题名

以鐠摻雜之氧化鈰為主體之材料的合成與鑑定及其在燃料電池上的應用

并列篇名

Preparation, Characterization and Application of Praseodymium-doped Ceria-based Materials in Fuel Cells

DOI

10.6342/NTU.2011.02092

作者

陳美如

关键词

固態氧化物燃料電池 ; 鐠摻雜氧化鈰 ; 複合陰極 ; CO選擇性氧化反應 ; 原位X光吸收光譜與銅鈰氧化物觸媒 ; SOFC ; Pr-doped ceria ; composite cathode ; CO PROX ; in-situ XAS and CuO/CeO2 catalyst.

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2011年

学位类别

博士

导师

鄭淑芬

内容语文

英文

中文摘要

摘要 此論文內容囊括四大部分。首先,複合陰極材料的研究結果發現, 以重量比50% La0.6Sr0.4Co0.2Fe0.8O3 (6428LSCoF) to Ce0.7Pr0.3O2-δ(30CPO) or Ce0.7Pr0.28Mg0.02O2-δ(28,2-CPMgO)的複合陰極,可有效降低陰極極化電阻,進而提升單電池效能。相較於20CGO-6428LSCoF, 30CPO-6428LSCoF複合陰極,以50% 28,2-CPMgO-6428LSCoF複合陰極組裝之單電池,可獲得開路電壓0.74V、最大電流密度1110 mA/cm2與最高功率密度297 mW/cm2之最佳單電池效能。 第二部份研究結果顯示,氧化鈰材料於還原氣氛下之電子導電特性,可藉由鐠的摻雜達到抑制的效果,抑制程度隨鐠的摻雜量增加而增加。其中,以25CPO材料於空氣、還原氣氛下,具有相當之氧離子與電子導電率,但其電子導電率卻隨時間逐漸降低。此外,引入少量鎂的共摻雜,不僅可提升CPO材料於空氣下之氧離子導電率,還可維持其於還原氣氛下電子導電率,不隨時間改變。進而發現,25,2-CPMgO材料,於空氣、還原氣氛下之氧離子、電子導電率幾近相當且不隨時間衰退。第三,藉由引入CPO材料作為陽極與電解質層間之緩衝層, 不僅可抑制因20CGO電解質電子導電特性導致開路電壓降低的現象,進而提升單電池之開路電壓,也因CPO材料之高氧離子導電率特性,降低了歐姆極化電阻,更加改善單電池效能。相較於沒有CPO緩衝層的引入,引入緩衝層的單電池具有較佳電池效能。以25,2-CPMgO作為緩衝層的單電池,具有開路電壓0.8V、最大電流密度1090 mA/cm2與最高功率密度為285 mW/cm2之單電池效能。 除此之外,開路電壓可維持至少140小時,只有3.75%的衰減。 最後,將CPO材料,作為富氫環境下CO選擇性氧化反應觸媒之載體的應用。利用原位X光吸收光譜(In-situ XAS)的鑑定技術,探討CuO/CeO2觸媒於富氫環境下CO選擇性反應條件下,反應位置與觸媒失活現象的研究與探討。CO轉換率隨反應溫度升高而增加,於140-160度時可達100% CO轉換率。反之,當反應溫度高於120度,CO2選擇率隨溫度升高而降低。此外,原位X光吸收光譜的結果顯示,當反應溫度高於120度時,氧化銅開始還原成金屬態銅。因此,金屬態銅為氫氧化成水之活性位置,而Cu2+可能會是CO氧化成CO2的活性位置。相較於氧化鈰,雖然鐠摻雜氧化鈰材料具有較高氧離子導電率,但以鐠摻雜氧化鈰作為載體支撐氧化銅之觸媒,對於富氫環境下CO選擇性氧化反應的催化活性卻是負效應。其中,以dd4-20CuCeO2-δ 觸媒可達最佳催化活性。於130度,可達95% CO轉換率與98% CO2選擇率。 關鍵字:固態氧化物燃料電池,鐠摻雜氧化鈰,複合陰極,CO選擇性氧化反應,原位X光吸收光譜與銅鈰氧化物觸媒

