题名

製作週期性氧化鋅奈米柱懸架式金圓盤形雙子奈米結構應用於表面增強拉曼散射

并列篇名

Fabrication of Periodic ZnO-elevated Gold Dimer Nanostructures for Surface-enhanced Raman Spectroscopy

DOI

10.6342/NTU201703884

作者

王浚安

关键词

電漿子學 ; 氧化鋅奈米柱懸架式金圓盤形雙子 ; 表面增強拉曼散射光譜 ; 電子束微影 ; 電漿奈米共振腔效應 ; Plasmonics ; ZnO-elevated gold dimer ; Surface-enhanced Raman Spectroscopy ; Electron beam lithography ; Plasmonic nanocavity effect

期刊名称

國立臺灣大學材料科學與工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

薛承輝

内容语文

英文

中文摘要

本論文成功以電子束微影系統製作週期性氧化鋅奈米柱懸架式金圓盤形雙子奈米結構並且研究此結構於表面增強拉曼散射之應用。利用水熱法成長氧化鋅奈米柱於經電子束微影設計後的基板上,再鍍金圓盤形雙子於氧化鋅奈米柱上表面而形成此具有電漿奈米共振腔效應之結構。此外,利用金圓盤形雙子/氧化鋅奈米柱異質結構中氧化鋅促發載子傳遞增強機制來進一步提升表面增強拉曼散射。以實驗手法搭配理論模擬探討週期性氧化鋅奈米柱懸架式金圓盤形雙子奈米結構中圓盤半徑、雙子間隙距離以及奈米柱高度對暗場顯微散射光譜及表面增強拉曼散射光譜之效應。當實驗製作的奈米結構有著較大的圓盤半徑、較近的雙子間隙距離以及200奈米高的奈米柱時會產生更好的表面增強拉曼散射增益效果。在實驗製作的不同奈米柱高度奈米結構中,由於侷域表面電漿共振產生的表面增強拉曼散射光譜,其增益因子可以利用時域有限差分法進行探討。經由模擬計算而得的增益因子對奈米柱高度呈現週期性變化趨勢並且與實驗所得拉曼光譜結果相符。除此之外,利用照射紫外光而誘發氧化鋅奈米柱的光觸媒效果,便能夠有效地降解待測分子,使此表面增強拉曼散射基板具有可重複使用之功能。

英文摘要

The EBL-defined periodic ZnO-elevated gold dimer nanostructures for surface-enhanced Raman spectroscopy with strong electromagnetic field enhancement were successfully fabricated and studied in the present work. The ZnO nanorods were grown on patterned substrate through hydrothermal process and the Au dimers were deposited on the top surface of ZnO nanorods, forming suspended gold dimer providing plasmonic hot-spots with nanocavity effect. Moreover, the Au/ZnO heterostructure could further enhance SERS signals with the chemical enhancement of ZnO to charge-transfer induced surface-enhanced Raman scattering. The effects of dimer radius, gap size and ZnO nanorod height on the dark-field scattering spectra and SERS were investigated experimentally and theoretically. The performance of fabricated substrates in SERS response was enhanced with increasing dimer radius, decreasing gap size and ZnO nanorod height at 200 nm. The enhancement factor of surface-enhanced Raman spectroscopy due to the localized surface plasmon resonance with different ZnO nanorod height was also calculated using finite-element time-domain (FDTD) method. The simulated EF as the functions of ZnO nanorod height showed the periodic trend of Raman intensity which was in agreement with the SERS response in experiments. In addition, the photocatalytic properties of Au/ZnO hybrid system were exploited through the degradation of probed molecules under UV-irradiation to demonstrate a reusable SERS-active substrate.

