题名

高透明性含芳香胺結構聚醯胺孔洞膜及混成材料之合成與電致變色特性之研究

并列篇名

Preparation and Electrochromic Behavior of Highly Transparent Triarylamine-based Porous Polyamide Films and Their Hybrid Materials

DOI

10.6342/NTU201704033

作者

潘博澄

关键词

聚醯胺 ; 二氧化鈦 ; 孔洞結構 ; 電致變色元件 ; 複合材料 ; polyamide ; electrochromic device ; TiO2 ; porous nanostructure ; hybrid material

期刊名称

臺灣大學高分子科學與工程學研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

劉貴生

内容语文

英文

中文摘要

本論文分成四個章節,第一章為總體序論。第二章為奈米孔洞薄膜在電致變色上的應用。第三章是利用合成新型具有醇類官能基的電致變色高分子,透過溶膠凝膠法結合有機無機材料,並探討其在電致變色上的特性。第四章節為結論。此研究兩個主題皆致力在於改善電致變色的性質,其利用原本就存在於電致變色元件中的電解質來製造奈米孔洞不僅可以使電解質有更高的功能性並且產生能夠產生較多的表面積使的電解質可以更容易滲透,並且在更短的時間之內平衡電荷以達到增進電致變色特性, 其二利用結合有機無機材料使的具有強電子接收能力的金屬氧化物直接鍵結在高分子上,透過電子接收的特性使的氧化還原能進行得更順利,不僅能降低電位同時能夠提升電致變色特性,並且在與紫精衍生物搭配的同時能夠有正向的加乘效果,在元件中有更出色的電致變色特性。

英文摘要

This study has been separated into four chapters. Chapter 1 is the general introduction. In chapter 2, the porous polyamide films were prepared by the salt and the electrochromic behaviors between dense film and porous film have been investigated. In chapter 3, the electrochromic materials (ECMs) were synthesized and hybrids electrochromic devices (ECDs) were prepared. Chapter 4 is the conclusion. The preparation and electrochromic properties of porous polyamide films were investigated. It was a novel method to prepare the porous films by blending the salt in polymer solution, and then the salt in the films would be removed. The electrolyte could have penetrateon to the film more easily through the porous structure. And it also increases the active area of electrochromic process. Because the benefits of porous structure the electrochromic properties were significantly increased. On the other hand, keeping the salt in polyamide films and then washed it by the injected electrolyte, this method could also achieve the similar enhancement of electrochormic properties. In Chapter 3, the novel electrochromic material with hydroxyl group has been successfully synthesized. TiO2 combined with electrochromic material through the sol-gel reactions. TiO2 had strong electron accept ability which promoted the electrochromic material release the electron more easily and quickly, hence the response capability could be enhanced. Arranged the HV(BF4)2 and TiO2 in groups which exhibited additive effect in the ECD. Because of the additive effect, the enhancement of electrochomic properties was better than the single material system.

