题名

高性能高分子合成及電晶體式記憶體與電變色發光元件之應用研究

并列篇名

Preparation of High Performance Polymers for the Applications of Transistor-Type Memory and Electrofluorochromic Devices

DOI

10.6342/NTU201703861

作者

鄭舜文

关键词

連接結構效應 ; (光)電晶體式記憶體 ; 電變色發光元件 ; linkage effect ; transistive memory ; electrofluorochromic device ; phototransistor

期刊名称

臺灣大學高分子科學與工程學研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

劉貴生

内容语文

英文

中文摘要

本論文分為四個章節,第一章為總體序論,簡述高性能高分子、有機-無機複合材料及高分子複合材料記憶體元件的應用及發展。第二章中,以SiO2/Si為基底,接著以旋轉塗佈法沉積一層駐極體用來捕捉電洞與電子,駐極體分別是TPA-PIS、TPA-PES與TPA-PETS,它們擁有相同的施體與受體但不同的連接結構,探討由於結構能階等特性導致分別擁有的不同電性特徵。第三章中,藉由合成出具發光效應之高分子,第一步將其製備為電變色發光元件,探討由於不同結構導致不同的發光效應以及元件穩定性;第二步將具有發光性質的高分子製備成光電晶體式記憶體,未來亦能將其應用於紫外光感測器。第四章為結論。

英文摘要

This study has been separated into four chapters. Chapter 1 is general introduction of high performance polymer, organic-inorganic hybrid materials, and polymer hybrid memory. In chapter 2, aromatic sulfonyl-containing polyether (TPA-PES), polyester (TPA-PETS) and polyimide (TPA-PIS) have been prepared successfully for investigating the relationship between structure of these high-performance polymers with different linkage groups but the same donor and acceptor units and memory properties, and exploring the effects of linkages on memory behaviors of the obtained devices. The different linkages of the three polymers are expected to have distinct dipole moment, linkage conformation, energy band gaps and memory properties. In chapter 3, novel electrochromism (EC) and photoluminescence (PL)-active TPA-CN-CH, TPA-CN-TPE and TPA-OMe-TPE were prepared by direct polymerization. Furthermore, by introducing viologen into electrolyte as a counter EC layer for charge balance, the resulted EFC exhibited notable improvement in reducing oxidation potential and switching recovery time with enhanced fluorescent contrast ratio during pulse on/off multi-cyclic scanning. An OFET memory containing a novel organic polymer TPA-CN-TPE, in which the photo-induced charges can be successfully trapped and detrapped. The luminescent polymer emits intense green emission upon ultraviolet (UV) light excitation and serves as a trapping element of charges injected from the pentacene semiconductor layer. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

