题名

Nafion®/SBA-15質子交換複合膜之製備及其於直接甲醇燃料電池電解質之應用

并列篇名

Preparation of Nafion®/SBA-15 Composites as Proton Exchange Membranes and Their Applications in DMFC

DOI

10.6342/NTU201603298

作者

王悅筑

关键词

直接甲醇燃料電池 ; 質子交換膜 ; Nafion® ; SBA-15 ; 複合膜 ; Direct methanol fuel cell (DMFC) ; Proton exchange membrane (PEM) ; Nafion® ; SBA-15 ; composite membrane

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

鄭淑芬

内容语文

英文

中文摘要

直接甲醇燃料電池因甲醇擁有高能量密度、不易揮發的特點而可作為可攜帶式電子產品的能量來源,此種電池的操作溫度低,也可以保持其中電解質質子交換膜的含水度。甲醇燃料電池的電解質為質子交換膜,需要將質子從陽極傳到陰極,也必須具備防止甲醇穿透的能力,才不會使電池陰極被毒化造成電壓降低以及電池壽命減短。商業化的質子交換膜Nafion® 具有高穩定性及不錯的質子傳導能力,但是其甲醇穿透度也高。為了克服甲醇穿透的問題,同時保有良好的質子傳導效果,本研究以介孔SBA-15作為Nafion質子交換膜的填充材料,使用溶劑揮發法添加介孔SBA-15材料進入Nafion®,製成複合膜。SBA-15材料的模板試劑可以當作質子的固態溶劑,也可以幫助質子傳導,因此在本研究中討論加入不同形貌的SBA-15材料、有無保留SBA-15的模板試劑、將SBA-15接上幫助質子傳導的磺酸根官能基、以及使用不同的溶劑來進行溶劑揮發對複合膜表現的影響。填充材料的性質以小角度X光繞射儀、氮氣吸脫附及掃描式電子顯微鏡來鑑定,複合膜的性質則以螺旋測微器量測其厚度、測量甲醇穿透度、質子傳導率、計算選擇率以及測量全電池表現來鑑定。