主题分类 工學院 > 材料科學與工程學系
工程學 > 工程學總論
参考文献
  1. [1] N.A. Hatab, C.H. Hsueh, A.L. Gaddis, S.T. Retterer, J.H. Li, G. Eres, Z. Zhang, B. Gu, Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy, Nano Lett 10(12) (2010) 4952-4955.
    連結:
  2. [2] L.B. Yang, W.D. Ruan, X. Jiang, B. Zhao, W.Q. Xu, J.R. Lombardi, Contribution of ZnO to Charge-Transfer Induced Surface-Enhanced Raman Scattering in Au/ZnO/PATP Assembly, J Phys Chem C 113(1) (2009) 117-120.
    連結:
  3. [3] A.V. Zayats, I.I. Smolyaninov, Near-field photonics: surface plasmon polaritons and localized surface plasmons, J Opt a-Pure Appl Op 5(4) (2003) S16-S50.
    連結:
  4. [4] E. Hutter, J.H. Fendler, Exploitation of localized surface plasmon resonance, Adv Mater 16(19) (2004) 1685-1706.
    連結:
  5. [5] S.A. Maier, H.A. Atwater, Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures, J Appl Phys 98(1) (2005).
    連結:
  6. [6] J.M. Pitarke, V.M. Silkin, E.V. Chulkov, P.M. Echenique, Theory of surface plasmons and surface-plasmon polaritons, Rep Prog Phys 70(1) (2007) 1-87.
    連結:
  7. [7] P.L. Stiles, J.A. Dieringer, N.C. Shah, R.R. Van Duyne, Surface-Enhanced Raman Spectroscopy, Annu Rev Anal Chem 1 (2008) 601-626.
    連結:
  8. [8] M. Malmqvist, Biospecific Interaction Analysis Using Biosensor Technology, Nature 361(6408) (1993) 186-187.
    連結:
  9. [9] J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P. Van Duyne, Biosensing with plasmonic nanosensors, Nat Mater 7(6) (2008) 442-453.
    連結:
  10. [10] W. Knoll, Interfaces and thin films as seen by bound electromagnetic waves, Annu Rev Phys Chem 49 (1998) 569-638.
    連結:
  11. [11] W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, Plasmonic nanolithography, Nano Letters 4(6) (2004) 1085-1088.
    連結:
  12. [12] R. Berndt, J.K. Gimzewski, P. Johansson, Inelastic Tunneling Excitation of Tip-Induced Plasmon Modes on Noble-Metal Surfaces, Phys Rev Lett 67(27) (1991) 3796-3799.
    連結:
  13. [13] E. Betzig, J.K. Trautman, Near-Field Optics - Microscopy, Spectroscopy, and Surface Modification Beyond the Diffraction Limit, Science 257(5067) (1992) 189-195.
    連結:
  14. [14] S.M. Nie, S.R. Emery, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering, Science 275(5303) (1997) 1102-1106.
    連結:
  15. [15] H. Kim, K.M. Kosuda, R.P. Van Duyne, P.C. Stair, Resonance Raman and surface- and tip-enhanced Raman spectroscopy methods to study solid catalysts and heterogeneous catalytic reactions, Chem Soc Rev 39(12) (2010) 4820-4844.
    連結:
  16. [16] R.H. Ritchie, Plasma Losses by Fast Electrons in Thin Films, Phys Rev 106(5) (1957) 874-881.
    連結:
  17. [17] Kretschm.E, H. Raether, Radiative Decay of Non Radiative Surface Plasmons Excited by Light, Z Naturforsch Pt A A 23(12) (1968) 2135-&.
    連結:
  18. [18] K.A. Willets, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy and sensing, Annu Rev Phys Chem 58 (2007) 267-297.
    連結:
  19. [19] A.V. Zayats, I.I. Smolyaninov, A.A. Maradudin, Nano-optics of surface plasmon polaritons, Phys Rep 408(3-4) (2005) 131-314.
    連結:
  20. [20] J.J. Mock, M. Barbic, D.R. Smith, D.A. Schultz, S. Schultz, Shape effects in plasmon resonance of individual colloidal silver nanoparticles, J Chem Phys 116(15) (2002) 6755-6759.
    連結:
  21. [21] B. Nikoobakht, J.P. Wang, M.A. El-Sayed, Surface-enhanced Raman scattering of molecules adsorbed on gold nanorods: off-surface plasmon resonance condition, Chem Phys Lett 366(1-2) (2002) 17-23.
    連結:
  22. [22] J. Aizpurua, P. Hanarp, D.S. Sutherland, M. Kall, G.W. Bryant, F.J.G. de Abajo, Optical properties of gold nanorings, Phys Rev Lett 90(5) (2003).
    連結:
  23. [23] Q.M. Yu, P. Guan, D. Qin, G. Golden, P.M. Wallace, Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays, Nano Letters 8(7) (2008) 1923-1928.
    連結:
  24. [24] H.P. Liang, L.J. Wan, C.L. Bai, L. Jiang, Gold hollow nanospheres: Tunable surface plasmon resonance controlled by interior-cavity sizes, J Phys Chem B 109(16) (2005) 7795-7800.
    連結:
  25. [25] A. Kinkhabwala, Z.F. Yu, S.H. Fan, Y. Avlasevich, K. Mullen, W.E. Moerner, Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna, Nat Photonics 3(11) (2009) 654-657.
    連結:
  26. [26] D.P. Fromm, A. Sundaramurthy, P.J. Schuck, G. Kino, W.E. Moerner, Gap-dependent optical coupling of single "Bowtie" nanoantennas resonant in the visible, Nano Letters 4(5) (2004) 957-961.
    連結:
  27. [28] A.O. Pinchuk, G.C. Schatz, Nanoparticle optical properties: Far- and near-field electrodynamic coupling in a chain of silver spherical nanoparticles, Mater Sci Eng B-Adv 149(3) (2008) 251-258.
    連結:
  28. [29] J. Zuloaga, P. Nordlander, On the Energy Shift between Near-Field and Far-Field Peak Intensities in Localized Plasmon Systems, Nano Letters 11(3) (2011) 1280-1283.
    連結:
  29. [30] L.S. Jung, C.T. Campbell, T.M. Chinowsky, M.N. Mar, S.S. Yee, Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films, Langmuir 14(19) (1998) 5636-5648.
    連結:
  30. [31] A.J. Haes, R.P. Van Duyne, A nanoscale optical blosensor: Sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles, J Am Chem Soc 124(35) (2002) 10596-10604.
    連結:
  31. [32] M. Fleischmann, P.J. Hendra, A.J. Mcquillan, Raman-Spectra of Pyridine Adsorbed at a Silver Electrode, Chem Phys Lett 26(2) (1974) 163-166.
    連結:
  32. [33] B. Sharma, R.R. Frontiera, A.I. Henry, E. Ringe, R.P. Van Duyne, SERS: Materials, applications, and the future, Mater Today 15(1-2) (2012) 16-25.
    連結:
  33. [34] K. Kneipp, Y. Wang, H. Kneipp, L.T. Perelman, I. Itzkan, R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS), Phys Rev Lett 78(9) (1997) 1667-1670.
    連結:
  34. [35] A. Smekal, Zur quantentheorie der dispersion, Naturwissenschaften 11(43) (1923) 873-875.
    連結:
  35. [37] C.V. Raman, K.S. Krishnan, A new type of secondary radiation, Nature 121 (1928) 501-502.
    連結:
  36. [38] C. Kittel, Introduction to solid state physics, Wiley2005.
    連結:
  37. [39] C. Banwell, E.M. McCash, Fundamentals of molecular spectroscopy, McGraw-Hill London1983.
    連結:
  38. [40] M.G. Albrecht, J.A. Creighton, Anomalously Intense Raman-Spectra of Pyridine at a Silver Electrode, J Am Chem Soc 99(15) (1977) 5215-5217.
    連結:
  39. [41] M. Moskovits, Surface-Enhanced Spectroscopy, Rev Mod Phys 57(3) (1985) 783-826.
    連結:
  40. [43] K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering and biophysics, J Phys-Condens Mat 14(18) (2002) R597-R624.
    連結:
  41. [44] P. Etchegoin, R.C. Maher, L.F. Cohen, H. Hartigan, R.J.C. Brown, M.J.T. Milton, J.C. Gallop, New limits in ultrasensitive trace detection by surface enhanced Raman scattering (SERS), Chem Phys Lett 375(1-2) (2003) 84-90.
    連結:
  42. [45] R. Aroca, Surface-enhanced vibrational spectroscopy, John Wiley & Sons2006.
    連結:
  43. [46] A. Campion, P. Kambhampati, Surface-enhanced Raman scattering, Chem Soc Rev 27(4) (1998) 241-250.
    連結:
  44. [47] Y.F. Huang, D.Y. Wu, H.P. Zhu, L.B. Zhao, G.K. Liu, B. Ren, Z.Q. Tian, Surface-enhanced Raman spectroscopic study of p-aminothiophenol, Phys Chem Chem Phys 14(24) (2012) 8485-8497.
    連結:
  45. [48] A. Taflove, S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 2000), Google Scholar.
    連結:
  46. [49] K.S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwells Equations in Isotropic Media, Ieee T Antenn Propag Ap14(3) (1966) 302-&.
    連結:
  47. [50] R.W. Johnson, A. Hultqvist, S.F. Bent, A brief review of atomic layer deposition: from fundamentals to applications, Mater Today 17(5) (2014) 236-246.
    連結:
  48. [51] S.J. Yun, J.W. Lim, J.H. Lee, Low-temperature deposition of aluminum oxide on polyethersulfone substrate using plasma-enhanced atomic layer deposition, Electrochem Solid St 7(1) (2004) C13-C15.
    連結:
  49. [52] S.M. George, Atomic Layer Deposition: An Overview, Chem Rev 110(1) (2010) 111-131.
    連結:
  50. [53] J.S. Ponraj, G. Attolini, M. Bosi, Review on Atomic Layer Deposition and Applications of Oxide Thin Films, Crit Rev Solid State 38(3) (2013) 203-233.
    連結:
  51. [54] T.H.P. Chang, M. Mankos, K.Y. Lee, L.P. Muray, Multiple electron-beam lithography, Microelectron Eng 57-8 (2001) 117-135.
    連結:
  52. [55] M. Wang, Lithography., InTech: Open access book2010.
    連結:
  53. [56] I. Alessandri, J.R. Lombardi, Enhanced Raman Scattering with Dielectrics, Chem Rev 116(24) (2016) 14921-14981.
    連結:
  54. [57] Y.K. Mishra, S. Mohapatra, R. Singhal, D.K. Avasthi, D.C. Agarwal, S.B. Ogale, Au-ZnO: A tunable localized surface plasmonic nanocomposite, Appl Phys Lett 92(4) (2008).
    連結:
  55. [58] L.M. Chen, L.B. Luo, Z.H. Chen, M.L. Zhang, J.A. Zapien, C.S. Lee, S.T. Lee, ZnO/Au Composite Nanoarrays As Substrates for Surface-Enbanced Raman Scattering Detection, J Phys Chem C 114(1) (2010) 93-100.
    連結:
  56. [59] C.W. Cheng, B. Yan, S.M. Wong, X.L. Li, W.W. Zhou, T. Yu, Z.X. Shen, H.Y. Yu, H.J. Fan, Fabrication and SERS Performance of Silver-Nanoparticle-Decorated Si/ZnO Nanotrees in Ordered Arrays, Acs Appl Mater Inter 2(7) (2010) 1824-1828.
    連結:
  57. [60] L.L. Sun, D.X. Zhao, M. Ding, H.F. Zhao, Z.Z. Zhang, B.H. Li, D.Z. Shen, A white-emitting ZnO-Au nanocomposite and its SERS applications, Appl Surf Sci 258(20) (2012) 7813-7819.
    連結:
  58. [61] A.E. Kandjani, M. Mohammadtaheri, A. Thakkar, S.K. Bhargava, V. Bansal, Zinc oxide/silver nanoarrays as reusable SERS substrates with controllable 'hot-spots' for highly reproducible molecular sensing, J Colloid Interf Sci 436 (2014) 251-257.
    連結:
  59. [62] U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc, A comprehensive review of ZnO materials and devices, J Appl Phys 98(4) (2005).
    連結:
  60. [63] A. Tereshchenko, M. Bechelany, R. Viter, V. Khranovskyy, V. Smyntyna, N. Starodub, R. Yakimova, Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review, Sensor Actuat B-Chem 229 (2016) 664-677.
    連結:
  61. [64] Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, J Phys-Condens Mat 16(25) (2004) R829-R858.
    連結:
  62. [65] M. Yoshimura, K. Byrappa, Hydrothermal processing of materials: past, present and future, J Mater Sci 43(7) (2008) 2085-2103.
    連結:
  63. [66] K. Byrappa, M. Yoshimura, Handbook of hydrothermal technology, William Andrew2012.
    連結:
  64. [67] L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays, Angew Chem Int Edit 42(26) (2003) 3031-3034.
    連結:
  65. [68] S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: Solution growth and functional properties, Nano Res 4(11) (2011) 1013-1098.
