参考文献
|
-
1. Amirtharajah, R. and A.P. Chandrakasan, Self-powered signal processing using vibration-based power generation. IEEE Journal of Solid-State Cirsuits, 1998. 33(5): p. 687-695.
連結:
-
2. Roundy, S., P.K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 2003. 26(11): p. 1131-1144.
連結:
-
3. Chiu, Y. and V.F.G. Tseng, A capacitive vibration-to-electricity energy converter with integrated mechanical switches. Journal of Micromechanics and Microengineering, 2008. 18(10): p. 104004.
連結:
-
4. Cheng, S., N. Wang, and D.P. Arnold, Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. Journal of Micromechanics and Microengineering, 2007. 17(11): p. 2328-2335.
連結:
-
5. Sodano, H.A., D.J. Inman, and G. Park, A Review of Power Harvesting from Vibration Using Piezoelectric Materials. The Shock and Vibration Digest, 2004. 36(3): p. 197-205.
連結:
-
6. Roundy, S., et al., Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing, 2005. 4(1): p. 28-36.
連結:
-
8. Lin, S.-C. and W.-J. Wu, Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method. Journal of Micromechanics and Microengineering, 2013. 23(12): p. 125028.
連結:
-
12. Lippmann, M., On the principle of the conservation of electricity. 1881.
連結:
-
13. Meitzler, A., et al., IEEE standard on piezoelectricity. 1988, Society.
連結:
-
14. Daniels, A., M. Zhu, and A. Tiwari, Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013. 60(12): p. 2626-2633.
連結:
-
15. Erturk, A. and D.J. Inman, Piezoelectric energy harvesting. 2011: John Wiley & Sons.
連結:
-
17. Choi, S., et al., Dielectric and pyroelectric properties in the Pb (Mg1/3Nb2/3) O3-PbTiO3 system. Ferroelectrics, 1989. 100(1): p. 29-38.
連結:
-
18. Alguero, M., et al., Processing by mechanosynthesis and properties of piezoelectric Pb (Mg 1/3 Nb 2/3) O 3–PbTiO 3 with different compositions. Acta materialia, 2006. 54(2): p. 501-511.
連結:
-
19. Kelly, J., et al., Effect of Composition on the Electromechanical Properties of (1‐x) Pb (Mg1/3Nb2/3) O3− XPbTiO3 Ceramics. Journal of the American Ceramic Society, 1997. 80(4): p. 957-964.
連結:
-
20. Singh, A.K. and D. Pandey, Evidence for M B and M C phases in the morphotropic phase boundary region of (1− x)[Pb (Mg 1/3 Nb 2/3) O 3]− x PbTiO 3: A Rietveld study. Physical Review B, 2003. 67(6): p. 064102.
連結:
-
22. Zhang, R., B. Jiang, and W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67 Pb (Mg 1/3 Nb 2/3) O 3–0.33 PbTiO 3 single crystals. Journal of Applied Physics, 2001. 90(7): p. 3471-3475.
連結:
-
23. Kim, K., et al. Finite element analysis of piezoelectric actuator with PMN–PT single crystals for nanopositioning. Current Applied Physics, 2006. 6(6): p. 1064-1067.
連結:
-
24. Jiang, X., et al. Single crystal piezoelectric composites for advanced NDT ultrasound. in The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. 2007. International Society for Optics and Photonics.
連結:
-
25. Cheng, K., et al. Piezoelectric coefficients of PMN-0.33 PT single crystals. in Applications of Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on. 2000. IEEE.
連結:
-
27. Uršič, H., et al., A large-displacement 65Pb (Mg 1/3 Nb 2/3) O 3–35PbTiO 3/Pt bimorph actuator prepared by screen printing. Sensors and Actuators B: Chemical, 2008. 133(2): p. 699-704.
連結:
-
28. Thiercelin, M., H. Dammak, and M.P. Thi. Electromechanical properties of PMN-PT and PZT ceramics at cryogenic temperatures. in Applications of Ferroelectrics (ISAF), 2010 IEEE International Symposium on the. 2010. IEEE.
