under 9 dBm LO pumping power. Two 18-50 GHz IQ modulators with tunable mechanism in 180-nm CMOS process are additionally proposed. To achieve high image rejection ratio (IRR), two different active tuning circuits are proposed in this thesis, which is different from the previous passive only tuning mechanism. The measurement results of modulator1 show the average conversion gain -17±2 dB from 15 GHz to 50 GHz and especially in -7±2 dB from 17 GHz to 25 GHz. The output power of OP1dB is -8.16 dBm at 21 GHz and -9.03 dBm at 23 GHz. The measured image rejection from 15 GHz to 50 GHz is -30 dBc at 23GHz. Especially, Modulator2 provides better performances, measured conversion gain -17±2 dB from 15 GHz to 50 GHz and especially in -7±2 dB from 17 GHz to 25 GHz. The output power of OP1dB is -6.51 dBm at 21 GHz. The measured image rejection from 15 GHz to 50 GHz is -42 dBc at 29 GHz.

主题分类 電機資訊學院 > 電信工程學研究所
工程學 > 電機工程
参考文献
  1. [2] T. S. Rappaport, G. R. MacCartney, M. K. Samimi and S. Sun, "Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design", IEEE Trans. Commun.
    連結:
  2. [4] L. Sheng, J.-C. Jensen, and L.-E. Larson, “A wide-bandwidth Si/SiGe HBT direct conversion sub-harmonic mixer/ downconverter,” IEEE Journal of Solid-State Circuits, vol. 35, no. 9, pp. 1329-1337, Sep. 2000.
    連結:
  3. [5] J.-H. Tsai and T.-W. Huang, ”35-65 GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microw. Theory Tech., vol. 55, no. 10, pp. 2075-2085, Oct. 2007.
    連結:
  4. [6] P.-H. Tsai, C.-C. Kuo, J.-L. Kuo, S. Aloui, and H. Wang, "A 30–65 GHz reduced-size modulator with low LO power using sub-harmonic pumping in 90-nm CMOS technology," in Proc. RFIC Symp., Jun. 2012, pp. 491-494.
    連結:
  5. [7] B. M. Motlagh, S. E. Gunnarsson, M. Ferndahl, and H. Zirath,“Fully integrated 60-GHz single-ended resistive mixer in 90-nm CMOS technology,”IEEE Microw. Wireless Compon. Lett., vol. 16, no. 1, pp. 25–27, Jan. 2006.
    連結:
  6. [8] F. Zhang, E. Skafidas, andW. Shieh, “60GHz double-balanced up-conversion mixer on 130-nm CMOS technology,” Electron. Lett., vol. 44,no. 10, pp. 633–634, May 2008
    連結:
  7. [9] C.-H. Lai, Y. Kambayashi, and M. Fujishima, “60-GHz CMOS down-conversion mixer with slow-wave matching transmission lines,”in Asia–Pacific Microw. Conf., Nov. 2006, pp. 195–198.
    連結:
  8. [10] C.-Y. Wang and J.-H. Tsai, “A 51 to 65 GHz low-power bulk-driven mixer using 0.13 m CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 521–523, Aug. 2009.
    連結:
  9. [11] L. Wei-Tsung, et al.,“A 453-μm 53−70-GHz Ultra-Low-Power Double-Balanced Source-Driven Mixer Using 90-nm CMOS Technology,”IEEE Trans. Microwave Theory & Techniques, vol.61, no.5, pp.1903-1912, May. 2013.
    連結:
  10. [12] Tsai, Jeng Han, “Design of 40–108-GHz Low-Power and High-Speed CMOS Up-/Down-Conversion Ring Mixers for Multistandard MMW Radio Applications,” IEEE Trans. Microwave Theory & Techniques,vol.60, no.3 pp.670-678, March.2012.
    連結:
  11. [14] c. c. Kuo, Z. M. Tsai, J. H. Tsai, and H. Wang, "A 71-76 GHz CMOS variable gain amplifier using current steering technique," in IEEE Radio Freq. lntegr. Circuits Symp., 2008. pp. 609-612.
    連結:
  12. [16] Xin Cheng, Haigang Yang, Fei Liu, ―A 47-dB Linear CMOS Variable Gain Amplifier Using Current Squaring Technique‖ Circuits And Systems (APCCAS) IEEE Asia Pacific Conference,pp. 76-79,Dec. 2010
    連結:
  13. [17] B. Picinbono and P. Chevalier, "Widely linear estimation with complex data." IEEE Transactions on Signal Processing, vol. 43, no. 8, pp. 2030-2033. 1995.