英文摘要

Direct methanol fuel cell (DMFC) is considered a promising power supplier for various applications because of its high theoretical energy density of methanol, low emission, and moderate operation temperature. Generally, a high selective membrane with high proton conductivity and low methanol crossover is suitable for DMFC. Commercialized Nafion® exhibits high chemical stability and proton conductivity, but suffers high methanol crossover which leads to decrease of cell voltage and lifetime. In the present study, mesoporous SBA-15 silica was used as the additive of Nafion membrane. Mesoporous silica SBA-15 of different morphologies with and without surfactant are synthesized then imbedded into the Nafion® membrane by solvent-recasting procedure using N,N’-dimethylacetamide (DMAc) and 2-propanol (iPA) as the solvents. Pore directing agent of SBA-15, P123, can serve as nonaqueous proton transporter which may assist proton conductivity of composite membrane. The additive materials were characterized with powder-XRD, N2 sorption, and SEM. The characteristics of composite membranes prepared by solvent recasting procedure were examined with thickness from spiral micrometer, methanol permeability, proton conductivity, selectivity, and single cell performance test.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. [1] A. D. James Larminie, Fuel Cell Systems Explained, Second Edition, Wiley, 2013.
    連結:
  2. [5] L. Klebanoff, Hydrogen Storage Technology: Materials and Applications, CRC Press, 2012.
    連結:
  3. [7] A. Kraytsberg, Y. Ein-Eli, Energy & Fuels 2014, 28, 7303-7330.
    連結:
  4. [8] R. F. Service, Science 2006, 312, 35a-35a.
    連結:
  5. [10] O. A. Petrii, Journal of Solid State Electrochemistry 2008, 12, 609-642.
    連結:
  6. [13] X. Yu, S. Ye, Journal of Power Sources 2007, 172, 133-144.
    連結:
  7. [16] K. D. Kreuer, Journal of Membrane Science 2001, 185, 29-39.
    連結:
  8. [19] B. Smitha, S. Sridhar, A. A. Khan, Journal of Membrane Science 2005, 259, 10-26.
    連結:
  9. [20] M. M. Nasef, Chemical Reviews 2014, 114, 12278-12329.
    連結:
  10. [21] G. Gebel, Polymer 2000, 41, 5829-5838.
    連結:
  11. [22] J. A. Kerres, Journal of Membrane Science 2001, 185, 3-27.
    連結:
  12. [24] N. W. DeLuca, Y. A. Elabd, Journal of Polymer Science Part B: Polymer Physics 2006, 44, 2201-2225.
    連結:
  13. [34] B. P. Ladewig, R. B. Knott, D. J. Martin, J. C. Diniz da Costa, G. Q. Lu, Electrochemistry Communications 2007, 9, 781-786.
    連結:
  14. [35] C.-Y. Yen, C.-H. Lee, Y.-F. Lin, H.-L. Lin, Y.-H. Hsiao, S.-H. Liao, C.-Y. Chuang, C.-C. M. Ma, Journal of Power Sources 2007, 173, 36-44.
    連結:
  15. [37] D. Kim, M. A. Scibioh, S. Kwak, I.-H. Oh, H. Y. Ha, Electrochemistry Communications 2004, 6, 1069-1074.
    連結:
  16. [39] H.-L. Lin, S.-H. Wang, C.-K. Chiu, T. L. Yu, L.-C. Chen, C.-C. Huang, T.-H. Cheng, J.-M. Lin, Journal of Membrane Science 2010, 365, 114-122.
    連結:
  17. [43] R. Kannan, B. A. Kakade, V. K. Pillai, Angew Chem Int Ed Engl 2008, 47, 2653-2656.
    連結:
  18. [44] T. Yang, Journal of Membrane Science 2009, 342, 221-226.
    連結:
  19. [47] L. Li, J. Zhang, Y. Wang, Journal of Membrane Science 2003, 226, 159-167.
    連結:
  20. [49] Y. Woo, S. Y. Oh, Y. S. Kang, B. Jung, Journal of Membrane Science 2003, 220, 31-45.
    連結:
  21. [52] Y. Z. Fu, A. Manthiram, Journal of Power Sources 2006, 157, 222-225.
    連結:
  22. [53] H. Zhang, X. Fan, J. Zhang, Z. Zhou, Solid State Ionics 2008, 179, 1409-1412.
    連結:
  23. [54] R. K. Nagarale, G. S. Gohil, V. K. Shahi, Journal of Membrane Science 2006, 280, 389-396.
    連結:
  24. [55] N. T. Q. Chi, D. X. Luu, D. Kim, Solid State Ionics 2011, 187, 78-84.
    連結:
  25. [56] S. S. Mohtar, A. F. Ismail, T. Matsuura, Journal of Membrane Science 2011, 371, 10-19.
    連結:
  26. [67] S.-Y. Chen, L.-Y. Jang, S. Cheng, Chemistry of Materials 2004, 16, 4174-4180.
    連結:
  27. [69] C. M. Branco, S. Sharma, M. M. de Camargo Forte, R. Steinberger-Wilckens, Journal of Power Sources 2016, 316, 139-159.
    連結:
  28. [70] G. He, X. He, X. Wang, C. Chang, J. Zhao, Z. Li, H. Wu, Z. Jiang, Chem Commun (Camb) 2016, 52, 2173-2176.
    連結:
  29. [2] F. Barbir, PEM Fuel Cells Theory and Practice, Academic Press, 2013.
  30. [3] S.-W. C. Ryan O'Hayre, Whitney Colella, Fritz B. Prinz, Fuel Cell Fundamentals, Wiley, 2016.