連結:
-
30. Berlincourt, D., H. Krueger, and C. Near, Properties of Morgan electro ceramic ceramics. Technical Publication TP-226, Morgan Electro Ceramics, 2000.
連結:
-
32. Lin, S.-C. and W.-J. Wu, Piezoelectric micro energy harvesters based on stainless-steel substrates. Smart Materials and Structures, 2013. 22(4): p. 045016.
連結:
-
33. Granstrom, J., et al., Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures, 2007. 16(5): p. 1810.
連結:
-
34. Feenstra, J., J. Granstrom, and H. Sodano, Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 2008. 22(3): p. 721-734.
連結:
-
35. Liu, J.-Q., et al., A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectronics Journal, 2008. 39(5): p. 802-806.
連結:
-
36. Erturk, A., J. Hoffmann, and D. Inman, A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 2009. 94(25): p. 254102.
連結:
-
37. Morimoto, K., et al., High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensors and Actuators A: Physical, 2010. 163(1): p. 428-432.
連結:
-
38. Aktakka, E.E., R.L. Peterson, and K. Najafi. Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. 2011. IEEE.
連結:
-
39. Lei, A., et al. MEMS-based thick film PZT vibrational energy harvester. in Micro electro mechanical systems (MEMS), 2011 IEEE 24th international conference on. 2011. IEEE.
連結:
-
40. Tang, G., et al., Fabrication and analysis of high-performance piezoelectric MEMS generators. Journal of Micromechanics and Microengineering, 2012. 22(6): p. 065017.
連結:
-
41. Lin, S.-C., High performance piezoelectric MEMS generators based on stainless steel substrate, in Department of Engineering Science and Ocean Engineering. 2014, National Taiwan University: Taiwan.
連結:
-
42. Tang, G., et al., Development of high performance piezoelectric d 33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film. Sensors and Actuators A: Physical, 2014. 205: p. 150-155.
連結:
-
43. Song, H., et al., Energy harvesting utilizing single crystal PMN-PT material and application to a self-powered accelerometer. Journal of Mechanical Design, 2009. 131(9): p. 091008.
連結:
-
44. Moon, S., et al., Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals. Journal of the Korean Physical Society, 2012. 60(2): p. 230-234.
連結:
-
45. Park, J.H., F. Xu, and S. Trolier-McKinstry, Dielectric and piezoelectric properties of sol–gel derived lead magnesium niobium titanate films with different textures. Journal of Applied Physics, 2001. 89(1): p. 568-574.
連結:
-
46. Barrow, D., et al., Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. Journal of Applied Physics, 1997. 81(2): p. 876-881.
連結:
-
47. Hata, T., et al., Proposal of new mixture target for PZT thin films by reactive sputtering. Vacuum, 1998. 51(4): p. 665-671.
連結:
-
48. Herdier, R., et al., Piezoelectric thin films for MEMS applications—A comparative study of PZT, 0.7PMN–0.3PT and 0.9PMN–0.1PT thin films grown on Si by r.f. magnetron sputtering. Sensors and Actuators A: Physical, 2008. 148(1): p. 122-128.
連結:
-
49. Kanda, T., et al., Performance of hydrothermal PZT film on high intensity operation. Sensors and Actuators A: physical, 2001. 89(1): p. 16-21.
連結:
-
51. White, G., et al., A model for the screen-printing of Newtonian fluids. Journal of Engineering Mathematics, 2006. 54(1): p. 49-70.
連結:
-
53. Robertson, C., R. Shipton, and D. Gray, Miniature sensors using high density screen printing. Sensor Review, 1999. 19(1): p. 33-36.
連結:
-
54. Akedo, J. and M. Lebedev, Microstructure and electrical properties of lead zirconate titanate (Pb (Zr52/Ti48) O3) thick films deposited by aerosol deposition method. Japanese journal of applied physics, 1999. 38(9S): p. 5397.