英文摘要

Abstract The thesis includes four parts. In the first part, optimal weight ratio of 50% of La0.6Sr0.4Co0.2Fe0.8O3 (6428LSCoF) to Ce0.7Pr0.3O2-δ(30CPO) or Ce0.7Pr0.28Mg0.02O2-δ(28,2-CPMgO) composite cathodes can effectively reduce polarization resistance and result in high cell performance of the single cells assembled with 60NiO-20CGO anode, 20CGO electrolyte and the composite cathodes. The optimal cell performance of 0.74 V, 1110 mA/cm2 and 297 mW/cm2 was obtained at 700˚C on the cell with the 50% 28,2-CPMgO-6428LSCoF composite cathode. In the second part, it was found that the degree of suppression of electronic conductivity of doped ceria material increases with the amount of Pr dopant. Of Pr doped ceria materials, 25CPO has nearly the same conductivities in air and in reducing atmosphere, but the conductivity in reducing atmosphere declines with time. It was also found that co-doping small amount of Mg in CPO not only enhances the oxide ion conductivity in air, but also retains the conductivity in reducing atmosphere with time. The nearly equal conductivities under air and reducing atmosphere could be obtained by the 2% Mg co-doped 25CPO (25,2-CPMgO) material. In the third part, the Pr doped ceria was introduced in between the anode and electrolyte as a buffer layer to impede the reduction of electrolyte during cell operation. The single cells with the buffer layers had better cell performances than that without the buffer layer. The optimal cell OCV, current density and power density of 0.8 V, 1090 mA/cm2 and 285 mW/cm2 were obtained on the cell with 25,2-CPMgO buffer layer and 50% 28,2-CPMgO-6428LSCoF composite cathode at 700˚C. Moreover, the OCV could be obtained for 140 h with only 3.75% degradation. In the last part, Pr-doped CeO2 was used as the catalyst support of preferential oxidation (PROX) of CO. The active sites and deactivation behaviors of CuO/CeO2 catalysts for the preferential oxidation (PROX) of CO in H2-rich environment were examined by in-situ X-ray absorption spectroscopy. The CO conversion increased with increasing reaction temperature, while the CO2 selectivity decreased, especially at temperatures higher than 120˚C. 100% CO conversions can be achieved over CuO/dx-CeO2 at 140-160˚C. In-situ Cu K-edge XAS revealed that CuO was reduced to metallic Cu when the reaction temperature was higher than 120˚C, accompanying with the decline in CO2 selectivity. Thus, the active site for H2 oxidation to water would be metallic Cu, and the Cu2+ might be the active species for CO oxidation of to CO2. For Pr-doped ceria supported CuO catalysts, although the Pr-doped ceria materials have higher oxide ion conductivity than CeO2, it has a negative effect on the catalytic activity of CO preferential oxidation under H2-rich atmosphere. The best catalytic activity was obtained over the dd4-20CuCeO2-δ catalyst in CO preferential oxidation under H2-rich atmosphere. The T95 was 130˚C with S95 of 98%. Keyword: SOFC, Pr-doped ceria, composite cathode, CO PROX, in-situ XAS and CuO/CeO2 catalyst.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. 3. H. Igarashi, T. Fujino and M. Watanabe, J. Electroanal. Chem., 391, 119 (1995).