主题分类 工學院 > 高分子科學與工程學研究所
工程學 > 化學工業
参考文献
  1. Chapter 1
    連結:
  2. 2. P. W. Morgan, Chemtech, 1979, 9, 316.
    連結:
  3. 4. P. M. Hergenrother, Die Angew. Markromol. Chem, 1986, 145, 323.
    連結:
  4. 11. J. Preston and W. Hofferbert, J. Polym. Sci. Polym. Symp, 1978, 65, 13.
    連結:
  5. 15. P. W. Morgan, Condensation polymers: by interfacial and solution methods, Interscience Publishers, 1965.
    連結:
  6. 19. S. H. Hsiao and C. F. Chang, Journal of Polymer Science Part A: Polymer Chemistry, 1996, 34, 1433.
    連結:
  7. 22. S. H. Hsiao and K. Y. Chu, Journal of Polymer Science Part A: Polymer Chemistry, 1997, 35, 3385.
    連結:
  8. 24. S. H. Hsiao, C. P. Yang, M. H. Chuang and H. C. Hsiao, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38, 247.
    連結:
  9. 25. M. L. Xie, Y. Oishi, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1991, 29, 55.
    連結:
  10. 27. G. S. Liou and S. H. Hsiao, Journal of Polymer Science Part A: Polymer Chemistry, 2002, 40, 1781.
    連結:
  11. 28. G. S. Liou, M. Maruyama, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1993, 31, 2499.
    連結:
  12. 30. M. DESPAS, Ann. Chimie, 1958, 13, 496
    連結:
  13. 35. J. R. Platt, J. Chem. Phys, 1961, 34, 862-863.
    連結:
  14. 37. S. K. Deb, Appl. Opt. Suppl, 1969, 3, 192
    連結:
  15. 41. C. G. Granqvist, Sol. Energ. Mat. Sol. Cells, 2000, 60, 201
    連結:
  16. 43. H. J. Yen, C. J. Chen and G. S. Liou, Adv. Funct. Mater, 2013, 23, 5307.
    連結:
  17. 46. P. S. Patil, L. D. Kadam and C. D. Lokhande, Sol. Energ. Mat. Sol. Cells, 1998, 53, 229
    連結:
  18. 48. S. Gottesfeld, J. McIntyre, G. Beni and J. Shay, Appl. Phys. Lett, 1978, 33, 208.
    連結:
  19. 51. A. K. Geim and K. S. Novoselov, Nat. Mater, 2007, 6, 183.
    連結:
  20. 52. H. Wang, Chem. Commun, 2012, 49, 9
    連結:
  21. 54. P. R. Somani, Mater. Chem. Phys, 2002, 77, 117
    連結:
  22. 55. M. Mastragostino, Applications of Electroactive Polymers; Chapman and Hall, London, 1993.
    連結:
  23. 56. S. H. Cheng, S. H. Hsiao, T. H. Su and G. S. Liou, Macromolecules, 2005, 38, 307
    連結:
  24. 60. G. S. Liou and H. Y. Lin, Macromolecules, 2009, 42, 125.
    連結:
  25. 62. S. Gubbala, J. Thangala, and M. K. Sunkara, Sol. Energ. Mat. Sol. Cells, 2007, 91, 813.
    連結:
  26. 63. C. C. Liao, F. R. Chen and J. J. Kai, Sol. Energ. Mat. Sol. Cells, 2007, 91, 1258.
    連結:
  27. 66. R. Deshpande, S. H. Lee, A. H. Mahan, P. A. Parilla, K. M. Jones, A. G. Norman, B. To, J. L. Blackburn, S. Mitra and A. C. Dillon, Solid State Ion, 2007, 178, 895.
    連結:
  28. 67. Y. Y. Song, Z. D. Gao, J. H. Wang, X. H. Xia and R. Lynch, Adv. Funct. Mater, 2011, 21, 1941.
    連結:
  29. 68. S. H. Lee, R. Deshpande, P. A. Parilla, K. M. Jones, B. To, A. H. Mahan and A. C. Dillon, Adv. Mater, 2006, 18, 763.
