题名

PMN-PT微型壓電能量擷取器之製作及其厚膜製程最佳化之研究

并列篇名

Fabrication of Thick Film Piezoelectric Micro Energy Harvester based on PMN-PT and Process Optimization

DOI

10.6342/NTU201704061

作者

林士超

关键词

鈮鎂酸鉛-鈦酸鉛 ; 懸臂樑 ; 壓電材料 ; 氣膠沉積法 ; 微振動發電元件 ; PMN-PT ; cantilever beam ; piezoelectric material ; aerosol deposition ; power harvesting

期刊名称

國立臺灣大學工程科學及海洋工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

吳文中

内容语文

繁體中文

中文摘要

本論文主要利用氣膠沉積法,於301不銹鋼基板上製備以PMN-PT主軸的壓電懸臂樑式能量擷取元件,並比較PMN-PT元件與PZT元件之輸出功率。本論文之元件可透過壓電材料PMN-PT,將環境中的機械震動能轉換為電能,而為了順利沉積出緻密的PMN-PT厚膜,論文中將探討氣膠沉積法的關鍵參數,透過不同粉末球磨時間與熱處理溫度的實驗,發現粉末經球磨3小時且再經過450 oC後為最佳噴塗參數,接著為了提升元件之壓電特性,其需經過退火及極化步驟,10 μm的PMN-PT元件之製程最佳參數分別為退火525 oC、極化電場30 V/μm、極化溫度150 oC、極化時間20分鐘。實驗結果顯示,本論文製備的能量擷取元件於0.5 g的震動環境下,共振頻為98 Hz,掛載最佳阻抗時輸出電壓可達7.7 Vpp而輸出功率可達90.4 μW,此輸出表現優於過去本團隊所研發的PZT元件,其於同樣0.5 g的震動環境中,最佳阻抗下之輸出電壓為6.2 Vpp、輸出功率為48.5 μW。本論文所製備的PMN-PT元件有較佳的輸出功率,主要原因是PMN-PT具有較佳的壓電常數(d31)以及介電常數(ε33),導致最後有較佳的輸出功率表現,這也顯示了PMN-PT材料於能量擷取器的研究上,具有很高的價值。

英文摘要

In the past studies, the vibration energy harvesting technologies have been studied intensively and based on material of lead zirconate titanate (PZT). The power outputs of piezoelectric MEMS generators were steadily improved year by year. Until now, the performance of energy harvesters(EH) had gradually reached the limit of the chosen materials. In our previous research, a significant increase in power output was achieved by altering the EH substrate material. In view of this, we introduce innovative piezoelectric material in this dissertation to expect a breakthrough in the limit of EH energy output. According to recently published literature, attention has been given to lead magnesium niobate–lead titanate (PMN-PT) material because of its high piezoelectric constant and electromechanical coupling factor. In this dissertation, 10 m of PMN-PT film was successfully deposited on stainless steel substrate by aerosol deposition. First part of this dissertation is to investigate critical parameters of aerosol deposition method and we found the pre-process for starting powder is a key to deposit PMN-PT layer. Powder milled for 3 hours and heated at 450 oC were chosen as the best deposition condition. Then, in order to increase piezoelectric properties of the device, annealing and poling process were necessary and optimal parameters were described as below: annealed at 525 oC, electric field was 30 V/μm, poling temperature was 150 oC, and poling time was 20 minutes. The experimental results show that the fabricated device excited at 0.5 g vibration level can generate a maximum output voltage of 7.7 VPP and corresponding power of 90.4 μW at the resonant frequency of 98 Hz. When given a comparison with previous work, the output performance is better than the PZT-based EH with same thickness, which had maximum output voltage of 6.2 VPP and corresponding power of 48.5 μW under 0.5 g acceleration.