    連結:
  2. 4. R.A. Lemons, J. Power Sources, 29, 251 (1990).
    連結:
  3. 7. J. B. Wang, S. Lin and T. Huang, Appl. Catal. A, 232, 107 (2002).
    連結:
  4. 9. D.H. Kim and J.E. Cha, Catal. Lett., 86, 107 (2003).
    連結:
  5. 10. W.B. Kim, T. Voitl, G.J. Rodrı´guez-Rivera, S.T. Evans and J.A. Dumesic, Angew. Chem. Int. Ed., 44, 778 (2005).
    連結:
  6. 15. B. D. Madsen and S. A. Barnett, Solid State Ionics, 176, 2545 (2005).
    連結:
  7. 16. M. D. Gross, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 154, B694 (2007).
    連結:
  8. 20. A. J. Jacobson, Chem. Mater., 22, 660 (2010).
    連結:
  9. 21. H. Inaba and H. Tagaea, Solid State Ionics, 83, 1 (1996).
    連結:
  10. 22. N. J. Kim, B. H. Kim and D. Lee, J. Power Sources, 90, 139 (2000).
    連結:
  11. 26. Y. Ji, J. Liu, T. M. He, J. X. Wang and W. H. Su, J. Alloys Compd., 389, 317 (2005).
    連結:
  12. 28. M. Mogensen, N. M. Sammes, and G. A. Tompsett, Solid State Ionics, 129, 63 (2000).
    連結:
  13. 29. B. C. H. Steele, Solid State Ionics, 129, 95 (2000).
    連結:
  14. 30. M. Goedickemeier and L. J. Gauckler, J. Electrochem. Soc., 145, 414 (1998).
    連結:
  15. 31. A. Atkinson, Solid State Ionics, 95, 249 (1997).
    連結:
  16. 32. H. A. Harwig, J. Inorg. Gen. Chem., 444, 151 (1978).
    連結:
  17. 33. H. A. Harwig and A. G. Gerards, J. Solid State Chem., 26, 265 (1978).
    連結:
  18. 34. J. Molenda, K. Świerczek and W. Zając, J. Power Sources, 173, 657 (2007).
    連結:
  19. 35. B. A. Boukamp, Nat. Mater., 2, 294 (2003).
    連結:
  20. 37. Z. L. Zhan and S. A. Barnett, Science, 308, 844 (2005).
    連結:
  21. 38. M. D. Gross, J. M. Vohs and R. J. Gorte, Electrochem. Solid-State Lett., 10, B65 (2007).
    連結:
  22. 39. N. Q. Minh, J. Am. Ceram. Soc., 76, 563 (1993).
    連結:
  23. 43. J. Fleig, Annu. Rev. Mater. Res., 33, 361 (2003).
    連結:
  24. 44. C. R. Xia and M. L. Liu, Adv. Mater., 14, 521 (2002).
    連結:
  25. 45. C. R. Xia and M. L. Liu, Solid State Ionics, 144, 249 (2001).
    連結:
  26. 47. C. W. Sun, R. Hui and J. Roller, J. Solid State Electrochem., 14, 1125 (2010).
    連結:
  27. 48. S. C. Singhal, Solid State Ionics, 135, 305 (2000).
    連結:
  28. 49. B. C. H. Steele, Solid State Ionics, 129, 95 (2000).
    連結:
  29. 55. E.P. Murray and S.A. Barnett, Solid State Ionics, 143, 265 (2001).
    連結:
  30. 56. V. Dusastre and J. A. Kilner, Solid State ionics, 126, 163 (1999).
    連結:
  31. 57. E. Barsoukov, and J. Ross Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition, P.224, Wiley Interscience, New Jersey (2005).
    連結:
  32. 58. R. M. ormerod, Chem. Soc. Rev., 32, 17 (2003).
    連結:
  33. 59. H. Taimatsu, K. Wada and H. Kaneko, J. Am. Ceram. Soc., 75, 401 (1992).
    連結:
  34. 62. L. F. Nie, M. F. Liu, Y. J. Zhang and M. L. Liu, J. Power Sources, 195, 4704 (2010).
    連結:
  35. 65. J. D. Nicholas and S. A. Barnett, J. Electrochem. Soc., 157, B536 (2010).
    連結:
  36. 69. J. Larminie, A.L. Dicks, Fuel Cell Systems Explained, Wiley, New York, p251 (2003).
    連結:
  37. 72. J.B. Wang, S. Lin, T. Huang, Appl. Catal. A 232 (2002) 107-120.
    連結:
  38. 74. D.H. Kim, J.E. Cha, Catal. Lett. 86 (2003) 107-112.