    連結:
  66. [69] R. Zhu, W.G. Zhang, C. Li, R.S. Yang, Uniform Zinc Oxide Nanowire Arrays Grown on Nonepitaxial Surface with General Orientation Control, Nano Letters 13(11) (2013) 5171-5176.
    連結:
  67. [70] L.N. Demianets, D.V. Kostomarov, Mechanism of zinc oxide single crystal growth under hydrothermal conditions, Ann Chim-Sci Mat 26(1) (2001) 193-198.
    連結:
  68. [71] L.N. Demianets, D.V. Kostomarov, I.P. Kuz'mina, S.V. Pushko, Mechanism of growth of ZnO single crystals from hydrothermal alkali solutions, Crystallogr Rep+ 47 (2002) S86-S98.
    連結:
  69. [72] R.A. Laudise, A.A. Ballman, Hydrothermal Synthesis of Zinc Oxide and Zinc Sulfide, J Phys Chem-Us 64(5) (1960) 688-691.
    連結:
  70. [73] Y.H. Tong, Y.C. Liu, L. Dong, D.X. Zhao, J.Y. Zhang, Y.M. Lu, D.Z. Shen, X.W. Fan, Growth of ZnO nanostructures with different morphologies by using hydrothermal technique, J Phys Chem B 110(41) (2006) 20263-20267.
    連結:
  71. [74] L. Vayssieres, Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions, Adv Mater 15(5) (2003) 464-466.
    連結:
  72. [75] M. Guo, P. Diao, S.M. Cai, Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparing conditions, J Solid State Chem 178(6) (2005) 1864-1873.
    連結:
  73. [76] I. Choi, Y. Choi, Plasmonic Nanosensors: Review and Prospect, Ieee J Sel Top Quant 18(3) (2012) 1110-1121.
    連結:
  74. [77] J.A. Creighton, Surface Raman Electromagnetic Enhancement Factors for Molecules at the Surface of Small Isolated Metal Spheres - the Determination of Adsorbate Orientation from Sers Relative Intensities, Surf Sci 124(1) (1983) 209-219.
    連結:
  75. [78] M. Moskovits, J.S. Suh, Surface Selection-Rules for Surface-Enhanced Raman-Spectroscopy - Calculations and Application to the Surface-Enhanced Raman-Spectrum of Phthalazine on Silver, J Phys Chem-Us 88(23) (1984) 5526-5530.
    連結:
  76. [79] M. Osawa, N. Matsuda, K. Yoshii, I. Uchida, Charge-Transfer Resonance Raman Process in Surface-Enhanced Raman-Scattering from P-Aminothiophenol Adsorbed on Silver - Herzberg-Teller Contribution, J Phys Chem-Us 98(48) (1994) 12702-12707.
    連結:
  77. [80] J.R. Lombardi, R.L. Birke, A unified approach to surface-enhanced Raman spectroscopy, J Phys Chem C 112(14) (2008) 5605-5617.
    連結:
  78. [81] L. Shao, K.C. Woo, H.J. Chen, Z. Jin, J.F. Wang, H.Q. Lin, Angle- and Energy-Resolved Plasmon Coupling in Gold Nanorod Dimers, Acs Nano 4(6) (2010) 3053-3062.
    連結:
  79. [82] T.Y. Jeon, S.G. Park, S.Y. Lee, H.C. Jeon, S.M. Yang, Shape Control of Ag Nanostructures for Practical SERS Substrates, Acs Appl Mater Inter 5(2) (2013) 243-248.
    連結:
  80. [83] L.W. Nien, S.C. Lin, B.K. Chao, M.J. Chen, J.H. Li, C.H. Hsueh, Giant Electric Field Enhancement and Localized Surface Plasmon Resonance by Optimizing Contour Bowtie Nanoantennas, J Phys Chem C 117(47) (2013) 25004-25011.
    連結:
  81. [84] T.D. Dao, K. Chen, S. Ishii, A. Ohi, T. Nabatame, M. Kitajima, T. Nagao, Infrared Perfect Absorbers Fabricated by Colloidal Mask Etching of Al-Al2O3-Al Trilayers, Acs Photonics 2(7) (2015) 964-970.
    連結:
  82. [85] K.D. Osberg, M. Rycenga, N. Harris, A.L. Schmucker, M.R. Langille, G.C. Schatz, C.A. Mirkin, Dispersible Gold Nanorod Dimers with Sub-5 nm Gaps as Local Amplifiers for Surface-Enhanced Raman Scattering, Nano Letters 12(7) (2012) 3828-3832.
    連結:
  83. [86] K.J. Webb, J. Li, Waveguide cavity surface-enhanced Raman scattering, Phys Rev B 73(7) (2006).