主题分类 基礎與應用科學 > 海洋科學
工學院 > 工程科學及海洋工程學系
工程學 > 工程學總論
参考文献
  1. 1. Amirtharajah, R. and A.P. Chandrakasan, Self-powered signal processing using vibration-based power generation. IEEE Journal of Solid-State Cirsuits, 1998. 33(5): p. 687-695.
    連結:
  2. 2. Roundy, S., P.K. Wright, and J. Rabaey, A study of low level vibrations as a power source for wireless sensor nodes. Computer Communications, 2003. 26(11): p. 1131-1144.
    連結:
  3. 3. Chiu, Y. and V.F.G. Tseng, A capacitive vibration-to-electricity energy converter with integrated mechanical switches. Journal of Micromechanics and Microengineering, 2008. 18(10): p. 104004.
    連結:
  4. 4. Cheng, S., N. Wang, and D.P. Arnold, Modeling of magnetic vibrational energy harvesters using equivalent circuit representations. Journal of Micromechanics and Microengineering, 2007. 17(11): p. 2328-2335.
    連結:
  5. 5. Sodano, H.A., D.J. Inman, and G. Park, A Review of Power Harvesting from Vibration Using Piezoelectric Materials. The Shock and Vibration Digest, 2004. 36(3): p. 197-205.
    連結:
  6. 6. Roundy, S., et al., Improving power output for vibration-based energy scavengers. IEEE Pervasive Computing, 2005. 4(1): p. 28-36.
    連結:
  7. 8. Lin, S.-C. and W.-J. Wu, Fabrication of PZT MEMS energy harvester based on silicon and stainless-steel substrates utilizing an aerosol deposition method. Journal of Micromechanics and Microengineering, 2013. 23(12): p. 125028.
    連結:
  8. 12. Lippmann, M., On the principle of the conservation of electricity. 1881.
    連結:
  9. 13. Meitzler, A., et al., IEEE standard on piezoelectricity. 1988, Society.
    連結:
  10. 14. Daniels, A., M. Zhu, and A. Tiwari, Evaluation of piezoelectric material properties for a higher power output from energy harvesters with insight into material selection using a coupled piezoelectric-circuit-finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 2013. 60(12): p. 2626-2633.
    連結:
  11. 15. Erturk, A. and D.J. Inman, Piezoelectric energy harvesting. 2011: John Wiley & Sons.
    連結:
  12. 17. Choi, S., et al., Dielectric and pyroelectric properties in the Pb (Mg1/3Nb2/3) O3-PbTiO3 system. Ferroelectrics, 1989. 100(1): p. 29-38.
    連結:
  13. 18. Alguero, M., et al., Processing by mechanosynthesis and properties of piezoelectric Pb (Mg 1/3 Nb 2/3) O 3–PbTiO 3 with different compositions. Acta materialia, 2006. 54(2): p. 501-511.
    連結:
  14. 19. Kelly, J., et al., Effect of Composition on the Electromechanical Properties of (1‐x) Pb (Mg1/3Nb2/3) O3− XPbTiO3 Ceramics. Journal of the American Ceramic Society, 1997. 80(4): p. 957-964.
    連結:
  15. 20. Singh, A.K. and D. Pandey, Evidence for M B and M C phases in the morphotropic phase boundary region of (1− x)[Pb (Mg 1/3 Nb 2/3) O 3]− x PbTiO 3: A Rietveld study. Physical Review B, 2003. 67(6): p. 064102.
    連結:
  16. 22. Zhang, R., B. Jiang, and W. Cao, Elastic, piezoelectric, and dielectric properties of multidomain 0.67 Pb (Mg 1/3 Nb 2/3) O 3–0.33 PbTiO 3 single crystals. Journal of Applied Physics, 2001. 90(7): p. 3471-3475.
    連結:
  17. 23. Kim, K., et al. Finite element analysis of piezoelectric actuator with PMN–PT single crystals for nanopositioning. Current Applied Physics, 2006. 6(6): p. 1064-1067.
    連結:
  18. 24. Jiang, X., et al. Single crystal piezoelectric composites for advanced NDT ultrasound. in The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring. 2007. International Society for Optics and Photonics.
    連結:
  19. 25. Cheng, K., et al. Piezoelectric coefficients of PMN-0.33 PT single crystals. in Applications of Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on. 2000. IEEE.
    連結:
  20. 27. Uršič, H., et al., A large-displacement 65Pb (Mg 1/3 Nb 2/3) O 3–35PbTiO 3/Pt bimorph actuator prepared by screen printing. Sensors and Actuators B: Chemical, 2008. 133(2): p. 699-704.
    連結:
  21. 28. Thiercelin, M., H. Dammak, and M.P. Thi. Electromechanical properties of PMN-PT and PZT ceramics at cryogenic temperatures. in Applications of Ferroelectrics (ISAF), 2010 IEEE International Symposium on the. 2010. IEEE.
    連結:
  22. 30. Berlincourt, D., H. Krueger, and C. Near, Properties of Morgan electro ceramic ceramics. Technical Publication TP-226, Morgan Electro Ceramics, 2000.
    連結:
  23. 32. Lin, S.-C. and W.-J. Wu, Piezoelectric micro energy harvesters based on stainless-steel substrates. Smart Materials and Structures, 2013. 22(4): p. 045016.
    連結:
  24. 33. Granstrom, J., et al., Energy harvesting from a backpack instrumented with piezoelectric shoulder straps. Smart Materials and Structures, 2007. 16(5): p. 1810.
    連結:
  25. 34. Feenstra, J., J. Granstrom, and H. Sodano, Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack. Mechanical Systems and Signal Processing, 2008. 22(3): p. 721-734.
    連結:
  26. 35. Liu, J.-Q., et al., A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectronics Journal, 2008. 39(5): p. 802-806.
    連結:
  27. 36. Erturk, A., J. Hoffmann, and D. Inman, A piezomagnetoelastic structure for broadband vibration energy harvesting. Applied Physics Letters, 2009. 94(25): p. 254102.
    連結:
  28. 37. Morimoto, K., et al., High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sensors and Actuators A: Physical, 2010. 163(1): p. 428-432.
    連結:
  29. 38. Aktakka, E.E., R.L. Peterson, and K. Najafi. Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting. in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 2011 16th International. 2011. IEEE.
    連結:
  30. 39. Lei, A., et al. MEMS-based thick film PZT vibrational energy harvester. in Micro electro mechanical systems (MEMS), 2011 IEEE 24th international conference on. 2011. IEEE.
    連結:
  31. 40. Tang, G., et al., Fabrication and analysis of high-performance piezoelectric MEMS generators. Journal of Micromechanics and Microengineering, 2012. 22(6): p. 065017.
    連結:
  32. 41. Lin, S.-C., High performance piezoelectric MEMS generators based on stainless steel substrate, in Department of Engineering Science and Ocean Engineering. 2014, National Taiwan University: Taiwan.
    連結:
  33. 42. Tang, G., et al., Development of high performance piezoelectric d 33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film. Sensors and Actuators A: Physical, 2014. 205: p. 150-155.
    連結:
  34. 43. Song, H., et al., Energy harvesting utilizing single crystal PMN-PT material and application to a self-powered accelerometer. Journal of Mechanical Design, 2009. 131(9): p. 091008.
    連結:
  35. 44. Moon, S., et al., Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals. Journal of the Korean Physical Society, 2012. 60(2): p. 230-234.
    連結:
  36. 45. Park, J.H., F. Xu, and S. Trolier-McKinstry, Dielectric and piezoelectric properties of sol–gel derived lead magnesium niobium titanate films with different textures. Journal of Applied Physics, 2001. 89(1): p. 568-574.
    連結:
  37. 46. Barrow, D., et al., Characterization of thick lead zirconate titanate films fabricated using a new sol gel based process. Journal of Applied Physics, 1997. 81(2): p. 876-881.
    連結:
  38. 47. Hata, T., et al., Proposal of new mixture target for PZT thin films by reactive sputtering. Vacuum, 1998. 51(4): p. 665-671.
    連結:
  39. 48. Herdier, R., et al., Piezoelectric thin films for MEMS applications—A comparative study of PZT, 0.7PMN–0.3PT and 0.9PMN–0.1PT thin films grown on Si by r.f. magnetron sputtering. Sensors and Actuators A: Physical, 2008. 148(1): p. 122-128.
    連結:
  40. 49. Kanda, T., et al., Performance of hydrothermal PZT film on high intensity operation. Sensors and Actuators A: physical, 2001. 89(1): p. 16-21.
    連結:
  41. 51. White, G., et al., A model for the screen-printing of Newtonian fluids. Journal of Engineering Mathematics, 2006. 54(1): p. 49-70.
