题名

強化深度40 μm之化學強化玻璃劃線切割研究

并列篇名

Study of Scribing Process Applies on Chemically Strengthened Glass of Depth of Compressive Layer 40 μm

DOI

10.6342/NTU201603827

作者

張詠迪

关键词

化學強化玻璃 ; 刀輪劃線 ; 振動輔助 ; 碳化鎢刀輪 ; 裂片製程 ; chemically strengthened glass ; glass scribing ; vibration assisted ; WC scribing wheel ; breaking process

期刊名称

國立臺灣大學機械工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

廖運炫

内容语文

繁體中文

中文摘要

化學強化玻璃表面有一因離子交換所產生的壓應力層,因此較強化前有較高的硬度、強度,於劃線切割製程上有一定的難度。本研究使用兩種不同度之刀輪,進行強化深度40 μm化學強化玻璃劃線切割,於玻璃同一路徑上,進行兩次劃線,並加入振動輔助,利用第一道劃線所產生的溝槽,使得第二道劃線時,玻璃表面chipping不增加太多的情況下,達到自動裂片,且最大chipping為110 μm。 本研究亦使用雙角度碳化鎢刀輪,並搭配振動輔助,進行強化深度40 μm化學強化玻璃劃線切割,刀輪前端較尖的刀刃刺入玻璃表面產生較深的中央裂紋,而較鈍的刀面壓於玻璃表面,降低玻璃表面劃線後所產生的表面chipping,可以得到比單一角度刀輪劃線所產生的表面chipping更小,中央裂紋度更深,其劃線結果之表面最大chipping為122 μm,中央裂紋深度為193 μm。

