题名

氧代氮代苯并環己烷:合成改善、機制及其固化物微結構之研究

并列篇名

Benzoxazine: Synthetic Modification, Mechanism, and Microstructure of Its Resulting Thermoset

DOI

10.6342/NTU201601072

作者

汪孟緯

关键词

氧代氮代苯并環己烷 ; 聚縮合 ; 分子量 ; 開環聚合機制 ; 氰酸酯 ; 凝膠化 ; 催化機制 ; benzoxazine ; polycondensation ; molecular weight ; cyanate ester ; gelation ; catalytic mechanism

期刊名称

臺灣大學高分子科學與工程學研究所學位論文

卷期/出版年月

2016年

学位类别

博士

导师

鄭如忠

内容语文

繁體中文

中文摘要

本論文透過A-A及B-B聚縮合合成途徑,避免一般曼尼希縮合(Mannich condensation)製程中的副反應發生,成功製備出高分子量的主鏈高分子型氧代氮代苯並環己烷(benzoxazine, Bz)預聚物,P(BF-bapp)-1。另合成三種結構相似、分子量相異之預聚物,探討分子量差異對其固化物物性與微結構之影響。 為探討Bz的開環聚合(ring-opening polymerization, ROP)機制,本論文合成三種不同結構的主鏈高分子型Bz預聚物,分別為雜環上氧及氮原子鄰位(ortho)皆無甲基取代的PBz-0M;雜環上氧原子鄰位受甲基取代的PBz-2M;雜環上氧及氮原子鄰位皆受甲基取代的PBz-6M。透過微差掃描熱分析(DSC)、傅立葉轉換紅外線光譜(FTIR)以及熱性質分析,我們發現,ROP可透過雜環上氮原子的鄰位(ortho)進行,並提出其反應機制進行解釋。 Bz/氰酸酯混膠共聚合反應機制已在多篇文獻中被探討,並有文獻指出Bz開環的結構為混膠中氰酸酯快速三環化的主因。然而,近來我們意外發現將4,4’-oxyaniline/phenol-based Bz (P-oda)以及雙酚A氰酸酯(BACY)以溶劑溶解配置成膠後,靜置於室溫24小時,溶液將形成凝膠(gel)。在此環境下,Bz開環聚合的可能性極低,因此我們認為催化效應來自與Bz本身的結構,本論文將透過Model reaction尋找凝膠化(gelation)之主因,並提出Bz於氰酸酯三環化中之催化機制進行解釋。

英文摘要

A main chain-type polybenzoxazine precursor, P(BF-bapp)-1, with high molecular weight (MW) was prepared through a strategy of A-A and B-B polycondensation, avoiding by-reaction that occurred in Mannich condensation. To discuss the effect of the MW of benzoxazine on the properties and microstructure of the resulting thermoset, anthother three structurally similar benzoxazines with difference MW were syntheized in this work. To discuss the mechanism of ring-opening polymerization (ROP) of benzoxazine, three polybenzoxazine precursors were prepared. Among the polybenzoxazine precursors, free ortho positions to the O and N of oxazine are available for PBz-0M. The ortho positions to the O of oxazine are blocked by methyl group for PBz-2M. The ortho positions to the O and N of oxazine are blocked by methyl group for PBz-6M. According to DSC, IR, and thermal analysis, we found that the ROP of PBz-2M can be carried out through free ortho positions to the N of oxazine. A reaction mechanism was proposed to explain the polymerization in this work. Blends of cyanate ester and benzoxazine have been independently studied by several researchers, some of them suggest that the rapid trimerization of cyanate ester in the blend is related to the ring-opened structure of benzoxazine. Recently, we unexpectedly observe that gelation occurred in solution of P-oda/BACY blend after 24 h at room temperature. However, the possibility of ring-opening polymerization for benzoxazine at room temperature is rare. Therefore, it is highly likely that the catalytic effect results from the benzoxazine itself. We tried to find the reason of gelation through model reaction in this work, and proposed a catalytic mechanism of benzoxazine for the trimerization of cyanate ester.