    連結:
  39. 75. W.B. Kim, T. Voitl, G.J. Rodrı´guez-Rivera, S.T. Evans, J.A. Dumesic, Angew. Chem. Int. Ed. 44 (2005) 778-782.
    連結:
  40. 77. O. Korotkikh, R. Farrauto, Catal. Today 62 (2000) 249-254.
    連結:
  41. 78. I.H. Son, A.M. Lane, Catal. Lett. 76 (2001) 151-154.
    連結:
  42. 80. D.H. Kim, M.S. Lim, Appl. Catal. A 224 (2002) 27-38.
    連結:
  43. 83. G.K. Bethke, H.H. Kung, Appl. Catal. A 194 (2000) 43-53.
    連結:
  44. 88. Y.Z. Chen, B.J. Liaw, C.W. Huang, Appl. Catal. A, 302 (2006) 168-176
    連結:
  45. 90. G. Avgouropoulos and T. Ioannides, Appl. Catal. A, 244 (2003) 155-167.
    連結:
  46. 93. P. Shuk and M. Greenblatt, Solid State Ionics, 116, 217 (1999).
    連結:
  47. 94. L. Navarro, F. Marques and J. Frade, J. Electrochem. Soc., 144, 267 (1997).
    連結:
  48. 95. S. Lübke and H. D. Wiemhöfer, Solid State Ionics, 117, 229 (1999).
    連結:
  49. 96. Y.Z. Chen, B.J. Liaw and C.W. Huang, Appl. Catal. A, 302, 168 (2006).
    連結:
  50. 97. E. Barsoukov, and J. Ross Macdonald, Impedance Spectroscopy: Theory, Experiment, and Applications, 2nd Edition, P.7, Wiley Interscience, New Jersey (2005).
    連結:
  51. 100. J. Doe and R. Hill, Electrochem. Solid-State Lett., 8, A389 (2005).
    連結:
  52. 101. H. Ullmann, N. Trofimenko, Solid State Ionics, 119, 1 (1999).
    連結:
  53. 102. C. R. Xia and M. L. Liu, Solid State Ionics, 144, 249 (2001).
    連結:
  54. 107. E. P. Murray, M. J. Sever, S. A. Barnett, Solid State Ionics, 148, 27 (2002).
    連結:
  55. 108. H. J. Hwang, J. W. Moon, S. H. Lee, E. A. Lee, J. Power Sources, 145, 243 (2005).
    連結:
  56. 109. Y. J. Leng, S. H. Chan and Q. L. Liu, Int. J. Hydrogen Energy, 33, 3808 (2008).
    連結:
  57. 112. Y. B. Lin and S. A. Barnett, Solid State Ionics, 179, 420 (2008).
    連結:
  58. 116. P. Shuk and M. Greenblatt, Solid State Ionics, 116, 217 (1999).
    連結:
  59. 117. Z. Tianshu, P. Hing, H. Huang and J. Kilner, Solid State Ionics 148, 567, (2002).
    連結:
  60. 118. V. Dusastre and J. A. Kilner, Solid State Ionics, 126, 163 (1999).
    連結:
  61. 122. S. P. S. Badwal, Solid State Ionics, 52, 23 (1992).
    連結:
  62. 123. S. P. S. Badwal, F. T. Ciacchi, D. Milosevic, Solid State Ionics, 136-137, 91 (2000).
    連結:
  63. 124. D. L. Maricle, T. E. Swarr, S. Karavolis, Solid State Ionics, 52, 173 (1992).
    連結:
  64. 125. L. Navarro, F. Marques and J. Frade, J. Electrochem. Soc., 144, 267 (1997).
    連結:
  65. 127. S. Lübke and H. D. Wiemhöfer, Solid State Ionics, 117, 229 (1999).
    連結:
  66. 129. M. Nauer and B. C. H. Steele, J. Euro. Ceram. Soc., 12, 267 (1993).
    連結:
  67. 130. P. Shuk, M. Greenblatt, Solid State Ionics, 116, 217, (1999).
    連結:
  68. 131. W.R. Grove "On Voltaic Series and the Combination of Gases by Platinum", Philosophical Magazine and Journal of Science XIV (1839), 127-130.
    連結:
  69. 132. W.R. Grove "On a Gaseous Voltaic Battery", Philosophical Magazine and Journal of Science XXI (1842), 417-420.
    連結:
  70. 133. H. Lee, H.S. Kim, “Polymer Electrolyte Membranes for Fuel Cell“, J. Ind. Eng. Chem., 12 (2006) 175-183.
    連結:
  71. 136. H. Igarashi, T. Fujino, M. Watanabe, J. Electroanal. Chem. 391 (1995) 119-123.