    連結:
  42. 53. Robertson, C., R. Shipton, and D. Gray, Miniature sensors using high density screen printing. Sensor Review, 1999. 19(1): p. 33-36.
    連結:
  43. 54. Akedo, J. and M. Lebedev, Microstructure and electrical properties of lead zirconate titanate (Pb (Zr52/Ti48) O3) thick films deposited by aerosol deposition method. Japanese journal of applied physics, 1999. 38(9S): p. 5397.
    連結:
  44. 56. Zhao, X.M., Y. Xia, and G.M. Whitesides, Fabrication of three‐dimensional micro‐structures: Microtransfer molding. Advanced Materials, 1996. 8(10): p. 837-840.
    連結:
  45. 57. Akedo, J., Aerosol Deposition Method for Fabrication of Nano Crystal Ceramic Layer. Materials Science Forum, 2004. 449-452: p. 43-48.
    連結:
  46. 58. Swartz, S.L. and T.R. Shrout, FABRICATION OF PEROVSKITE LEAD MAGNESIUM NIOBATE. Mat. Res. Bull., 1982. 17: p. 1245-1250.
    連結:
  47. 59. Akedo, J., Aerosol Deposition of Ceramic Thick Films at Room Temperature: Densification Mechanism of Ceramic Layers. Journal of the American Ceramic Society, 2006. 89(6): p. 1834-1839.
    連結:
  48. 60. Ichiki, M., et al., . Japanese Journal of Applied Physics, 1997. 36: p. 5815-5819.
    連結:
  49. 61. Akedo, J., et al., Jet molding system for realization of three-dimensional micro-structures. Sensors and Actuators A: Physical, 1998. 69(1): p. 106-112.
    連結:
  50. 62. Jun, A. and L. Maxim, Microstructure and Electrical Properties of Lead Zirconate Titanate (Pb(Zr 52 /Ti 48 )O 3 ) Thick Films Deposited by Aerosol Deposition Method. Japanese Journal of Applied Physics, 1999. 38(9S): p. 5397.
    連結:
  51. 63. Lebedev, M., J. Akedo, and Y. Akiyama, Actuation Properties of Lead Zirconate Titanate Thick Films Structured on Si Membrane by the Aerosol Deposition Method. Japanese Journal of Applied Physics, 2000. 39(9S): p. 5600.
    連結:
  52. 64. Lebedev, M. and J. Akedo, Effect of thickness on the piezoelectric properties of lead zirconate titanate films fabricated by aerosol deposition method. Japanese journal of applied physics, 2002. 41(11S): p. 6669.
    連結:
  53. 65. Akedo, J. and M. Lebedev, Effects of annealing and poling conditions on piezoelectric properties of Pb (Zr 0.52, Ti 0.48) O 3 thick films formed by aerosol deposition method. Journal of crystal growth, 2002. 235(1): p. 415-420.
    連結:
  54. 66. Lebedev, M. and J. Akedo, Patterning properties of PZT thick films made by aerosol deposition. Ferroelectrics, 2002. 270(1): p. 117-122.
    連結:
  55. 67. Akedo, J., Study on rapid micro-structuring using Jet molding–Present status and structuring properties toward HARMST. Microsystem technologies, 2000. 6(6): p. 205-209.
    連結:
  56. 68. Iwata, A. and J. Akedo, Hexagonal to cubic crystal structure transformation during aerosol deposition of aluminum nitride. Journal of Crystal Growth, 2005. 275(1): p. e1269-e1273.
    連結:
  57. 69. Lebedev, M., J. Akedo, and T. Ito, Substrate heating effects on hardness of an α-Al 2 O 3 thick film formed by aerosol deposition method. Journal of Crystal Growth, 2005. 275(1): p. e1301-e1306.
    連結:
  58. 70. Park, J.-H., J. Akedo, and H. Sato, High-speed metal-based optical microscanners using stainless-steel substrate and piezoelectric thick films prepared by aerosol deposition method. Sensors and Actuators A: Physical, 2007. 135(1): p. 86-91.
    連結:
  59. 71. Akedo, J. and M. Lebedev, Powder preparation in aerosol deposition method for lead zirconate titanate thick films. Japanese journal of applied physics, 2002. 41(11S): p. 6980.
    連結:
  60. 72. Lee, D.-W., et al., Substrate hardness dependency on properties of Al 2 O 3 thick films grown by aerosol deposition. Surface and Coatings Technology, 2012. 209: p. 160-168.
    連結:
  61. 73. Akedo, J., Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices. Journal of Thermal Spray Technology, 2008. 17(2): p. 181-198.