    連結:
  30. 76. L. Cao, M. Mou and Y. Wang, J. Mater. Chem, 2009, 19, 3412.
    連結:
  31. 78. C. Sanchez, F. Ribot and B. Lebeau, J. Mater. Chem, 1999, 35, 22
    連結:
  32. 80. M. Morita, Macromol. Chem. Phys, 1994, 195, 609.
    連結:
  33. 86. S. Bhandari, M. Deepa, A. K. Srivastava, C. Lal and R. Kant, Macromol. Rapid Commun, 2008, 29, 1959.
    連結:
  34. 87. J. Zhu, S. Wei, M. J. Alexander, T. D. Dang, T. C. Ho and Z. Guo, Adv. Funct. Mater, 2010, 20, 3076.
    連結:
  35. 88. D. M. DeLongchamp and P. T. Hammond, Chem. Mater, 2004, 16, 4799.
    連結:
  36. 89. W. Geffcken and E. Berger, German Patent, 1939, 736, 411
    連結:
  37. 90. C. B. Hurd, Chem. Rev, 1938, 22, 403
    連結:
  38. 91. Y. Chen and J. O. Iroh, Chem. Mater, 1999, 11, 1218
    連結:
  39. 92. R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc, 1950, 72, 5750
    連結:
  40. 93. C. J. Brinker, K. D. Keefer, D. W. Schaefer and C. S. Ashley, J. Non-Cryst. Solids, 1982, 48, 47
    連結:
  41. 2. C. H. LU, M. H. HON and I. C. LEU, J. Electron. Mater, 2017, 46, 2080
    連結:
  42. 8. W.L. Kwong, N. Savvides, C.C. Sorrell, Electrochim. Acta, 2012, 75, 371
    連結:
  43. 9. C. C. Chen, J Nanomater, 2013, 785023
    連結:
  44. 12. Tuchikawa S, Trivandrum, India: Reseach Signpost, 2003, 293.
    連結:
  45. 13. R. S. NICHOLSON and I. SHAIN, Anal. Chem, 1964, 36, 706
    連結:
  46. 2. P. Andersson Ersman, J. Kawahara, M. Berggren, Org. Electron, 2013, 14, 3371.
    連結:
  47. 14. M. M, G. V, P. P, S. R, S. C, Electrochimica Acta, 2015, 174, 302.
    連結:
  48. 15. J. Xue, Y. Zhu, M. Jiang, J. Su, Y. Liu, Mater. Lett, 2015, 149, 127.
    連結:
  49. 16. A. T. Mane, S. T. Navale, R. C. Pawar, C. S. Lee, V. B. Patil, Synth. Met, 2015, 199, 187.
    連結:
  50. 20. B. R. Huang, T. C. Lin, Y. M. Liu, Sol. Energy Mater. Sol. Cells, 2015, 133, 32.
    連結:
  51. 25. T. T. Huang, C. L. Tsai, S. Tateyama, T. Kaneko and G. S. Liou, Nanoscale, 2015, 8, 12793
    連結:
  52. 26. C. J. Chen, C. L. Tsai, and G. S. Liou, J. Mater. Chem. C, 2014, 2, 2842
    連結:
  53. 28. H. J. Yen and G. S. Liou, Chem. Mater, 2009, 21, 4062
    連結:
  54. 29. J. H. Wu and G. S. Liou, Adv. Funct. Mater, 2014, 24, 6422
    連結:
  55. 30. Y. Xiao, L. Chu, Y. Sanakis and P. Liu, J. Am. Chem. Soc, 2009, 131, 9931
    連結:
  56. 1. R. Hill, E. E. Walker, J. Polym. Sci, 1948, 3, 609.
  57. 3. P. E. Cassidy, Thermally STable Polymers, New York: Marcel Dekker, 1980.
  58. 5. H. H. Yang, Aromatic High-Strength Fibers, New York: John Wiley & Sons 1989.
  59. 6. W. T. Leu, Thesis for Doctor of Philosophy Department of Chemical Engineering Tatung University, 2006.
  60. 7. N. Ogata and H. Tanaka, Polymer Journal, 1971, 2, 672.