    連結:
  72. 137. R.A. Lemons, J. Power Sources 29 (1990) 251-264.
    連結:
  73. 140. J.B. Wang, S. Lin, T. Huang, Appl. Catal. A 232 (2002) 107-120.
    連結:
  74. 142. D.H. Kim, J.E. Cha, Catal. Lett. 86 (2003) 107-112.
    連結:
  75. 143. W.B. Kim, T. Voitl, G.J. Rodrı´guez-Rivera, S.T. Evans, J.A. Dumesic, Angew. Chem. Int. Ed. 44 (2005) 778-782.
    連結:
  76. 145. O. Korotkikh, R. Farrauto, Catal. Today 62 (2000) 249-254.
    連結:
  77. 146. I.H. Son, A.M. Lane, Catal. Lett. 76 (2001) 151-154.
    連結:
  78. 148. D.H. Kim, M.S. Lim, Appl. Catal. A 224 (2002) 27-38.
    連結:
  79. 151. G.K. Bethke, H.H. Kung, Appl. Catal. A 194 (2000) 43-53.
    連結:
  80. 156. Y.Z. Chen, B.J. Liaw, C.W. Huang, Appl. Catal. A, 302 (2006) 168-176
    連結:
  81. 158. G. Avgouropoulos and T. Ioannides, Appl. Catal. A, 244 (2003) 155-167.
    連結:
  82. 162. D.H. Kim and J.E. Cha, Catal. Lett., 86 (2003) 107-112.
    連結:
  83. 169. Manual of X-ray Absorption Spectroscopy, National Synchrotron Radiation Research Center, Hsinchu, Taiwan (2000).
    連結:
  84. 171. J. R. Rostrup-Nielson, T. Rostrup-Nielson, Cattech, 6, 150 (2002).
    連結:
  85. 174. E. Santacesaria, S. Carra, Appl. Catal., 5, 345 (1983).
    連結:
  86. 175. R. A. Lemons, J. Power Sources, 29, 251 (1990).
    連結:
  87. 176. H. Igarashi, T. Fujino, M. Watanabe, J. Electroanal. Chem., 391, 119 (1995).
    連結:
  88. 178. J. B. Wang, S. Lin, T. Huang, Appl. Catal. A, 232, 107 (2002).
    連結:
  89. 180. D. H. Kim, J. E. Cha, Catal. Lett., 86, 107 (2003).
    連結:
  90. 182. O. Korotkikh, R. Farrauto, Catal. Today, 62, 249 (2000).
    連結:
  91. 183. I. H. Son, A. M. Lane, Catal. Lett., 76, 151 (2001).
    連結:
  92. 185. D. H. Kim, M. S. Lim, Appl. Catal. A, 224, 27 (2002).
    連結:
  93. 188. G. K. Bethke, H. H. Kung, Appl. Catal. A, 194, 43 (2000).
    連結:
  94. 199. Y. Z. Chen, B. J. Liaw, H. C. Chen, Int. J. Hydrogen Energy, 31, 427 (2006).
    連結:
  95. 200. Y. Z. Chen, B. J. Liaw, C. W. Huang, Appl. Catal. A, 302, 168 (2000).
    連結:
  96. References
  97. 1. J.R. Rostrup-Nielsen, J. Sehested and J.K. Norskov, Adv. Catal., 47, 65 (2002).
  98. 2. Q. Fu, H. Saltsburg and M. Flytzani-Stephanopoulos, Science, 301, 935 (2003).
  99. 5. G. Avgouropoulos, T. Ioannides, C. H. Papadopoulou, J. Batista, S. Hocevar and H. K. Matralis, Catal. Today, 75, 157 (2002).
  100. 6. S. H. Oh and R. M. Sinkevitch, J. Catal., 142, 254 (1993).
  101. 8. G. Sedmak, S. Hocevar and J. Levec, J. Catal., 213, 135 (2003).
  102. 11. S. D. Park, J. M. Vohs and R. J. Gorte, Nature, 404, 265 (2000).
  103. 12. S. D. Park, J. M. Vohs and R. J. Gorte, Appl. Catal. A., 200, 55 (2000).
  104. 13. H. Kim, S. D. Park, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 148, A693 (2001).
  105. 14. S. W. Zha, A. Moore, H. Abernathy and M. L. Lin, J. Electrochem. Soc., 151, A1128 (2004).
  106. 17. Z. F. Zhou, R. Kumar, S. T. Thakur, L. R. Rudnick, H. Schobert and S. N. Lvov, J. Power Sources, 171, 856 (2007).
  107. 18. 黃鎮江, 燃料電池, 全華科技圖書股份有限公司, 台北, 台灣(2003).
  108. 19. V. V. Kharton, F. M. B. Marques and A. Atkinson, Solid State Ionics, 174, 135 (2004).
