题名

製作曲面型電極可變焦距液晶微透鏡陣列

并列篇名

Fabrication of focus-tunable liquid crystal microlens array with spherical electrode

DOI

10.6342/NTU201603450

作者

黃煒旻

关键词

可變焦距透鏡 ; 液晶透鏡 ; 微透鏡陣列 ; 噴墨 ; 親水性 ; focus-tunable lens ; liquid crystal ; microlens array ; inkjet printing ; hydrophilic confinement

期刊名称

臺灣大學光電工程學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

蘇國棟

内容语文

英文

中文摘要

本論文主要介紹利用噴墨、親疏水性侷限效應、翻模技術製作曲面型液晶微透鏡陣列。製程主要分為兩個部分:微透鏡陣列及液晶盒的組裝。製作微透鏡認列的過程中,利用SU-8 光阻與自身微疏水之特性,並使用噴墨機台製作微透鏡陣列,再使用翻模技術翻在玻璃基板上。經過旋塗上透明導電高分子PEDOT:PSS 與利用SU-8 填平,我們在其上頭旋轉塗佈配向膜,並搭配另一個ITO 玻璃組裝成液晶盒。因為微透鏡的尺寸很小的關係,可以達到比較大的屈光度,並藉由之家電壓於液晶透鏡,改變內部的折射率分佈達到光線偏折的目的,進而與光學變焦系統做結合。

英文摘要

In this thesis, the fabrication of the liquid crystal microlens array with spherical electrode is demonstrated. The fabrication process is divided in two parts: microlens array and liquid crystal cell sealing. In the process of microlens array, the hydrophilic confinement effect, an inkjet printer, and the replication process is used to fabricate microlens array on glass substrate. PEDOT:PSS is spin-coated on the microlens array as a curved electrode and flatten by SU-8 photoresist. Then we assemble it with another ITO glass to form the liquid crystal microlens array. The interference patterns of the LC microlens array is measured and it is in a good agreement with the theoretically calculation. From the interference rings, the optical focusing power range is from -47.28 to -331 diopter under 10 volts. This device can be potentially used for the optical zoom system or focus-tunable lens applications.