  61. 8. N. Ogata and G. Suzuki, Macromolecular Syntheses, New York: JohnWiley & Sons, 1974.
  62. 9. N. Yamazaki, F. Higashi and J. Kawabata, Journal of Polymer Science: Polymer Chemistry Edition, 1974, 12, 2149
  63. 10. N. Yamazaki, M. Matsumoto and F. Higashi, Journal of Polymer Science: Polymer Chemistry Edition, 1975, 13, 1373
  64. 12. F. Higashi, S. I. Ogata and Y. Aoki, Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20, 2081.
  65. 13. J. Preston, W. Krigbaum and R. Kotek, Journal of Polymer Science: Polymer Chemistry Edition, 1982, 20, 3241.
  66. 14. W. Krigbaum, R. Kotek, Y. Mihara and J. Preston, Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 4045.
  67. 16. J. M. García, F. C. García, F. Serna and J. L. de la Peña, Progress in Polymer Science, 2010, 35, 623-686.
  68. 17. H. Manami, M. Nakazawa, Y. Oishi, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1990, 28, 465.
  69. 18. S. H. Hsiao, C. P. Yang and J. C. Fan, Macromolecular Chemistry and Physics, 1995, 196, 3041.
  70. 20. N. Ghatge, B. Shinde and U. Mulik, Journal of Polymer Science: Polymer Chemistry Edition, 1984, 22, 3359.
  71. 21. G. Eastmond, J. Paprotny and R. Irwin, Polymer, 1999, 40, 469.
  72. 23. P. Hergenrother, K. Watson, J. Smith, J. Connell and R. Yokota, Polymer, 2002, 43, 5077.
  73. 26. J. F. Espeso, J. G. De La Campa, A. E. Lozano and J. De Abajo, Journal of Polymer Science Part A: Polymer Chemistry, 2000, 38, 1014.
  74. 29. G. S. Liou, M. Maruyama, M. A. Kakimoto and Y. Imai, Journal of Polymer Science Part A: Polymer Chemistry, 1998, 36, 2029.
  75. 31. G. CHAMPETIER, J. DESPAS, Bull. SOC. chim. France, 1955, 431.
  76. 32. M. TANIYAMA, J. chern. SOC. Japan, ind. Chem. Sect, 1953, 56, 438
  77. 33. I. HAYAS MA, J. chern. SOC. Japan, ind. Chern. Sect, 1957, 60, 646
  78. 34. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Wiley, 2008.
  79. 36. H. J. Byker, The Electrochemical Society, 1994, 94-2, 3.
  80. 38. K. Itaya, J. Appl. Phys, 1982, 53, 804
  81. 39. L. D. Burke, T. A. M. Thomey and D. P. Whelan, J. Electroanal. Chem, 1980, 107, 201.
  82. 40. D. N. Buckley, L. D. Burke, J. Chem Soc, 1975, 72, 1447.
  83. 42. H. J. Yen and G. S. Liou, Polym. Chem, 2012, 3, 255.
  84. 44. Y. W. Chuang, H. J. Yen, J. H. Wu and G. S. Liou, ACS Appl. Mater. Interfaces, 2014, 6, 3594
  85. 45. B. W. Faughnan, R. S. Crandall and P. H. Heyman, RCA Rev, 1975, 36, 177
  86. 47. P. M. S. Monk, R. J. Mortimer, D. R. Rosseinsky, VCH, Weinheim, 1995.
  87. 49. P. Monk and C. M. Man, J. Chem. Phys, 1999, 10, 101.
  88. 50. N. R. de Tacconi, K. Rajeshwar and R. O. Lezna, Chem. Mater, 2003, 15, 3046.
  89. 53. S. A. Sapp, G. A. Sotzing and J. R. Reynolds, Chem. Mater, 1998, 10, 2101.