  109. 23. F. Y. Wang, S. Y. Chen and S. Cheng, Electrochem. Commun., 6, 743 (2004).
  110. 24. F. Y. Wang, B. Z. Wan and S. Cheng, J. Solid State Electrochem., 9, 168 (2005).
  111. 25. F. Y. Wang, S. Y. Chen, Q. Wang, S. Yu and S. Cheng, Catalysis Today, 97, 189 (2004).
  112. 27. Y. F. Zheng, M. Zhou, L. Ge, S. J. Li, H. Chen and L. C. Guo, J. Alloys Compd., 509, 1244 (2011).
  113. 36. J. C. Ruiz-Morales, J. Canales-Vázquez, C. Savaniu, D. Marrero- López, W. Z. Zhou and J. T. Irvine, Nature, 439, 568 (2006).
  114. 40. S. Park, R. Craciun, J. M. Vohs and R. J. Gorte, J. Electrochem. Soc., 146, 3603 (1999).
  115. 41. S. W. Zha, A. Moore, H. Abernathy and M. L. Liu, J. Electrochem. Soc., 151, A1128 (2004).
  116. 42. E. P. Murray, T. Tsai and S. A. Barnett, Nature, 400, 649 (1999).
  117. 46. T. Ishihara, T. Kudo, H. Matsuda and Yusaku Takita, J. Electrochem. Soc., 142(5), 1519 (1995).
  118. 50. R. Doshi, V.L. Richards, J.D. Carter, X. Wang, M. Krumpelt, J. Electrochem. Soc., 146, 1273 (1999).
  119. 51. M. J. L. Ostergard and M. Mogensen, Electrochemica Acta, 38, 2015 (1993).
  120. 52. M. J. L. Ostergard, C. Clausen, C. Bagger and M. Mogensen, Electrochemica Acta, 40, 1971 (1995).
  121. 53. C. Jin, J. Liu, W. M. Guo and Y. H. Zhang, J. Power Sources, 183, 506 (2008).
  122. 54. X. J. Chen, Q. L. Liu, S. H. Chan, N. P. Brandon and K. A. Khor, Electrochem. Commun., 9, 767 (2007).
  123. 60. Z. G. Lu, J. Hardy, J. Templeton and J. Stevenson, J. Power Sources, 196, 39 (2011).
  124. 61. S. I. Hashimoto, Y. Fukuda, M. Kuhn, K. Sato, K. Yashiro and J. Mizusaki, Solid State Ionics, 181, 1713 (2010).
  125. 63. X. Y. Lou, S. Z. Wang, Z. Liu, L. Yang and M. L. Liu, Solid State Ionics, 180, 1285 (2009).
  126. 64. Y. Liu, S. Zha and M. L. Liu, Chem. Mater., 16, 3502 (2004).
  127. 66. L. W. Tai, M. M. Nasrallah and H. U. Anderson, J. Solid State Chem., 118, 117 (1995).
  128. 67. K. T. Lee, D. M. Bierschenk and A. Manthiram, J. Electrochem. Soc., 153, A1255 (2006).
  129. 68. H. Lee and H.S. Kim, J. Ind. Eng. Chem., 12, 175 (2006).
  130. 70. G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157-167.
  131. 71. S.H. Oh, R.M. Sinkevitch, J. Catal. 142 (1993) 254-262.
  132. 73. G. Sedmak, S. Hocevar, J. Levec, J. Catal. 213 (2003) 135-150.
  133. 76. M.J. Kahlich, A. Gasteiger, R.J. Behm, J. Catal. 171 (1997) 93-105.
  134. 79. A. Manaslip, E. Gulari, Appl. Catal. B 37 (2002) 17-25.
  135. 81. R.M. Torres Sanchez, A. Ueda, K. Tanaka, M. Haruta, J. Catal. 168 (1997) 125-127
  136. 82. M.J. Kahlich, A. Gasteiger, R.J. Behm, J. Catal. 182 (1999) 430-440.
  137. 84. R.J.H. Grisel, B.E. Nieuwenhuys, J. Catal. 199 (2001) 48-59.
  138. 85. M.M. Schubert, V. Plzak, J. Garche, R.J. Behm, Catal. Lett. 76 (2001) 143-150.
  139. 86. J.H. Chen, J.N. Lin, Y.M. Kang, W.Y. Yu, C.N. Kuo, B.Z. Wan, Appl. Catal. A, 291 (2005) 162-169
  140. 87. G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157-167.
  141. 89. A. Martínez-Arias, A.B. Hungría, G. Munuera and D. Gamarra, Appl. Catal. B, 65 (2006) 207-216
  142. 91. G. Avgouropoulos, T. Ioannides, H.K. Matralis, J. Batista and S. Hocevar, Catal. Lett., 73 (2001) 33-40.