主题分类 工學院 > 高分子科學與工程學研究所
工程學 > 化學工業
参考文献
  1. Chapter 1.
    連結:
  2. 15. S. H. Hsiao, C. P. Yang and S. H. Chen, J. Polym. Sci. Part A: Polym.Chem. 2000, 38, 1551.
    連結:
  3. 17. L. Cheng and X. G. Jian, J. Appl. Polym. Sci. 2004, 92, 1516.
    連結:
  4. 18. B. M. Novak, Adv. Mater., 1993, 5, 422.
    連結:
  5. 22. H. Althues, J. Henle and S. Kaskel, Chem. Soc. Rev., 2007, 36, 1454
    連結:
  6. 23. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, T. W. Tsai and W. C. Chen, J. Mater. Chem., 2010, 20, 531.
    連結:
  7. 25. Y. Q. Rao and S. Chen, Macromolecules, 2008, 41, 4838.
    連結:
  8. 26. C. Sanchez, B. Lebeau, F. Chaput and J. P. Boilot, Adv. Mater. 2003, 15, 1969.
    連結:
  9. 27. B. Wang and L. Hu, Ceram. Int., 2006, 32, 7.
    連結:
  10. 28. Y. Q. Rao and S. Chen, Macromolecules, 2008, 41, 4838.
    連結:
  11. 29. C. M. Chang, C. L. Chang and C. C. Chang, Macromol. Mater. Eng., 2006, 291, 1521.
    連結:
  12. 31. W. Caseri, Macromol. Rapid Commun, 2000, 21, 705.
    連結:
  13. 33. C. L. Tsai and G. S. Liou, Chem. Commun., 2015, 51, 13523.
    連結:
  14. 35. T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison, D. Chernyshov, B. Batlogg, C. Kloc, Adv. Mater. 2007, 19, 2079.
    連結:
  15. 36. Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 1996, 69, 4108.
    連結:
  16. 38. Y. L. Guo, G. Yu, Y. Q. Liu, Adv. Mater. 2010, 22, 4427.
    連結:
  17. 40. M. Muccini, Nat. Mater. 2006, 5, 605.
    連結:
  18. 46. A. Facchetti, M. H. Yoon, T. J. Marks, Adv. Mater. 2005, 17, 1705.
    連結:
  19. 53. J. R. Platt, J. Chem. Phys. 1961, 34, 862
    連結:
  20. 54. V. Goulle, A. Harriman, J.-M. Lehn, J. Chem. Soc., Chem. Commun. 1993, 1034.
    連結:
  21. 56. S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert, E. Kim, Adv. Funct. Mater. 2012, 22, 3556.
    連結:
  22. 58. H. J. Yen, G. S. Liou, Chem. Commun. 2013, 49, 9797.
    連結:
  23. 59. P. Audebert, F. Miomandre, Chem. Sci. 2013, 4, 575.
    連結:
  24. 61. H. J. Yen, G. S. Liou, Chem. Commun. 2013, 49, 9797.
    連結:
  25. 62. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science, 2009, 326, 1516.
    連結:
  26. 64. K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, Adv. Mater., 2006, 18, 3179.
    連結:
  27. 67. K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, and D. Y. Kim, Adv. Funct. Mater. 2008, 18, 3678.
    連結:
  28. 72. Han, S. T. et al. Adv. Mater., 2012, 24, 3556.
    連結:
  29. 73. Zhou, Y. et al. Sci. Rep., 2013, 3, 3093.
    連結:
  30. 74. Lee, J. S. J. Mater. Chem., 2011, 21, 14097.
    連結:
  31. 76. Kim, S. J. & Lee, J. S. Nano Lett., 2010, 10, 2884.
    連結:
  32. 77. Han, S. T. et al. ACS Nano., 2014, 8, 1923.
    連結:
  33. 80. Hong, A. J. et al. ACS Nano., 2011, 5, 7812.
    連結:
  34. 81. Burkhardt, M. et al. Adv. Mater., 2010, 22, 2525.
    連結:
  35. 82. Chiu, Y. C. et al. ACS Appl. Mater. Interfaces., 2014, 6, 12780.
    連結:
  36. 83. Pan, T. M. & Yeh, W.W. Appl. Phys. Lett., 2008, 92, 173506.
    連結:
  37. 84. Gao, X. et al. Org. Electron., 2014, 15, 2486.
    連結:
  38. 86. Dutta, S. & Narayan, K. S. Adv. Mater., 2004, 16, 2151.
    連結:
  39. 89. Wang, H. et al. Org. Electron., 2011, 12, 1236.
    連結:
  40. 90. Tang, Q. X. et al. Adv. Mater., 2007, 19, 2624.
    連結:
  41. 91. Narayan, K. S. & Kumar, N. Appl. Phys. Lett., 2001, 79, 1891.
    連結:
  42. 92. Wang, L. P. et al. J. Mater. Chem. C., 2014, 2, 6484.
    連結:
  43. 93. Han, S. T. et al. J. Mater. Chem. C., 2015, 3, 3173.
    連結:
  44. 94. Guo, Y. L. et al. Adv. Mater., 2009, 21, 1954.
    連結:
  45. 1. T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison, D. Chernyshov, B. Batlogg, C. Kloc, Adv. Mater., 2007, 19, 2079.
    連結:
  46. 2. Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett., 1996, 69, 4108.
    連結:
  47. 4. Y. L. Guo, G. Yu, Y. Q. Liu, Adv. Mater., 2010, 22, 4427.
    連結:
  48. 6. M. Muccini, Nat. Mater., 2006, 5, 605.
    連結:
  49. 10. C. J. Chen, H. J. Yen, W. C. Chen, and G. S. Liou. J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 3709.
    連結:
  50. 12. Y. L. Liu, K. L. Wang, G. S. Huang, C. X. Zhu, E. S. Tok, K. G. Neoh, E. T.
    連結:
  51. Kang, Chem. Mater., 2009, 21, 3391.
    連結:
  52. Mater., 2011, 23, 341.
    連結:
  53. 1997, 9, 1299.
    連結:
  54. Chen, J. Mater. Chem., 2011, 21, 14502.
    連結:
  55. 18. L. A. Majewski, R. Schroeder, M. Grell, Adv. Mater., 2005, 17, 192.
    連結:
  56. 19. T. Kurosawa, Y. C. Lai, T. Higashihara, M. Ueda, C. L. Liu, W. C. Chen,
    連結:
  57. Macromolecules., 2012, 45, 4556.
    連結:
  58. 23. G. S. Liou, M. A. Kakimoto and Y. Imai* J. Polym. Sci. Part A: Polym. Chem., 1992, 30, 2195.
    連結:
  59. 1. J. R. Platt, J. Chem. Phys. 1961, 34, 862
    連結:
  60. 2. V. Goulle, A. Harriman, J.-M. Lehn, J. Chem. Soc., Chem. Commun. 1993, 1034.
    連結:
  61. 4. S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert, E. Kim, Adv. Funct. Mater. 2012, 22, 3556.
    連結:
  62. 6. H. J. Yen, G. S. Liou, Chem. Commun. 2013, 49, 9797.
    連結:
  63. 7. P. Audebert, F. Miomandre, Chem. Sci. 2013, 4, 575.
    連結:
  64. 9. H. J. Yen, G. S. Liou, Chem. Commun. 2013, 49, 9797.
    連結:
  65. 10. Klauk, H. Chem. Soc. Rev., 2010, 39, 2643.
    連結:
  66. 12. Chen, F. C., Chu, C. W., He, J., Yang, Y. & Lin, J. L. Appl. Phys. Lett., 2004, 85, 3295.
    連結:
  67. 13. Zilberberg, K., Meyer, J. & Riedl, T. J. Mater. Chem. C., 2013, 1, 4796.
    連結:
  68. 15. Leong, W. L. et al. J. Mater. Chem., 2011, 21, 5203.
    連結:
  69. 16. Gwinner, M. C. et al. Adv. Mater., 2012, 24, 2728.
    連結:
  70. 17. Loi, A., Manunza, I. & Bonfglio, A. Appl. Phys. Lett., 2005, 86, 103512.
    連結:
  71. 18. Yu, H., Bao, Z. A. & Oh, J. H. Adv. Funct. Mater., 2013, 23, 629.
    連結:
  72. 19. Wakayama, Y., Hayakawa, R. & Seo, H. S. Sci. Technol. Adv. Mater., 2014, 15, 024202.
    連結:
  73. 20. Han, S. T. et al. Adv. Mater., 2012, 24, 3556.
    連結:
  74. 21. Zhou, Y. et al. Sci. Rep., 2013, 3, 3093.
    連結:
  75. 22. Lee, J. S. J. Mater. Chem., 2011, 21, 14097.
    連結:
  76. 24. Kim, S. J. & Lee, J. S. Nano Lett., 2010, 10, 2884.
    連結:
  77. 25. Han, S. T. et al. ACS Nano., 2014, 8, 1923.
    連結:
  78. 28. Hong, A. J. et al. ACS Nano., 2011, 5, 7812.
    連結:
  79. 29. Burkhardt, M. et al. Adv. Mater., 2010, 22, 2525.
    連結:
  80. 31. Pan, T. M. & Yeh, W.W. Appl. Phys. Lett., 2008, 92, 173506.
    連結:
  81. 32. Gao, X. et al. Org. Electron., 2014, 15, 2486.
    連結:
  82. 34. Dutta, S. & Narayan, K. S. Adv. Mater., 2004, 16, 2151.
    連結:
  83. 37. Wang, H. et al. Org. Electron., 2011, 12, 1236.
    連結:
  84. 38. Tang, Q. X. et al. Adv. Mater., 2007, 19, 2624.
    連結:
  85. 39. Narayan, K. S. & Kumar, N. Appl. Phys. Lett., 2001, 79, 1891.
    連結:
  86. 40. Wang, L. P. et al. J. Mater. Chem. C., 2014, 2, 6484.
    連結:
  87. 41. Han, S. T. et al. J. Mater. Chem. C., 2015, 3, 3173.
    連結:
  88. 42. Guo, Y. L. et al. Adv. Mater., 2009, 21, 1954.
    連結:
  89. 44. H. J. Yen, C. J. Chen and G. S. Liou. Chem. Commun., 2013, 49, 630.
    連結:
  90. 45. C. W. Chang, G. S. Liou, and S. H. Hsiao. J. Mater. Chem., 2007, 17, 1007.
    連結:
  91. 48. X. R. Tong and S. R. Forrest, Org. Electron., 2011, 12, 1822.
    連結:
  92. 2013, 25, 4267.
    連結:
  93. 1. M. J. M. Abadie, V. Y. Voytekunas and A. L. Rusanov, Iran Polym J, 2006, 15, 65.
  94. 2. D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, Polyimides, New York: Blackie 1990.
  95. 3. M. W. Edwards and I. M Robinson, Polyimides of pyromellitic acid, US Patent 2,710,853, 1955.
  96. 4. M. Grundschober, Brit. Pat. 1190718, 1978.
  97. 5. K. L. Mittal, Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Vol. 4, CRC Press, 2007.
  98. 6. H. R. Kricheldorf, Progress in Polyimide Chemistry, Vol. 140, Springer Science & Business Media, 1999.
  99. 7. S. Mehdipour-Ataei and N. Bahri-Laleh, Iran Polym. J. 2008, 17, 95.
  100. 8. H. J. Yen and G. S. Liou, Polym. Chem. 2012, 3, 255.
  101. 9. M. H. Woodard, M. E. Rogers, D.K. Brandom, G. L. Wilkes and J. E. McGRath, Polym. Prepr, 1992, 33, 333.
  102. 10. M. H. Brink, D. K. Brandom, G. L. Wilkes and J. E. McGrath, Polymer, 1994, 35, 5018.
  103. 11. P. M. Cotts, Polyimides: Synthesis, Characterization and Properties, Vol. 1, Plenum New York, 1984.
  104. 12. (a) S. Z. D. Cheng, F. E. Arnold, A. Zhang, S. L. C. Hsu and F. W. Harris, Macromolecules, 1991, 24, 5856.
  105. 13. S. Mehdipour-Ataei and N. Bahri-Laleh, Iranian Polymer Journal, 2008, 17, 95.
  106. 14. S. H. Hsiao, C. P. Yang and K. Y. Chu, Macromolecules, 1997, 30, 165.
  107. 16. S. H. Hsiao and K. H. Lin, J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 31.
  108. 19. F. Mammeri, E. Le Bourhis, L. Rozes and C. Sanchez, J. Mater. Chem. 2005, 15, 3787.
  109. 20. C. Sanchez, G. J. de, A. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer and V. Cabuil, Chem. Mater. 2001, 13, 3061.
  110. 21. A. C. Balazs, T. Emrick and T. P. Russell, Science 2006, 314, 1107.
  111. 24. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu and W. C. Chen., Polym. Sci. Part A: Polym. Chem. 2010, 48, 1433.
  112. 30. Y. H. Chou, C. L. Tsai, W. C. Chen and G.S. Liou, Polym. Chem., 2014, 5, 6718