  90. 57. E. T. Seo, R. F. Nelson, J. M. Fritsch, L. S. Marcoux, D. W. Leedy, and R. N. Adams, J. Am. Chem. Soc, 1966, 88, 3498
  91. 58. G. S. Liou, S. H. Hsiao and T. H. Su, J. Mater. Chem, 2005, 15, 1812
  92. 59. G. S. Liou, H. Y. Lin and H. J. Yen, J. Mater. Chem, 2009, 19, 7666.
  93. 61. M. Deepa, A. K. Srivastava, K. N. Sood and S. A. Agnihotry, Nanotechnology, 2006, 17, 2625.
  94. 64. S. J. Yoo, J. W. Lim, Y. E. Sung, Y. H. Jung, H. G. Choi and D. K. Kim, Appl. Phys. Lett, 2007, 90, 173126.
  95. 65. C. R. Xiong, A. E. Aliev, B. Gnade and K. J. Balkus, ACS Nano, 2008, 2, 293.
  96. 69. J. M. Wang, E. Khoo, P. S. Lee and J. Ma, J. Phys. Chem. C, 2009, 113, 9655.
  97. 70. R. S. Devan, S. Y. Gao, W. D. Ho, J. H. Lin, Y .R. Ma, P. S. Patil and Y. Liou, Appl. Phys. Lett, 2011, 98, 133117.
  98. 71. S. Y. Park, J. M. Lee, C. Noh and S. U. Son, J. Mater. Chem, 2009, 19, 7959.
  99. 72. J. M. Wang, E. Khoo, P. S. Lee and J. Ma, J. Phys. Chem. C, 2008, 112, 14306.
  100. 73. L. Ma, Y. Li, X. Yu, Q. Yang and C. H. Noh, Sol. Energ. Mat. Sol. Cells, 2008, 92, 1253.
  101. 74. S. I. Cho and S. B. Lee, Acc. Chem. Res, 2008, 41,699.
  102. 75. J. H. Ryu, D. O. Shin and K. D. Suh, J. Polym. Sci. A Polym. Chem, 2005, 43, 6562.
  103. 77. B. Wang, G. L. Wilkes, J. C. Hedrick, S. C. Liptak and J. E. McGrath, Macromolecules, 1991, 24, 3449
  104. 79. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky , Cambridge Univ. Press, Cambridge 2007 .
  105. 81. L. J. Ma , Y. X. Li , X. F. Yu , Q. B. Yang , C. H. Noh , Sol. Energ. Mat. Sol. Cells, 2008, 92, 1253.
  106. 82. M. A. G. Namboothiry, T. Zimmerman, F. M. Coldren, J. Liu,K. Kim and D. L. Carroll , Syn. Met, 2007, 157, 580.
  107. 83. Y. C. Nah, S. S. Kim, J. H. Park, H. J. Park, J. Jo and D. Y. Kim, Electrochem.Commun, 2007, 9, 1542.
  108. 84. B. N. Reddy , M. Deepa, A. G. Joshi and A. K. Srivastava, J. Phys. Chem. C, 2011 , 115 , 18354 .
  109. 85. S. Bhandari, M. Deepa, S. N. Sharma, A. G. Joshi, A. K. Srivastava and R. Kant, J. Phys. Chem. C, 2010, 114, 14606.
  110. 94. S. Xiong, S. L. Phua, B. S. Dunn, J. Ma and X. Lu, Chem. Mater, 2010, 22, 255.
  111. 95. W. J. Bae , A. R. Davis, J. Jung, W. H. Jo, K. R. Carter and E. B. Coughlin , Chem. Comm, 2011, 47, 10710.
  112. Chapter 2
  113. 1. H. S. Liu, B. C. Pan, D, C, Huang, Y. R. Kung, C. M. Leu and G. S. Liou, NPG Asia Mater, 2017, 9, e388
  114. 3. G. Cai, M. Cui, V. Kumar, P. Darmawan, J. Wang, X. Wang, A. L. S. Eh, K. Qian and P. S. Lee, Chem. Sci, 2016, 7, 1373
  115. 4. J. Zhou, S. Lin, Y. Chena, A. M. Gaskovc, Appl. Surf. Sci, 2017, 403, 274
  116. 5. F. Zheng, W. Man, M. Guo, M. Zhanga and Q. Zhen, CrystEngComm, 2015, 17, 5440