主题分类 工學院 > 高分子科學與工程學研究所
工程學 > 化學工業
参考文献
  1. 1. Ghosh, N. N.; Kiskan, B.; Yagci, Y. Progress in Polymer Science 2007, 32, (11), 1344-1391.
    連結:
  2. 2. Ning, X.; Ishida, H. Journal of Polymer Science Part A: Polymer Chemistry 1994, 32, (6), 1121-1129.
    連結:
  3. 3. Ning, X.; Ishida, H. Journal of Polymer Science Part B: Polymer Physics 1994, 32, (5), 921-927.
    連結:
  4. 8. Chernykh, A.; Agag, T.; Ishida, H. Macromolecules 2009, 42, (14), 5121-5127.
    連結:
  5. 9. Dogan Demir, K.; Kiskan, B.; Yagci, Y. Macromolecules 2011, 44, (7), 1801-1807.
    連結:
  6. 14. Agag, T.; Takeichi, T. Journal of Polymer Science Part A: Polymer Chemistry 2007, 45, (10), 1878-1888.
    連結:
  7. 16. Lin, C. H.; Chang, S. L.; Shen, T. Y.; Shih, Y. S.; Lin, H. T.; Wang, C. F. Polymer Chemistry 2012, 3, (4), 935-945.
    連結:
  8. 19. Kenji, O.; Masaaki, O.; Koichi, N. Method for producing thermosetting resin having benzoxazine ring. JP3994970, 2005. 20. Lin, C. H.; Chang, S. L.; Hsieh, C. W.; Lee, H. H. Polymer 2008, 49, (5), 1220-1229.
    連結:
  9. 21. Chang, S. L.; Lin, C. H. Journal of Polymer Science Part A: Polymer Chemistry 2010, 48, (11), 2430-2437.
    連結:
  10. 25. Russell, V. M.; Koenig, J. L.; Low, H. Y.; Ishida, H. Journal of Applied Polymer Science 1998, 70, (7), 1413-1425. 26. Wang, Y.-X.; Ishida, H. Macromolecules 2000, 33, (8), 2839-2847.
    連結:
  11. 27. Ishida, H.; Sanders, D. P. Macromolecules 2000, 33, (22), 8149-8157.
    連結:
  12. 29. Chutayothin, P.; Ishida, H. Macromolecules 2010, 43, (10), 4562-4572.
    連結:
  13. 30. Wang, X.; Chen, F.; Gu, Y. Journal of Polymer Science Part A: Polymer Chemistry 2011, 49, (6), 1443-1452.
    連結:
  14. 34. Li, X.; Gu, Y. Polymer Chemistry 2011, 2, (12), 2778-2781. 35. Lin, C. H.; Huang, S. J.; Wang, P. J.; Lin, H. T.; Dai, S. A. Macromolecules 2012, 45, (18), 7461-7466.
    連結:
  15. 37. Nunes, R. W.; Martin, J. R.; Johnson, J. F. Polymer Engineering & Science 1982, 22, (4), 205-228.
    連結:
  16. 43. Dyer, J. R. Applications of absorption spectroscopy of organic compounds, Prentice Hall, Englewood Cliffs, N. J., 1965.
    連結:
  17. 44. Tsuchiya, K.; Endo, T. Journal of Polymer Science Part A: Polymer Chemistry 2014, 52, (5), 699-706.
    連結:
  18. 4. Kim, S.-K.; Choi, S.-W.; Jeon, W. S.; Park, J. O.; Ko, T.; Chang, H.; Lee, J.-C. Macromolecules 2012, 45, (3), 1438-1446. 5. Liu, C.; Shen, D.; Sebastián, R. M. a.; Marquet, J.; Schönfeld, R. Macromolecules 2011, 44, (12), 4616-4622.
  19. 6. Wang, M. W.; Jeng, R. J.; Lin, C. H. Macromolecules 2015, 48, (3), 530-535.
  20. 7. Taskin, O. S.; Kiskan, B.; Yagci, Y. Macromolecules 2013, 46, (22), 8773-8778.
  21. 10. Zhang, K.; Zhuang, Q.; Liu, X.; Cai, R.; Yang, G.; Han, Z. RSC Advances 2013, 3, (15), 5261-5270.
  22. 11. Wang, C.-F.; Su, Y.-C.; Kuo, S.-W.; Huang, C.-F.; Sheen, Y.-C.; Chang, F.-C. Angewandte Chemie International Edition 2006, 45, (14), 2248-2251.
  23. 12. Demir, K. D.; Kiskan, B.; Aydogan, B.; Yagci, Y. Reactive and Functional Polymers 2013, 73, (2), 346-359.
  24. 13. Takeichi, T.; Kano, T.; Agag, T. Polymer 2005, 46, (26), 12172-12180.
  25. 15. Chernykh, A.; Liu, J.; Ishida, H. Polymer 2006, 47, (22), 7664-7669.
  26. 17. Holly, F. W.; Cope, A. C. Journal of the American Chemical Society 1944, 66, (11), 1875-1879.
  27. 18. Brunovska, Z.; Liu, J. P.; Ishida, H. Macromolecular Chemistry and Physics 1999, 200, (7), 1745-1752.
  28. 22. Liu, J.; Agag, T.; Ishida, H. Polymer 2010, 51, (24), 5688-5694.
  29. 23. Katagiri, T.; Eguchi, Y. Method for producing thermosetting resin having benzoxazine ring. US7994270 B2, 2010.
  30. 24. Marvel, C. S.; Tarköy, N. Journal of the American Chemical Society 1957, 79, (22), 6000-6002.
  31. 28. Sudo, A.; Kudoh, R.; Nakayama, H.; Arima, K.; Endo, T. Macromolecules 2008, 41, (23), 9030-9034.
  32. 31. Li, X.; Luo, X.; Liu, M.; Ran, Q.; Gu, Y. Materials Chemistry and Physics 2014, 148, (1–2), 328-334.
  33. 32. Santhosh Kumar, K. S.; Reghunadhan Nair, C. P.; Ninan, K. N. European Polymer Journal 2009, 45, (2), 494-502.
  34. 33. Kimura, H.; Ohtsuka, K.; Matsumoto, A. Express polym lett 2011, 5, (12), 1113-1122.
  35. 36. Tsai, J.-S.; Lin, C.-H. Journal of Applied Polymer Science 1991, 42, (11), 3045-3050.
  36. 38. Kumler, P. L.; Keinath, S. E.; Boyer, R. F. Journal of Macromolecular Science, Part B 1977, 13, (4), 631-646.
  37. 39. Schollenberger, C. S.; Dinbergs, K. Journal of Elastomers and Plastics 1979, 11, (1), 58-91.
  38. 40. Bersted, B. H.; Anderson, T. G. Journal of Applied Polymer Science 1990, 39, (3), 499-514.
  39. 41. Martin, J. R.; Johnson, J. F.; Cooper, A. R. Journal of Macromolecular Science, Part C 1972, 8, (1), 57-199.
  40. 42. Vlachopoulos, J.; Hadjis, N.; Hamielec, A. E. Polymer 1978, 19, (1), 115.