  113. 32. S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi and U. Paik, J. Mater. Chem., 2008, 18, 1751.
  114. 34 .D. J. Gundlach, T. N. Jackson, D. G. Schlom, S. F. Nelson, Appl. Phys. Lett. 1999, 74, 3302.
  115. 37. L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, H. E. Katz, Science 1996, 272, 1462.
  116. 39. Y. M. Sun, Y. Q. Liu, D. B. Zhu, J. Mater. Chem. 2005, 15, 53.
  117. 41. Q. D. Ling, D. J. Liaw, C. X. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, Prog. Polym. Sci. 2008, 33, 917.
  118. 42. H. E. Katz, X. M. Hong, A. Dodabalapur, R. Sarpeshkar, J. Appl. Phys. 2002, 91, 1572.
  119. 43. J. C. Hsu, W. Y. Lee, H. C. Wu, K. Sugiyama, A. Hirao, W. C. Chen, J. Mater. Chem. 2012, 22, 5820.
  120. 44. K. J. Baeg, M. Caironi, Y. Y. Noh, Adv. Mater. 2013, 25, 4210.
  121. 45. P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, Y. Y. Noh, Chem. Mater. 2011, 23, 341.
  122. 47. P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, Y. Y. Noh, Chem. Mater. 2011, 23, 341.
  123. 48. K. Muller, I. Paloumpa, K. Henkel, D. Schmeisser, J. Appl. Phys. 2005, 98.
  124. 49. J. Veres, S. Ogier, G. Lloyd, D. De Leeuw, Chem. Mater. 2004, 16, 4543.
  125. 50. M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend, Nature, 1998, 395, 257.
  126. 51. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324.
  127. 52. C. L. Liu, W. C. Chen, Polymer Chemistry 2011, 2, 2169.
  128. 55. Y. Kim, E. Kim, G. Clavier, P. Audebert, Chem. Commun. 2006, 3612.
  129. 57. Y. X. Yuan, Y. Chen, Y. C. Wang, C. Y. Su, S. M. Liang, H. Chao, L. N. Ji, Inorg. Chem. Commun. 2008, 11, 1048
  130. 60. Y. Kim, E. Kim, G. Clavier, P. Audebert, Chem. Commun. 2006, 3612.
  131. 63. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 12321.
  132. 65. W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen, S. Zhang, A. Dodabalapur, and S. G. Mhaisalkar, Adv. Mater., 2008, 20, 2325.
  133. 66. S. M. Wang, C. W. Leung, and P. K. L. Chan, Org. Electron. 2010, 11, 990.
  134. 68. K. J. Baeg, Y. Y. Noh, and D. Y. Kim, Solid-State Electron., 2009, 53, 1165.
  135. 69. J. C. Hsu, W. Y. Lee, H. C. Wu, K. Sugiyama, A. Hirao, and W. C. Chen, J. Mater. Chem., 2012, 22, 5820.
  136. 70. Y. H. Chou, H. J. Yen, C. L. Tsai, W. Y. Lee, G. S. Liou, and W. C. Chen, J. Mater. Chem. C., 2013, 1, 3235.
  137. 71. Y. L. Guo, J. Zhang, G. Yu, J. Zheng, L. Zhang, Y. Zhao, Y. G. Wen, and Y. Q. Liu, Org. Electron., 2012, 13, 1969.
  138. 75. Debucquoy, M., Rockele, M., Genoe, J., Gelinck, G. H. & Heremans, P. Org. Electron., 2009, 10, 1252.
  139. 78. Han, S. T., Zhou, Y., Xu, Z. X., Roy, V. A. L. & Hung, T. F. J. Mater. Chem., 2011, 21, 14575.
  140. 79. Zhuang, J. Q., Han, S. T., Zhou, Y. & Roy, V. A. L. J. Mater. Chem. C., 2014, 2, 4233.
  141. 85. Han, S. T., Zhou, Y., Yang, Q. D., Lee, C. S. & Roy, V. A. L. Part. Syst. Char. 2013, 30, 599.
  142. 87. Feng, C. G., Mei, T., Hu, X. A. & Pavel, N. Org. Electron. 2010, 11, 1713.