連結:
-
56. Zhao, X.M., Y. Xia, and G.M. Whitesides, Fabrication of three‐dimensional micro‐structures: Microtransfer molding. Advanced Materials, 1996. 8(10): p. 837-840.
連結:
-
57. Akedo, J., Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer. Materials Science Forum, 2004. 449-452: p. 43-48.
連結:
-
58. Swartz, S.L. and T.R. Shrout, FABRICATION OF PEROVSKITE LEAD MAGNESIUM NIOBATE. Mat. Res. Bull., 1982. 17: p. 1245-1250.
連結:
-
59. Akedo, J., Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers. Journal of the American Ceramic Society, 2006. 89(6): p. 1834-1839.
連結:
-
60. Ichiki, M., et al., . Japanese Journal of Applied Physics, 1997. 36: p. 5815-5819.
連結:
-
61. Akedo, J., et al., Jet molding system for realization of three-dimensional micro-structures. Sensors and Actuators A: Physical, 1998. 69(1): p. 106-112.
連結:
-
62. Jun, A. and L. Maxim, Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr 52 /Ti 48 )O 3 ) Thick Films Deposited by Aerosol Deposition Method. Japanese Journal of Applied Physics, 1999. 38(9S): p. 5397.
連結:
-
63. Lebedev, M., J. Akedo, and Y. Akiyama, Actuation Properties of Lead Zirconate Titanate Thick Films Structured on Si Membrane by the Aerosol Deposition Method. Japanese Journal of Applied Physics, 2000. 39(9S): p. 5600.
連結:
-
64. Lebedev, M. and J. Akedo, Effect of thickness on the piezoelectric properties of lead zirconate titanate films fabricated by aerosol deposition method. Japanese journal of applied physics, 2002. 41(11S): p. 6669.
連結:
-
65. Akedo, J. and M. Lebedev, Effects of annealing and poling conditions on piezoelectric properties of Pb (Zr 0.52, Ti 0.48) O 3 thick films formed by aerosol deposition method. Journal of crystal growth, 2002. 235(1): p. 415-420.
連結:
-
66. Lebedev, M. and J. Akedo, Patterning properties of PZT thick films made by aerosol deposition. Ferroelectrics, 2002. 270(1): p. 117-122.
連結:
-
67. Akedo, J., Study on rapid micro-structuring using Jet molding–Present status and structuring properties toward HARMST. Microsystem technologies, 2000. 6(6): p. 205-209.
連結:
-
68. Iwata, A. and J. Akedo, Hexagonal to cubic crystal structure transformation during aerosol deposition of aluminum nitride. Journal of Crystal Growth, 2005. 275(1): p. e1269-e1273.
連結:
-
69. Lebedev, M., J. Akedo, and T. Ito, Substrate heating effects on hardness of an α-Al 2 O 3 thick film formed by aerosol deposition method. Journal of Crystal Growth, 2005. 275(1): p. e1301-e1306.
連結:
-
70. Park, J.-H., J. Akedo, and H. Sato, High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method. Sensors and Actuators A: Physical, 2007. 135(1): p. 86-91.
連結:
-
71. Akedo, J. and M. Lebedev, Powder preparation in aerosol deposition method for lead zirconate titanate thick films. Japanese journal of applied physics, 2002. 41(11S): p. 6980.
連結:
-
72. Lee, D.-W., et al., Substrate hardness dependency on properties of Al 2 O 3 thick films grown by aerosol deposition. Surface and Coatings Technology, 2012. 209: p. 160-168.
連結:
-
73. Akedo, J., Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. Journal of Thermal Spray Technology, 2008. 17(2): p. 181-198.
連結:
-
74. Naoe, K., M. Nishiki, and A. Yumoto, Relationship between impact velocity of Al2O3 particles and deposition efficiency in aerosol deposition method. Journal of thermal spray technology, 2013. 22(8): p. 1267-1274.