    連結:
  14. [18] C.-C. Wei, H.-C. Chiu, H.-C. Hsu, W.-S. Feng and J. S. Fu, "Fully integrated 24 GHz differential active subharmonic mixer located in CMOS multi-layer Marchand baluns", IET Microw. Antennas Propag., vol. 4, no. 11, pp. 1789-1798, 2010
    連結:
  15. [19] KODKANI R.M., LARSON L.E.: ‘A 24-GHz CMOS direct conversion sub-harmonic downconverter’. IEEE RFIC Dig., 2007, pp. 485– 488
    連結:
  16. [20] Tsai, J.H., and Wang, C.C.: ‘A 25–55 GHz CMOS sub-harmonic directconversion mixer for BPSK demodulator’. 2008 Asia-Pacific Microwave Conf., Hong Kong, December 2008, pp. 1–4
    連結:
  17. [21] J.-H. Tsai, H.-Y. Yang, T.-W. Huang, and H. Wang, “A 30–100 GHz wideband sub-harmonic active mixer in 90 nm CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 554-556, Aug. 2008.
    連結:
  18. [22] H.-K. Chiou, S.-C. Kuo and H.-Y. Chung , ”14–30 GHz low-power sub-harmonic single-balanced gate-pumped mixer with transformer combiner in 0.18 μm CMOS” el,2014,vol.50, pp. 1141-1143
    連結:
  19. [23] L. Anttila, M. Vlkama, and M Renfors. 2008. "Frequency-selective I/Q mismatch calibration of wideband direct-conversion transmitters." IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, no. 4, pp. 359-363, 2008.
    連結:
  20. [24] L. Ding, Lei, Z. Ma, D. R. Morgan, M. Zierdt, and G. T. Zhou, "Compensation of frequency-dependent gain/phase imbalance in predistortion linearization systems." IEEE Transactions on Circuits and Systems I: Regular Papers vol. 55, pp. 390-397, 2008.
    連結:
  21. [25] Y.-H. Hsieh, W.-Y. Hu, S.-M. Lin, C.-L. Chen, W.-K. Li, S.-J. Chen, and D.J. Chen, "An auto-I/Q calibrated CMOS transceiver for 802.11g," IEEE J Solid-State Circuits, vol. 40, no. 11, pp. 2187-2192. Nov. 2005.
    連結:
  22. [26] B. Kang, J. Yim, T. Kim, H. Shin, S. Ko, W. Ko, I. Ryu, S.-G. Yang, W. Choo, and B.-H. Park, "An Ultra-wideband transmitter with automatic self-calibration of sideband rejection up to 9 GHz in 65nm CMOS," Int SoC Design Conf., 2010 pp. 332-335.
    連結:
  23. [27] B. Kang, J. Yim, T. Kim, H. Shin, S. Ko, W. Ko, I. Ryu, S.-G. Yang, W. Choo, and B.-H. Park, "An Ultra-wideband transmitter with automatic self-calibration of sideband rejection up to 9 GHz in 65nm CMOS," Int SoC Design Conf., 2010 pp. 332-335.
    連結:
  24. [28] Y.-C. Tsai, J.-L. Kuo, J.-H. Tsai, K.-Y. Lin, and H. Wang, "A 50-70 GHz I/Q modulator with improved sideband suppression using HPF/LPF based quadrature power splitter," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2011, pp. 1-4.
    連結:
  25. [30] L. Yu and W. M. Snelgrove, "A novel adaptive mismatch cancellation system for quadrature IF radio receivers," IEEE Trans. Circuits Syst. II: Analog Digit. Signal Process., vol. 46, no. 6, pp. 789-801, Jun. 1999.
    連結:
  26. [31] M. Valkama and M. Renfors, "Advanced DSP for I/Q imbalance compensation in a low-IF receiver," IEEE Int. Conf. Commun., vol. 2, pp. 18-22, Jun. 2000.
    連結:
  27. [32] L. Der and B. Razavi, "A 2-GHz CMOS image reject receiver with LMS calibration," IEEE J. Solid-State Circuits, vol. 38, no. 2, pp. 167-175, Feb. 2003.
    連結:
  28. [34] S. Shahramian, Y. Baeyens, and Y.-K. Chen, "A 70-100GHz direct-conversion transmitter and receiver phased array chipset in 0.18μm SiGe BiCMOS technology," in Proc. RFIC Symp., Jun. 2012, pp. 123-126.
    連結:
  29. [35] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G. J. Chern, "Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications," IEEE Trans. Microw. Theory Tech., vol. 54, no. 1, pp. 20-30, Jan. 2006.
    連結:
  30. [37] J. Kim, W. Choi, Y. Park, and Y. Kwon, “60 GHz broadband image rejection receiver using varactor tuning,” in Proc. RFIC Symp., Jun. 2010, pp. 381–384.