  143. 88. Hu, Y., Dong, G. F., Liu, C., Wang, L. D. & Qiu, Y. Appl. Phys. Lett., 2006, 89, 072108.
  144. 95. Zhou, Y. et al. Nat. Commun., 2014, 5, 4720.
  145. Chapter 2.
  146. 3. L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, H. E. Katz, Science., 1996, 272, 1462.
  147. 5. Y. M. Sun, Y. Q. Liu, D. B. Zhu, J. Mater. Chem., 2005, 15, 53.
  148. 7. M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend, Nature., 1998, 395, 257.
  149. 8. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev., 2007, 107, 1324.
  150. 9. C. L. Liu, W. C. Chen, Polymer Chemistry., 2011, 2, 2169.
  151. 11. C. J. Chen, Y. C. Hu, and G. S. Liou. Chem. Commun., 2013, 49, 2536.
  152. 13. P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, Y. Y. Noh, Chem.
  153. 14. Z. N. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, A. J. Lovinger, Chem. Mater.,
  154. 15. H. T. Yi, M. M. Payne, J. E. Anthony, V. Podzorov, Nat. Commun., 2012, 3.
  155. 16. S. J. Kim, J. S. Lee, Nano Letters., 2010, 10, 2884.
  156. 17. Y. C. Lai, K. Ohshimizu, W. Y. Lee, J. C. Hsu, T. Higashihara, M. Ueda, W. C.
  157. 20. T. Kurosawa, T. Higashihara, M. Ueda, Polymer Chemistry., 2013, 4, 16.
  158. 21. K. Muller, I. Paloumpa, K. Henkel, D. Schmeisser, J. Appl. Phys., 2005, 98.
  159. 22. J. Veres, S. Ogier, G. Lloyd, D. De Leeuw, Chem. Mater., 2004, 16, 4543.
  160. Chapter 3.
  161. 3. Y. Kim, E. Kim, G. Clavier, P. Audebert, Chem. Commun. 2006, 3612.
  162. 5. Y. X. Yuan, Y. Chen, Y. C. Wang, C. Y. Su, S. M. Liang, H. Chao, L. N. Ji, Inorg. Chem. Commun. 2008, 11, 1048
  163. 8. Y. Kim, E. Kim, G. Clavier, P. Audebert, Chem. Commun. 2006, 3612.
  164. 11. Wen, Y., Liu, Y., Guo, Y., Yu, G. & Hu, W. Chem. Rev., 2011, 111, 3358.
  165. 14. Han, S. T., Zhou, Y. & Roy, V. A. Adv. Mater., 2013, 25, 5425.
  166. 23. Debucquoy, M., Rockele, M., Genoe, J., Gelinck, G. H. & Heremans, P. Org. Electron., 2009, 10, 1252.
  167. 26. Han, S. T., Zhou, Y., Xu, Z. X., Roy, V. A. L. & Hung, T. F. J. Mater. Chem., 2011, 21, 14575.
  168. 27. Zhuang, J. Q., Han, S. T., Zhou, Y. & Roy, V. A. L. J. Mater. Chem. C., 2014, 2, 4233.
  169. 30. Chiu, Y. C. et al. ACS Appl. Mater. Interfaces., 2014, 6, 12780.
  170. 33. Han, S. T., Zhou, Y., Yang, Q. D., Lee, C. S. & Roy, V. A. L. Part. Syst. Char., 2013, 30, 599.
  171. 35. Feng, C. G., Mei, T., Hu, X. A. & Pavel, N. Org. Electron., 2010, 11, 1713.
  172. 36. Hu, Y., Dong, G. F., Liu, C., Wang, L. D. & Qiu, Y. Appl. Phys. Lett., 2006, 89, 072108.
  173. 43. Zhou, Y. et al. Nat. Commun., 2014, 5, 4720.
  174. 46. Ben Zhong Tang, Yuning Hong, Sijie Chen and Ryan Tsz Kin Kwok. Water-soluble AIE Luminogen for Monitoring and Retardation of Amyloid Fibrillation of Insulin. US 20120172296 A1 (2012).
  175. 47. Ben Zhong Tang, Wing Yip Lam, Jianzhao Liu and Faisal Mahtab. Silica Nanoparticles with Aggregation Induced Emission Characteristics as Fluorescent Bioprobe for Intracellular Imaging and Protein Carrier. US 20130210047 A1 (2013).
  176. 49. K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, Adv. Mater.,