連結:
-
76. Kumar, A., et al., Optimization of poling parameters of mechanically processed PLZT 8/60/40 ceramics based on dielectric and piezoelectric studies. The European Physical Journal B, 2015. 88(11).
連結:
-
77. Shrout, T.R., et al., Dielectric behavior of single crystals near the (1− X) Pb (Mg1/3Nb2/3) O3-(x) PbTiO3 morphotropic phase boundary. Ferroelectrics Letters Section, 1990. 12(3): p. 63-69.
連結:
-
78. Cho, H., et al., Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities. International Journal of Solids and Structures, 2012. 49(15): p. 2059-2065.
連結:
-
79. Kim, P., S. Bae, and J. Seok, Resonant behaviors of a nonlinear cantilever beam with tip mass subject to an axial force and electrostatic excitation. International Journal of Mechanical Sciences, 2012. 64(1): p. 232-257.
連結:
-
80. Tvedt, L.G.W., D.S. Nguyen, and E. Halvorsen, Nonlinear behavior of an electrostatic energy harvester under wide-and narrowband excitation. Journal of Microelectromechanical Systems, 2010. 19(2): p. 305-316.
連結:
-
81. Roundy, S. and P.K. Wright, A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 2004. 13(5): p. 1131.
連結:
-
82. Lin, T.-L., Improve Performance of PZT Micro Piezoelectric Energy Harvester Fabricated by Aerosol Deposition Method, in Department of Engineering Science and Ocean Engineering. 2017, National Taiwan University: Taiwan.
連結:
-
7. Allan, R., Energy Harvesting Efforts Are Picking Up Steam. Power Electronics Rechnology, 2012.
-
9. Curie, J. and P. Curie, Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. soc. min. de France, 1880. 3: p. 90.
-
10. Hankel, W.G., Abh. Sachs, 1881. 12: p. 457.
-
11. Hankel, W.G., Ber. Sachs, 1881. 33: p. 52.
-
16. K. T. Zawilski. Piezoelectric Crystals. Available: http://goo.gl/T2qcBd.
-
21. Chen, C.-T., Fabrication of High-Quality Piezoelectric Micro Energy Harvester and of 3-1, 3-3 Mode Optimization, in Department of Engineering Science and Ocean Engineering. 2016, National Taiwan University: Taiwan.
-
26. Sun, S., et al., Fabrication and electrical properties of grain-oriented 0.7 Pb (Mg 1/3 Nb 2/3) O 3–0.3 PbTiO 3 ceramics. Applied physics letters, 2004. 84(4): p. 574-576.
-
29. Butler, J.L. and C.H. Sherman, Transducers and arrays for underwater sound. 2016: Springer.
-
31. L. APC International. Physical and Piezoelectric Properties of APC Materials [Online]. Available: https://goo.gl/OESPwX.
-
50. Nakahira, D., et al. Hydrothermal deposition of the PZT film and applications of piezoelectric actuators. in Mechatronics and Machine Vision in Practice (M2VIP), 2012 19th International Conference. 2012. IEEE.
-
52. Gentil, S., D. Damjanovic, and N. Setter, Pb (Mg 1/3 Nb 2/3) O 3 and (1− x) Pb (Mg 1/3 Nb 2/3) O 3− xPbTiO 3 Relaxor Ferroelectric Thick Films: Processing and Electrical Characterization. Journal of electroceramics, 2004. 12(3): p. 151-161.
-
55. Schubert, M., Hanft, D., Moos, R.: Dense ceramic coatings manufactured with the Aerosol-Deposition-Method (ADM) at the department of functional materials; 2014. http://www.funktionsmaterialien. de/docs/Highlight_ADM_ENG.pdf (accessed on 12 February, 2015).
-
75. Hanft, D., et al., An overview of the aerosol deposition method: Process fundamentals and new trends in materials applications. J. Ceram. Sci. Technol, 2015. 6(3): p. 147-182.
|