    連結:
  84. [87] M. Bora, B.J. Fasenfest, E.M. Behymer, A.S.P. Chang, H.T. Nguyen, J.A. Britten, C.C. Larson, J.W. Chan, R.R. Miles, T.C. Bond, Plasmon Resonant Cavities in Vertical Nanowire Arrays, Nano Letters 10(8) (2010) 2832-2837.
    連結:
  85. [88] C.-H. Hsueh, C.-H. Lin, J.-H. Li, N.A. Hatab, B. Gu, Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures, Optics express 19(20) (2011) 19660-19667.
    連結:
  86. [89] L.W. Nien, M.H. Chien, B.K. Chao, M.J. Chen, J.H. Li, C.H. Hsueh, 3D Nanostructures of Silver Nanoparticle-Decorated Suspended Graphene for SERS Detection, J Phys Chem C 120(6) (2016) 3448-3457.
    連結:
  87. [90] H.-C. Ho, L.-W. Nien, J.-H. Li, C.-H. Hsueh, Suspended graphene with periodic dimer nanostructure on Si cavities for surface-enhanced Raman scattering applications, Appl Phys Lett 110(17) (2017) 171111.
    連結:
  88. [91] X.Y. Zhang, J. Zhao, A.V. Whitney, J.W. Elam, R.P. Van Duyne, Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection, J Am Chem Soc 128(31) (2006) 10304-10309.
    連結:
  89. [92] F. Bao, J.L. Yao, R.A. Gu, Synthesis of Magnetic Fe2O3/Au Core/Shell Nanoparticles for Bioseparation and Immunoassay Based on Surface-Enhanced Raman Spectroscopy, Langmuir 25(18) (2009) 10782-10787.
    連結:
  90. [93] Y.F. Wang, W.D. Ruan, J.H. Zhang, B. Yang, W.Q. Xu, B. Zhao, J.R. Lombardi, Direct observation of surface-enhanced Raman scattering in ZnO nanocrystals, J Raman Spectrosc 40(8) (2009) 1072-1077.
    連結:
  91. [94] L.B. Yang, X. Jiang, W.D. Ruan, B. Zhao, W.Q. Xu, J.R. Lombardi, Observation of Enhanced Raman Scattering for Molecules Adsorbed on TiO2 Nanoparticles: Charge-Transfer Contribution, J Phys Chem C 112(50) (2008) 20095-20098.
    連結:
  92. [95] G. Sinha, L.E. Depero, I. Alessandri, Recyclable SERS Substrates Based on Au-Coated ZnO Nanorods, Acs Appl Mater Inter 3(7) (2011) 2557-2563.
    連結:
  93. [96] C.Y. Huang, C.X. Xu, J.F. Lu, Z.H. Li, Z.S. Tian, 3D Ag/ZnO hybrids for sensitive surface-enhanced Raman scattering detection, Appl Surf Sci 365 (2016) 291-295.
    連結:
  94. [98] P.B. Johnson, R.W. Christy, Optical Constants of Noble Metals, Phys Rev B 6(12) (1972) 4370-4379.
    連結:
  95. [100] D.S. Kong, S.L. Yuan, Y.X. Sun, Z.Y. Yu, Self-assembled monolayer of o-aminothiophenol on Fe(110) surface: a combined study by electrochemistry, in situ STM, and molecular simulations, Surf Sci 573(2) (2004) 272-283.
    連結:
  96. [101] L.Y. Cao, P. Diao, L.M. Tong, T. Zhu, Z.F. Liu, Surface-enhanced Raman scattering of p-aminothiophenol on a Au(core)/Cu(shell) nanoparticle assembly, Chemphyschem 6(5) (2005) 913-918.
    連結:
  97. [102] Z.C. Dong, X.L. Zhang, H.Y. Gao, Y. Luo, C. Zhang, L.G. Chen, R. Zhang, X. Tao, Y. Zhang, J.L. Yang, J.G. Hou, Generation of molecular hot electroluminescence by resonant nanocavity plasmons, Nat Photonics 4(1) (2010) 50-54.
    連結:
  98. [27] G. Mie, Articles on the optical characteristics of turbid tubes, especially colloidal metal solutions., Ann Phys-Berlin 25(3) (1908) 377-445.
  99. [36] C.V. Raman, A new radiation, Indian Journal of Physics 2 (1928) 387-398.
  100. [42] A. Otto, I. Mrozek, H. Grabhorn, W. Akemann, Surface-Enhanced Raman-Scattering, J Phys-Condens Mat 4(5) (1992) 1143-1212.
  101. [97] Lumerical Solutions., 2003. http://www.lumerical.com.
  102. [99] D. Smith, E. Shiles, M. Inokuti, E. Palik, Handbook of optical constants of solids, Handbook of Optical Constants of Solids 1 (1985) 369-406.