  143. 92. M. J. Chen, S. Cheng, F. Y. Wang, J. F. Lee and Y. L. Tai, ECS Trans., 7 (1), 2245 (2007).
  144. 98. C. C. Chen, M. M. Nasrallah, and H. U. Anderson, Proceedings of the Third International Symposium on Solid Oxide Fuel Cells, edited by S. C. Singhal and H. Iwahara, 598-612, Pennington, NJ: The Electrochemical Society, (1993).
  145. 99. FCSH-100 manual, MatrialsMates, Italy, P. 6-10, (2008).
  146. 103. C. R. Xia and M. L. Liu, Adv. Mater., 14, 521 (2002).
  147. 104. T. Ishihara, T. Kudo, H. Matsuda and Yusaku Takita, J. Electrochem. Soc., 142(5), 1519 (1995).
  148. 105. S. Carter, A. Selcuk, R.J. Chater, J. Kajda, J.A. Kilner, B.C.H. Steele, Solid State Ionics, 53–56, 597 (1992).
  149. 106. H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Solid State Ionics, 132, 279 (2000).
  150. 110. C. R. Xia, W. Rauch, F. L. Chen and M. L. Liu, Solid State Ionics, 149, 11 (2002).
  151. 111. X. G. Zhang, M. Robertson, S. Yick, C. Deĉes-Petit, E. Styles, W. Qu, Y. S. Xie, R. Hui, J. Roller, O. Kesler, R. Maric, D. Ghosh, J. Power Sources, 160, 1211 (2006).
  152. 113. F. S. Baumann, J. Fleig, G. Cristiani, B. Stuhlhofer, H. U. Habermeier and J. Maier, J. Electrochem. Soc., 154(9), B931 (2007).
  153. 114. M. J. Chen, S. Cheng, F. Y. Wang, J. F. Lee and Y. L. Tai, ECS Trans., 7 (1), 2245 (2007).
  154. 115. H. Yahiro, T. Ohuchi, K. Eguchi and H. Arai, J. Mater. Sci., 23, 1036 (1988).
  155. 119. F. Y. Wang, S. Cheng, C. H. Chung and B. Z. Wan, J. Solid State Electrochem., 10, 879 (2006).
  156. 120. M. J. Chen, S. Cheng, F. Y. Wang, J. F. Lee and Y. L. Tai, ECS Trans., 7 (1), 2245 (2007).
  157. 121. A. Atkinson, V. V. Khartron and F. M. B. Marques, Solid State Ionics, 174, 135 (2004).
  158. 126. V. N. Tikhonovich, V. V. Kharton, E. N. Naumovich and A. A. Savitsky, Solid State Ionics, 106, 197 (1992).
  159. 128. V. V. Kharton, A. P. Viskup, F. M. Figueiredo, E. N. Naumovich, A. A. Yaremchenko and F. M. B. Marques, Electrochemica Acta, 46, 2879 (2001).
  160. 134. J.R. Rostrup-Nielsen, J. Sehested, J.K. Norskov, Adv. Catal. 47 (2002) 65-138.
  161. 135. Q. Fu, H. Saltsburg, M. Flytzani-Stephanopoulos, Science 301 (2003) 935-938.
  162. 138. G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157-167.
  163. 139. S.H. Oh, R.M. Sinkevitch, J. Catal. 142 (1993) 254-262.
  164. 141. G. Sedmak, S. Hocevar, J. Levec, J. Catal. 213 (2003) 135-150.
  165. 144. M.J. Kahlich, A. Gasteiger, R.J. Behm, J. Catal. 171 (1997) 93-105.
  166. 147. A. Manaslip, E. Gulari, Appl. Catal. B 37 (2002) 17-25.
  167. 149. R.M. Torres Sanchez, A. Ueda, K. Tanaka, M. Haruta, J. Catal. 168 (1997) 125-127
  168. 150. M.J. Kahlich, A. Gasteiger, R.J. Behm, J. Catal. 182 (1999) 430-440.
  169. 152. R.J.H. Grisel, B.E. Nieuwenhuys, J. Catal. 199 (2001) 48-59.
  170. 153. M.M. Schubert, V. Plzak, J. Garche, R.J. Behm, Catal. Lett. 76 (2001) 143-150.
  171. 154. J.H. Chen, J.N. Lin, Y.M. Kang, W.Y. Yu, C.N. Kuo, B.Z. Wan, Appl. Catal. A, 291 (2005) 162-169
  172. 155. G. Avgouropoulos, T. Ioannides, Ch. Papadopoulou, J. Batista, S. Hocevar, H.K. Matralis, Catal. Today 75 (2002) 157-167.
  173. 157. A. Martínez-Arias, A.B. Hungría, G. Munuera and D. Gamarra, Appl. Catal. B, 65 (2006) 207-216