    連結:
  31. [38] W.-H. Lin, H.-Y. Yang, J.-H. Tsai, T.-W. Huang and H. Wang, "1024-QAM High Image Rejection E -Band Sub-Harmonic IQ Modulator and Transmitter in 65-nm CMOS Process", IEEE Trans. Microw. Theory Techn., vol. 61, no. 11, pp. 3974-3985, 2013
    連結:
  32. [39] Jen-Chieh Wu, Ting-Yueh Chin, Sheng-Fuh Chang,and Chia-Chan Chang, "2.45-GHz CMOS Reflection-Type Phase-Shifter MMICs With Minimal Loss Variation Over Quadrants of Phase-Shift Range," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 10, pp.2180-2189, Oct. 2008
    連結:
  33. [40] François Burdin, Zyad Iskandar, Florence Podevin, and Philippe Ferrari, “Design of Compact Reflection-Type Phase Shifters With High Figure-of-Merit” IEEE Transactions on Microwave Theory and Techniques, vol. 63, no. 6, pp.1883-1893,Jun. 2015.
    連結:
  34. [41] O. G. Vendik, "Insertion Loss in Reflection-Type Microwave Phase Shifter Based on Ferroelectric Tunable Capacitor", IEEE Transactions on Microwave Theory and Techniques, vol. MTT-55, no. 2, pp. 425-429, 2007
    連結:
  35. [42] R. K. Gupta, S. E. Anderson, and W. J. Getsinger, “Impedance-transforming 3-dB 90 hybrids,” IEEE Trans. Microw. Theory Techn., vol. MTT-35, no. 12, pp. 1303–1307, Dec. 1987.
    連結:
  36. [43] G. Subramanyam, V. J. Kapoor, and K. B. Bhasin, “A hybrid phase shifter circuit based on TlCaBaCuO superconducting thin films,” IEEE Trans. Microw. Theory Techn., vol. 43, no. 3, pp. 566–572, Mar. 1995.
    連結:
  37. [46] Xinbo Xiang, Johannes Sturm, Tunable Linear MOS Resistor for RF Applications, Proc. SiRF Conf., Jan. 2012.
    連結:
  38. [47] P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2th ed. New York, NY, USA: Oxford University Press, 2002.
    連結:
  39. [48] Piet Wambacq and Willy Sansen, Distortion Analysis of Analog Integrated Circuits, Dordrecht, The Netherlands: Kluwer Academic Publishers, 1998.
    連結:
  40. [49] M. Shimozawa, K. Nakajima, H. Ueda, T. Tadokoro, and N. Suematsu,“An even harmonic image rejection mixer using an eight-phase polyphase filter,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2008, pp. 1485–1488
    連結:
  41. [1] FCC International Spectrum White Paper The Mobile Broadband Spectrum Challenge: International Comparisons, 2013, [Online] Available: https://apps.fcc.gov/edocs_public/attachmatch/DOC-318485A1.pdf
  42. [3] I. Rodriguez et al., “Analysis of 38 GHz mmWave Propagation Characteristics of Urban Scenarios”, European Wireless (EW) Conference May 2015.
  43. [13] R. Michaelsen, T. Johansen, and K. Tamborg, "Investigation of LO-leakage cancellation and DC-offset influence on flicker-noise in X-band mixers" in Proc. Eur. Microw. Conf., Oct. 2012, pp. 99-102.
  44. [15] T. B. Kumar, K. Ma, K. S. Yeo et al., “A DC to 4GHz fully differential wideband digitally controlled variable gain amplifier,” in Proceedings of the Asia-Pacific Microwave Conference (APMC’10), pp. 2295–2298, Yokohama, Japan, December 2010.
  45. [29] A. Q. kiayani, "DSP based transmitter I/Q imbalance calibration - implementation and performance measurements," M.Sc. Thesis, Tampere, University of Technology, Tampere, Finland, 2009.
  46. [33] Y.-H. Lin, J.-L. Kuo, and H.Wang, “A 60-GHz sub-harmonic IQ modulator and demodulator using drain-body feedback technique,” in Proc. Eur. Microw. Integr. Circuits Conf., Oct. 2012, pp. 491–494.
  47. [36] H.-Y. Chang, “Design of broadband highly linear IQ modulator,” IEEE Microw.Wireless Compon. Lett., vol. 18, no. 7, pp. 491–493, Jul. 2008.
  48. [44] K. H. Wee, Rahul Sarpeshkar, “An Electronically Tunable Linear or Nonlinear MOS Resistor,” IEEE Transactions on Circuits and Systems I, vol.55, No. 9, pp.2573-2583 Oct.2008.
  49. [45] A.Torralba, C. Lujan-Martinez, Roman G. Caravajal, J.Galan, Melita Pennisi, J. Ramirez-Angulo and A. Lopez- Martin, “Tunable Linear MOS Resistors Using Quasi- Floating-Gate Techniques”, IEEE Transactions on Circuits and Systems II, vol. 56 no.1, pp. 41-45, Jan. 2009.