  31. [4] M. Winter, R. J. Brodd, Chemical Reviews 2004, 104, 4245-4270.
  32. [6] A. S. Nigel Sammes, Oleksandr Vasylyev, Fuel Cell Technologies: State and Perspectives, Springer Netherlands, 2005.
  33. [9] X.-W. Liu, W.-W. Li, H.-Q. Yu, Chemical Society Reviews 2014, 43, 7718-7745.
  34. [11] C. S. Lee, S. H. Seo, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 2010, 224, 2211-2221.
  35. [12] D. Hwan Jung, C. Hyeong Lee, C. Soo Kim, D. Ryul Shin, Journal of Power Sources 1998, 71, 169-173.
  36. [14] H. Zhang, P. K. Shen, Chemical Reviews 2012, 112, 2780-2832.
  37. [15] H. Ahmad, S. K. Kamarudin, U. A. Hasran, W. R. W. Daud, International Journal of Hydrogen Energy 2010, 35, 2160-2175.
  38. [17] M. A. Hickner, H. Ghassemi, Y. S. Kim, B. R. Einsla, J. E. McGrath, Chemical Reviews 2004, 104, 4587-4612.
  39. [18] Q. Li, R. He, J. O. Jensen, N. J. Bjerrum, Chemistry of Materials 2003, 15, 4896-4915.
  40. [23] K. A. Mauritz, R. B. Moore, Chemical Reviews 2004, 104, 4535-4586.
  41. [25] P. Choi, N. H. Jalani, R. Datta, Journal of The Electrochemical Society 2005, 152, E123.
  42. [26] K.-D. Kreuer, Chemistry of Materials 1996, 8, 610-641.
  43. [27] K.-D. Kreuer, Chemistry of Materials 2014, 26, 361-380.
  44. [28] H. G. Haubold, T. Vad, H. Jungbluth, P. Hiller, Electrochimica Acta 2001, 46, 1559-1563.
  45. [29] Y. A. Elabd, E. Napadensky, J. M. Sloan, D. M. Crawford, C. W. Walker, Journal of Membrane Science 2003, 217, 227-242.
  46. [30] Y. A. Elabd, C. W. Walker, F. L. Beyer, Journal of Membrane Science 2004, 231, 181-188.
  47. [31] Z.-G. Shao, P. Joghee, I. M. Hsing, Journal of Membrane Science 2004, 229, 43-51.
  48. [32] W. Xu, T. Lu, C. Liu, W. Xing, Electrochimica Acta 2005, 50, 3280-3285.
  49. [33] H. Wang, B. A. Holmberg, L. Huang, Z. Wang, A. Mitra, J. M. Norbeck, Y. Yan, Journal of Materials Chemistry 2002, 12, 834-837.
  50. [36] R. Jiang, H. R. Kunz, J. M. Fenton, Journal of Membrane Science 2006, 272, 116-124.
  51. [38] Y. Lin, H. Li, C. Liu, W. Xing, X. Ji, Journal of Power Sources 2008, 185, 904-908.
  52. [40] F. Pereira, K. Vallé, P. Belleville, A. Morin, S. Lambert, C. Sanchez, Chemistry of Materials 2008, 20, 1710-1718.
  53. [41] Z. Chen, B. Holmberg, W. Li, X. Wang, W. Deng, R. Munoz, Y. Yan, Chemistry of Materials 2006, 18, 5669-5675.
  54. [42] H. Li, M. Ai, F. Jiang, L. Yu, H. Tu, Q. Yu, H. Wang, Journal of Power Sources 2011, 196, 4583-4587.
  55. [45] A. K. Sahu, S. D. Bhat, S. Pitchumani, P. Sridhar, V. Vimalan, C. George, N. Chandrakumar, A. K. Shukla, Journal of Membrane Science 2009, 345, 305-314.
  56. [46] S. Ren, G. Sun, C. Li, S. Song, Q. Xin, X. Yang, Journal of Power Sources 2006, 157, 724-726.
  57. [48] C. Zhao, X. Li, H. Lin, K. Shao, H. Na, Journal of Applied Polymer Science 2008, 108, 671-680.
  58. [50] Y. Yin, J. Fang, Y. Cui, K. Tanaka, H. Kita, K.-i. Okamoto, Polymer 2003, 44, 4509-4518.
  59. [51] N. Carretta, V. Tricoli, F. Picchioni, Journal of Membrane Science 2000, 166, 189-197.
  60. [57] S. Zhong, X. Cui, S. Dou, W. Liu, Journal of Power Sources 2010, 195, 3990-3995.
  61. [58] W. Xu, C. Liu, X. Xue, Y. Su, Y. Lv, W. Xing, T. Lu, Solid State Ionics 2004, 171, 121-127.
  62. [59] B. P. Tripathi, A. Saxena, V. K. Shahi, Journal of Membrane Science 2008, 318, 288-297.
  63. [60] D. Liu, L. Geng, Y. Fu, X. Dai, C. Lü, Journal of Membrane Science 2011, 366, 251-257.
  64. [61] J. Y. Ying, C. P. Mehnert, M. S. Wong, Angewandte Chemie International Edition 1999, 38, 56-77.
  65. [62] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 1992, 359, 710-712.
  66. [63] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, Journal of the American Chemical Society 1992, 114, 10834-10843.
  67. [64] F. Hoffmann, M. Cornelius, J. Morell, M. Fröba, Angewandte Chemie International Edition 2006, 45, 3216-3251.
  68. [65] D. Zhao, J. Feng, Q. Huo, N. Melosh, G. H. Fredrickson, B. F. Chmelka, G. D. Stucky, Science 1998, 279, 548-552.
  69. [66] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, Journal of the American Chemical Society 1998, 120, 6024-6036.
  70. [68] S.-Y. Chen, C.-Y. Tang, W.-T. Chuang, J.-J. Lee, Y.-L. Tsai, J. C. C. Chan, C.-Y. Lin, Y.-C. Liu, S. Cheng, Chemistry of Materials 2008, 20, 3906-3916.
  71. [71] X. H. Yan, R. Wu, J. B. Xu, Z. Luo, T. S. Zhao, Journal of Power Sources 2016, 311, 188-194.