    連結:
  62. 74. Naoe, K., M. Nishiki, and A. Yumoto, Relationship between impact velocity of Al2O3 particles and deposition efficiency in aerosol deposition method. Journal of thermal spray technology, 2013. 22(8): p. 1267-1274.
    連結:
  63. 76. Kumar, A., et al., Optimization of poling parameters of mechanically processed PLZT 8/60/40 ceramics based on dielectric and piezoelectric studies. The European Physical Journal B, 2015. 88(11).
    連結:
  64. 77. Shrout, T.R., et al., Dielectric behavior of single crystals near the (1− X) Pb (Mg1/3Nb2/3) O3-(x) PbTiO3 morphotropic phase boundary. Ferroelectrics Letters Section, 1990. 12(3): p. 63-69.
    連結:
  65. 78. Cho, H., et al., Nonlinear hardening and softening resonances in micromechanical cantilever-nanotube systems originated from nanoscale geometric nonlinearities. International Journal of Solids and Structures, 2012. 49(15): p. 2059-2065.
    連結:
  66. 79. Kim, P., S. Bae, and J. Seok, Resonant behaviors of a nonlinear cantilever beam with tip mass subject to an axial force and electrostatic excitation. International Journal of Mechanical Sciences, 2012. 64(1): p. 232-257.
    連結:
  67. 80. Tvedt, L.G.W., D.S. Nguyen, and E. Halvorsen, Nonlinear behavior of an electrostatic energy harvester under wide-and narrowband excitation. Journal of Microelectromechanical Systems, 2010. 19(2): p. 305-316.
    連結:
  68. 81. Roundy, S. and P.K. Wright, A piezoelectric vibration based generator for wireless electronics. Smart Materials and Structures, 2004. 13(5): p. 1131.
    連結:
  69. 82. Lin, T.-L., Improve Performance of PZT Micro Piezoelectric Energy Harvester Fabricated by Aerosol Deposition Method, in Department of Engineering Science and Ocean Engineering. 2017, National Taiwan University: Taiwan.
    連結:
  70. 7. Allan, R., Energy Harvesting Efforts Are Picking Up Steam. Power Electronics Rechnology, 2012.
  71. 9. Curie, J. and P. Curie, Development by pressure of polar electricity in hemihedral crystals with inclined faces. Bull. soc. min. de France, 1880. 3: p. 90.
  72. 10. Hankel, W.G., Abh. Sachs, 1881. 12: p. 457.
  73. 11. Hankel, W.G., Ber. Sachs, 1881. 33: p. 52.
  74. 16. K. T. Zawilski. Piezoelectric Crystals. Available: http://goo.gl/T2qcBd.
  75. 21. Chen, C.-T., Fabrication of High-Quality Piezoelectric Micro Energy Harvester and of 3-1, 3-3 Mode Optimization, in Department of Engineering Science and Ocean Engineering. 2016, National Taiwan University: Taiwan.
  76. 26. Sun, S., et al., Fabrication and electrical properties of grain-oriented 0.7 Pb (Mg 1/3 Nb 2/3) O 3–0.3 PbTiO 3 ceramics. Applied physics letters, 2004. 84(4): p. 574-576.
  77. 29. Butler, J.L. and C.H. Sherman, Transducers and arrays for underwater sound. 2016: Springer.
  78. 31. L. APC International. Physical and Piezoelectric Properties of APC Materials [Online]. Available: https://goo.gl/OESPwX.
  79. 50. Nakahira, D., et al. Hydrothermal deposition of the PZT film and applications of piezoelectric actuators. in Mechatronics and Machine Vision in Practice (M2VIP), 2012 19th International Conference. 2012. IEEE.
  80. 52. Gentil, S., D. Damjanovic, and N. Setter, Pb (Mg 1/3 Nb 2/3) O 3 and (1− x) Pb (Mg 1/3 Nb 2/3) O 3− xPbTiO 3 Relaxor Ferroelectric Thick Films: Processing and Electrical Characterization. Journal of electroceramics, 2004. 12(3): p. 151-161.
  81. 55. Schubert, M., Hanft, D., Moos, R.: Dense ceramic coatings manufactured with the Aerosol-Deposition-Method (ADM) at the department of functional materials; 2014. http://www.funktionsmaterialien. de/docs/Highlight_ADM_ENG.pdf (accessed on 12 February, 2015).
  82. 75. Hanft, D., et al., An overview of the aerosol deposition method: Process fundamentals and new trends in materials applications. J. Ceram. Sci. Technol, 2015. 6(3): p. 147-182.