主题分类 電機資訊學院 > 光電工程學研究所
工程學 > 電機工程
工程學 > 電機工程
参考文献
  1. [1] N. Sugiura and S. Morita, "Variable-focus liquid-filled optical lens," Applied Optics, vol. 32, pp. 4181-4186, 1993.
    連結:
  2. [2] F. Mugele and J. C. Baret, "Electrowetting: From basics to applications," Journal of Physical Condensed matter, vol. 19, pp. R705-R774, 2005.
    連結:
  3. [3] S. Sato, "Liquid-crystal lens-cells with variable focal length," J. Appl. Phys., vol. 18, p. 1679, 1979.
    連結:
  4. [4] H. Ren and S. T. Wu, Introduction to adaptive lenses: John Wiley & Sons, Inc., 2012.
    連結:
  5. [6] S. Sato, "Applications of liquid crystals to variable focal length," optics review, vol. 6, p. 471, 1999.
    連結:
  6. [7] B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, "Liquid crystal lens with spherical electrode," Jpn. J. Appl. Phy., vol. 21, pp. 1232-1233, 2002.
    連結:
  7. [8] H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, "Tunable-focus flat liquid crystal spherical lens," App. Phys. Lett, vol. 84, pp. 4789-4791, 2004.
    連結:
  8. [9] Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, "Liquid crystal microlens arrays with switchable positive and negative focal lengths," Journal of Display Technology, vol. 1, pp. 151-156, 2005.
    連結:
  9. [10] H. Ren and S. T. Wu, "Adaptive liquid crystal lens with large focal length tunablility," Opt. Express, vol. 14, pp. 11292-11298, 2006.
    連結:
  10. [11] H. T. Dai, Y. J. Liu, X. W. Sun, and D. Luo, "A negative-positive tunable liquid-crystal microlens arrays by printing," Opt. Express, vol. 17, pp. 4317-4323, 2009.
    連結:
  11. [12] N. Fraval, P. Joffre, S. Formont, and J. Chazelas, "Electrically tunable liquid-crystal wave plate using quadripolar electrode configuration and transparent conductive polymer layers," Appl. Opt., vol. 48, pp. 5301-5306, 2009.
    連結:
  12. [13] K. Wang and e. al, "Design of compact freeform lens for application specific light-emitting diode packaging," Opt. Express, vol. 18, pp. 413-425, 2010.
    連結:
  13. [14] Z. D. Popovic, R. A. N. Sprague, and G. A. N. Connell, "Technique for monolithic fabrication of microlens arrays," Applied Optics, vol. 46, pp. 1281-1284, 1998.
    連結:
  14. [15] D. Daly, R. F. Sevens, M. C. Hutley, and N. Davies, "The manufacture of microlens by melting photoresist," meas. Sci. Technol, vol. 1, 1990.
    連結:
  15. [16] Z. D. Popvic, R. A. Sprague, and G. A. N. Connell, "Technique for monolithic fabrication of microlens arrays," Applied Optics, vol. 46, pp. 1281-1284, 1988.
    連結:
  16. [17] T. R. Jay and M. B. Stern, "Preshaping photoresist for refractive micoelens fabrication," optical engineeting, vol. 33, pp. 3552-3555, 1994.
    連結:
  17. [18] H. Ottevaere, B. Volckaerts, M. Vervaeke, P. Vynck, A. Hermanne, and H. Thienpont, "Plastic microlens arrays by deep lithography with protons: fabrication and characterization," preceedings symposium IEEE/LEOS Benelux Chapter, vol. 281-284, 2003.
    連結:
  18. [19] K. Naessens, H. Ottevaere, R. Baets, P. V. Daele, and H. Thienpont, "Direct writing of microlens in polycarbonate with eximer laser ablation," Applied Optics, vol. 42, pp. 6349-6359, 2003.
    連結:
  19. [20] D. L. MacFarlane, V. Narayan, J. A. Tatum, W. R. Cox, T. Chen, and D. J. Hayes, "Microjet fabrication of microlens arrays," IEEE Photonics Technology Letters, vol. 6, pp. 1112-1114, 1994.
    連結:
  20. [21] M. B. Stern and T. R. Jay, "Dry etching for coherent refractive microlens arrays," Optical Engineering, vol. 33, pp. 3547-3551, 1994.
    連結:
  21. [22] H. Ottecaere, R. Cox, H. P. Herzig, T. Miyashita, K. Naessens, M. Taghizadeh, et al., "Comparing glass and plastic refractive microlenses fabricated with different technologies," Journal of Optics A: Pure and Applied Optics, vol. 8, pp. S407-S429, 2006.
    連結:
  22. [23] H. P. Le, "Progress and Trends in ink-jet printing technology," Journal of Imaging Science and Technology, vol. 42, 1998.
    連結:
  23. [24] B. J. d. Gans, P. C. Duineveld, and U. S. Schubert, "Inkjet printing of polymers: state of the art and future developments," Advanced Materials, vol. 16, pp. 203-213, 2004.
    連結:
  24. [25] B. J. Kang, C. K. Lee, and J. H. Oh, "All-inkjet-printed electrical components and circuit fabrication on a plastic sunstrate," Microelectronic Engineering, vol. 97, pp. 251-254, 2012.
    連結:
  25. [26] P. Calvert, "Inkjet printing for materials and devices," Chemistry of Materials, vol. 13, pp. 3329-3305, 2001.
    連結:
  26. [27] H. Sirringhaus, T. Kawase, and R. H. Friend, "High-resolution inkjet printing of all-polymer transistor circuits," Science, vol. 290, pp. 2123-2126, 2000.
    連結:
  27. [28] C. N. Hoth, P. Schilinsky, S. A. Choulis, and C. J. Brabec, "Printing highly efficient organic solar cell," Nano Letters, vol. 8, pp. 2806-2813, 2008.
    連結:
  28. [29] J. P. Lu, W. K. Huang, and F. C. Chen, "Self-positioning microlens arrays prepared using ink-jet printing," SPIE, vol. 48, p. 073606, 2009.
    連結:
  29. [30] P. G. d. Gennes and J. Prost, The physics of liquid crystals: Oxford University Press, 1993.
    連結:
  30. [31] D. K. Yang and S. T. Wu, Fundamentals of Liquid Crystal Devices: John Wiley & Sons, Ltd, 2006.
    連結:
  31. [32] R. Forch, H. Schonherr, A. Tobias, and A. Jenkins, Surface Design: Applizations in Bioscience and Nanotechnology: Wiley-VCH, 2009.
    連結:
  32. [33] O. P. Parida and N. Bhat, "Characterization of oprical properties of SU-8 and fabrication of optical components," presented at the International Conference on Optics and Photonics CSIO, 2009.
    連結:
  33. [5] B. Beni and S. Hackwood, "Electro-wetting displays," applied Physics Letters, vol. 38, pp. 207-209, 1981.
  34. [34] W. Martienssen and H. Warlimont, Springer Handbook of Condensed Matter and Materials Data: Springer, 2004.