  117. 6. L. Liang, J. Zhang, Y. Zhou, J. Xie, X. Zhang, M. Guan, B. Pan and Y. Xie, Sci. Rep, 2013, 3, 1936
  118. 7. S. Poongodi, P. S. Kumar, D. Mangalaraj, N. Ponpandian , P. Meena , Y. Masuda, C. Lee, J. Alloys Compd, 2017, 719, 71
  119. 10. A. Garreau and J. L. Duvail, Adv. Optical Mater. 2014, 2, 1122
  120. 11. X. J. Lv, J. W. Sun, B. Hu1, M. Ouyang, Z. Y. Fu1, P. J. Wang, G. F. Bian and C. Zhang, Nanotechnology, 2013, 24, 265705
  121. 14. Z. Fang, H. Zhu, C. Preston, X. Han, Y. Li, S. Lee, X. Chai, G. Chen and L. Hu, J. Mater. Chem. C, 2013, 1, 6191
  122. Chapter 3
  123. 1. H. C. Moon, T. P. Lodge, C. D. Frisbie, Chem. Mater, 2015, 27, 1420
  124. 3. R. T. Wen, M. A. Arvizu, G. A. Niklasson, C. G. Granqvist, Surf. Coatings Technol, 2015, 278, 121.
  125. 4. P. Verge, P. H. Aubert, F. Vidal, L. Sauques, F. Tran-Van, S. Peralta, D. Teyssie, C. Chevrot, Chem. Mater, 2010, 22, 4539.
  126. 5. T. T. Steckler, P. Henriksson, S. Mollinger, A. Lundin, A. Salleo, M. R. Andersson, J. Am. Chem. Soc, 2014, 136, 1190.
  127. 6. T. Yasuda, Y. Shinohara, Y. Kusagaki, T. Matsuda, L. Han, T. Ishi-i, Polymer, 2015, 58, 139.
  128. 7. S. Toksabay, S. O. Hacioglu, N. A. Unlu, A. Cirpan, L. Toppare, Polymer, 2014, 55, 3093.
  129. 8. S. Bilal, S. Gul, R. Holze, A. u. H. A. Shah, Synth. Met, 2015, 206, 131.
  130. 9. G. Qu, F. Li, E. B. Berda, M. Chi, X. Liu, C. Wang, D. Chao, Polymer, 2015, 58, 60.
  131. 10. H. Wei, J. Zhu, S. Wu, S. Wei, Z. Guo, Polymer, 2013, 54, 1820.
  132. 11. J. E. Dick, A. Poirel, R. Ziessel, A. J. Bard, Electrochimica Acta, 2015, 178, 234.
  133. 12. Z. Xu, M. Wang, W. Fan, J. Zhao, H. Wang, Electrochimica Acta, 2015, 160, 271.
  134. 13. L. Zhang, Y. Wen, Y. Yao, J. Xu, X. Duan, G. Zhang, Electrochimica Acta, 2014, 116, 343
  135. 17. C. W. Kung, T. C. Wang, J. E. Mondloch, D. Fairen-Jimenez, D. M. Gardner, W. Bury, J. M. Klingsporn, J. C. Barnes, R. Van Duyne, J. F. Stoddart, M. R. Wasielewski, O. K. Farha, J. T. Hupp, Chem. Mater, 2013, 25, 5012.
  136. 18. L. Shao, J. W. Jeon, J. L. Lutkenhaus, Chem. Mater, 2012, 24, 181.
  137. 19. K. Lee, A. Mazare, P. Schmuki, Chem. Rev, 2014, 114, 9385.
  138. 21. X. Yang, L. Chi, C. Chen, X. Cui, Q. Wang, Phys. E Lowdimensional Syst. Nanostructures, 2015, 66, 120.
  139. 22. X. Fu, C. Jia, Z. Wan, X. Weng, J. Xie, L. Deng, Org. Electron, 2014, 15, 2702.
  140. 23. Y. Osman, R. Jamal, A. Rahman, F. Xu, A. Ali, T. Abdiryim, Synth. Met, 2013, 179, 54.
  141. 24. Y. H. Chou, C. L. Tsai, W. C. Chen and G. S. Liou, Polym. Chem, 2014, 5, 6718
  142. 27. H. J. Yen, K. Y. Lin and G. S. Liou, J. Mater. Chem. C, 2011, 21, 6230.
  143. 31. H. S. Liu, B. C. Pan, D, C, Huang, Y. R. Kung, C. M. Leu and G. S. Liou, NPG Asia Mater, 2017, 9, e388