  174. 159. G. Avgouropoulos, T. Ioannides, H.K. Matralis, J. Batista and S. Hocevar, Catal. Lett., 73 (2001) 33-40.
  175. 160. A. Martínez-Arias, A.B. Hungría, M. Fernández-García, J.C. Conesa and G. Munuera, J. Power Sources, 151 (2005) 32-42.
  176. 161. A. Gurbani, J.L. Ayastuy, M.P. González-Marcos, J.E. Herrero, J.M. Guil and M.A. Gutiérrez-Ortiz, Int. J. Hydrogen Energy, 34 (2009) 547-553
  177. 163. D. Garmarra, A. Martínez-Arias, J. Catal. 263 (2009) 189-195
  178. 164. D. Gamarra, C. Belver, M. Fernández-García, and Arturo Martínez-Arias, J. Am. Chem. Soc., 129 (2007) 12064-12065
  179. 165. J.E. Spainier, R.D. Robinson, F. Zhang, S. Chan and I.P. Herman, Phys. Rev. B 64 (2001) 245407
  180. 166. A. Gómez-Cortés, Y. Márquez, J. Arenas-Alatorre and G. Díaz, Catal. Today, 133-135 (2008) 743-749
  181. 167. F.Y. Wang, S. Cheng, B.Z. Wan, C.H. Chung and M.J. Chen, Ceram. Int., 34 (2008) 1989-1992
  182. 168. C.S. Polster, H. Nair, C.D. Baertsch, J. Catal. 266 (2009) 308-319.
  183. 170. M. Hatanaka, N. Takahashi, N. takahashi, T. Tanabe, Y. Nagai, A. Suda, H. Shinjoh, J. Catal. 266 (2009) 182-190.
  184. 172. J. C. Amphlett, M.J. Evans, R.A. Jones, R.F. Mann, R.D. Weir, Can. J. Chem. Eng., 59, 720 (1981).
  185. 173. J. C. Amphlett, M.J. Evans, R.F. Mann, R.D. Weir, Can. J. Chem. Eng., 63, 605, (1985).
  186. 177. G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H. K. Matralis, Catal. Today, 75, 157 (2002).
  187. 179. G. Sedmak, S. Hocevar, J. Levec, J. Catal., 213, 135 (2003).
  188. 181. M. J. Kahlich, A. Gasteiger, R. J. Behm, J. Catal., 171, 93 (1997).
  189. 184. A. Manaslip, E. Gulari, Appl. Catal. B, 37, 17 (2002).
  190. 186. R. M. Torres Sanchez, A. Ueda, K. Tanaka, M. Haruta, J. Catal., 168, 125 (1997).
  191. 187. M. J. Kahlich, A. Gasteiger, R. J. Behm, J. Catal., 182, 430 (1999).
  192. 189. R. J. H. Grisel, B. E. Nieuwenhuys, J. Catal., 199, 48 (2001).
  193. 190. M. M. Schubert, V. Plzak, J. Garche, R. J. Behm, Catal. Lett., 76, 143 (2001).
  194. 191. G. Avgouropoulos, T. Ioannides, C. Papadopoulou, J. Batista, S. Hocevar, H. Matralis, Catal. Today, 75, 157 (2002).
  195. 192. G. Avgouropoulos, T. Ioannides, M. Matralis, J. Batista, S. Hocevar, Catal. Lett., 73, 33 (2001).
  196. 193. A. Trovarelli, C. Leitenmburg, G. Dolcetti, Chemtech, 27, 32 (1997).
  197. 194. M. H. Yao, R. J. Baird, F. W. Kunz, T. E. Hoost, J. Catal., 166, 67 (1997).
  198. 195. P. J. Schmitz, R. K. Usmen, C. R. Peters, G. W. Graham, R. W. McCabe, Appl. Surf. Sci., 72, 181 (1993).
  199. 196. C. E. Hori, H. Permana, K. Y. S. Ng, A. Brenner, K. More, K. M. Rahmoeller, D. Belton, Appl. Catal. B, 16, 105 (1998).
  200. 197. P. Fornasiero, R. Dimonte, G. R. Rao, J. Kaspar, S. Meriani, A. Trovarelli, M. Graziani, J. Catal., 151, 168 (1995).
  201. 198. A. Martinez-Arias, M. Fernandez-Garcia, O. Galvez, J. M. Coronado, J. A. Anderson, J. Catal., 195, 207 (2000).
  202. 201. M. J. Chen, S. Cheng, F. Y. Wang, J. F. Lee and Y. L. Tai, ECS Trans., 7 (1), 2245 (2007).
  203. 202. S. C. Wu, Master thesis, Department of Chemistry, National Taiwan University, Taipei, Taiwan (2009).