英文摘要

The chemically strengthen glass, with a compressive stress profile on its surface and which is caused by ion-exchange process, has higher crack resistance and scratch resistance. In this study, two scribing wheels with different angles were applied to cut chemically strengthen glass of depth of compressive layer 40 μm. Scribing wheels scribed with the assistance of vibration on the same path twice. First, scribing process caused a gap on the surface of glass. Then, the second scribing process was applied, and the decreasing of amount of chipping was found. Also, the glass separated automatically and the max size of chipping is 110 μm. In this study, two-angle WC scribing wheel was also applied to cut chemically strengthen glass of depth of compressive layer 40 μm with the assistance of vibration. The front tip of scribing wheel pierced through the glass surface and caused deeper median crack. Then, the second flank surface pressed on the glass surface. Compared to the chipping amount caused by single-angle scribing wheel, two-angle scribing wheel causes less chipping, deeper median crack and minimizes the size of chipping. The max size of chipping is 122 μm and the median crack is 193 μm.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. [1] J. Zimmer, "Novel Thin Glass for 3D Shaped Electronics Display Covers," SID Symposium Digest of Technical, pp. 833-836, 2011.
    連結:
  2. [3] D. M. a. B. Lawn, "Strength degradation of thermally tempered glass plates," Journal of the American Ceramic Society,, vol. 61, pp. 21-27, 1978.
    連結:
  3. [4] R. Gy, "Ion exchange for glass strengthening," Materials Science and Engineering: B, vol. 149, pp. 159-165, 2008.
    連結:
  4. [5] A. K. Varshneya, "Chemical strengthening of glass: lessons learned and yet to be learned," International Journal of Applied Glass Science, vol. 1, pp. 131-142 2010.
    連結:
  5. [6] A. K. Varshneya, "The physics of chemical strengthening of glass: Room for a new view," Journal of Non-Crystalline Solids, vol. 356, pp. 2289-2294, 2010.
    連結:
  6. [7] I. Donald and M. Hill, "Preparation and mechanical behaviour of some chemically strengthened lithium magnesium alumino-silicate glasses," Journal of materials science, vol. 23, pp. 2797-2809, 1988.
    連結:
  7. [9] 譚義九, "化學強化玻璃劃線切割研究," 碩士論文, 機械工程學系, 國立台灣大學, 2013.
    連結:
  8. [11] A. Koike, S. Akiba, T. Sakagami, K. Hayashi, and S. Ito, "Difference of cracking behavior due to Vickers indentation between physically and chemically tempered glasses," Journal of Non-Crystalline Solids, vol. 358, pp. 3438-3444, 2012.
    連結:
  9. [12] V. M. Sglavo and D. J. Green, "Flaw‐Insensitive Ion‐Exchanged Glass: II, Production and Mechanical Performance," Journal of the American Ceramic Society,, vol. 84, pp. 1832-1838, 2001.
    連結:
  10. [13] G. Glaesemann, T. Gross, J. Payne, and J. Price, "Fractography in the development of ion-exchanged cover glass," Fractography of advanced ceramics and glasses VI, pp. 85-93, 2012.
    連結:
  11. [14] R. Tandon and S. J. Glass, "Controlling the fragmentation behavior of stressed glass," in Fracture Mechanics of Ceramics, vol. ed: Springer, pp. 77-91, 2005.
    連結:
  12. [15] M. B. Abrams, D. J. Green, and S. J. Glass, "Fracture behavior of engineered stress profile soda lime silicate glass " Journal of non-crystalline solids, vol. 321, pp. 10-19, 2003
    連結:
  13. [16] R. Tandon and D. J. Green, "The effect of crack growth stability induced by residual compressive stresses on strength variability," Journal of materials research, vol. 7, pp. 765-771, 1992.
    連結:
  14. [17] P. Jannotti, G. Subhash, P. Ifju, P. K. Kreski, and A. K. Varshneya, "Influence of ultra-high residual compressive stress on the static and dynamic indentation response of a chemically strengthened glass," Journal of the European Ceramic Society, vol. 32 pp. 1551-1559, 2012.
    連結:
  15. [18] 楊光美, "LCD面板切割刀輪之刀尖形狀作用機制," 博士論文, 機械工程學系, 國立台灣大學, 2010.
    連結:
  16. [19] "Glass basics: Scoring and Separating Recommendation," Corning Incorporated Technical Information Paper, vol. p. TIP 305.
    連結:
  17. [21] K. Yamamoto, N. Hasaka, H. Morita, and E. Ohmura, "Three-dimensional thermal stress analysis on laser scribing of glass," Precision Engineering, vol. 32, pp. 301-308, 2008.
    連結:
  18. [22] 包庭光, "LCD玻璃基板支圓弧路徑振動輔助劃線切割研究," 碩士論文, 機械工程學系, 國立台灣大學, 2011.
    連結:
  19. [25] B. R. Lawn, A. G. Evans, and D. B. Marshall, "Elastic/Plastic Indentation Damage in Ceramics: The Median/Radial Crack System," Journal of the American Ceramic Society, vol. 63, pp. 574-581, 1980.
    連結:
  20. [26] D. B. Marshall, B. R. Lawn, and A. G. Evans, "Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System," Journal of the American Ceramic Society, vol. 65, pp. 561-566, 1982.
    連結:
  21. [27] B. R. Lawn and E. R. Fuller, "Equilibrium penny-like cracks in indentation fracture," Journal of Materials Science, vol. 10, pp. 2016-2024, 1975.
    連結:
  22. [28] D. B. Marshall, "Geometrical Effects in Elastic/Plastic Indentation," Journal of the American Ceramic Society, vol. 67, pp. 57-60, 1984.
    連結:
  23. [29] B. R. Lawn, T. P. Dabbs, and C. J. Fairbanks, "Kinetics of shear-activated indentation crack initiation in soda-lime glass," Journal of Materials Science, vol. 18, pp. 2785-2797, 1983.
    連結:
  24. [30] R. F. Cook and D. R. Clarke, "Fracture stability, R-curves and strength variability," Acta metallurgica, vol. 36, pp. 555-562, 1988.
    連結:
  25. [31] R. Tandon and D. J. Green, "Crack Stability and T‐Curves Due to Macroscopic Residual Compressive Stress Profiles," Journal of the American Ceramic Society, vol. 74, pp. 1981-1986, 1991.
    連結:
  26. [33] V. M. Sglavo, L. Larentis, and D. J. Green, "Flaw‐Insensitive Ion‐Exchanged Glass: I, Theoretical Aspects," Journal of the American Ceramic Society, vol. 84, pp. 1827-1831, 2001.
    連結:
  27. [34] T. M. Gross, "Scratch damage in ion-exchanged alkali aluminosilicate glass: crack evolution and the dependence of lateral cracking threshold on contact geometry," Fractography of advanced ceramics and glasses VI, pp. 113-122, 2012.
    連結:
  28. [35] B. R. Lawn and M. V. Swain, "Microfracture beneath point indentations in brittle solids," Journal of Materials Science, vol. 10, pp. 113-122, 1975.
    連結:
  29. [38] 許又升, "LCD玻璃基板之振動輔助劃線切割技術及原理," 碩士論文, 機械工程學系, 國立台灣大學, 2008.
    連結:
  30. [44] T. Ono and K. Tanaka, "Theoretical and quantitative evaluation of the cuttability of AMLCD glass substrates using a four-point-bending test," Journal of the Society for Information Display, vol. 7, pp. 207-212, 1999.
    連結:
  31. [45] T. Ono and K. Tanaka, "Effect of Scribing Wheel Dimensions on the Cutting of LCD Glass Substrates," SID Symposium Digest of Technical Papers, vol. 31, pp. 156-163, 2000.
    連結:
  32. [46] Y. S. Liao, G. M. Yang, and Y. S. Hsu, "Effect of geometrical characteristics of a scribing wheel on the bending strength of LCD glass substrates," Journal of the Society for Information Display, vol. 17, pp. 287-291, 2009.
    連結:
  33. [47] Y. S. Liao, G. M. Yang, and Y. S. Hsu, "Vibration assisted scribing process on LCD glass substrate," International Journal of Machine Tools and Manufacture, vol. 50, pp. 532-537, 2010.
    連結:
  34. [48] B. Lawn and R. Wilshaw, "Indentation fracture: principles and applications," Journal of Materials Science, vol. 10, pp. 1049-1081, 1975.
    連結:
  35. [49] G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical Evaluation of Indentation Techniques for Measuring Fracture Toughness: I, Direct Crack Measurements," Journal of the American Ceramic Society, vol. 61, pp. 533-538, 1981.
    連結:
  36. [50] D. B. Marshall, B. R. Lawn, and A. G. Evans, "Elastic/Plastic Indentation Damage in Ceramics: The Lateral Crack System," Journal of the American Ceramic Society, vol. 65, pp. 561-566, 1982.
    連結:
  37. [51] T. Ono and K. Tanaka, "Theoretical and quantitative evaluation of the cuttability of AMLCD glass substrates using a four-point-bending test," Journal of the Society for Information Display, vol. 7, pp. 207-212, 1999.
    連結:
  38. [52] B. Lawn and R. Wilshaw, "Indentation fracture: principles and applications," Journal of Materials Science, vol. 10, pp. 1049-1081, 1975.
    連結:
  39. [54] S. Yoshida, H. Sawasato, T. Sugawara, Y. Miura, and J. Matsuoka, "Effects of indenter geometry on indentation-induced densification of soda-lime glass," Journal of Materials Research, vol. 25, pp. 2203-2211, 2010.
    連結:
  40. [2] D. R. Uhlmann, "Elasticity and Strength in Glasses:Academic Press," Glass: Science and Technology, vol. vol. 5, 1980.
  41. [8] D. Walton, N. Shashidhar, and J. Amin, "Specialty Glass: A New Design Element In Consumer Electronics " Electronic Design, vol. 58, pp. 70-73, 2010.
  42. [10] A. K. VARSHNEYA and I. M. SPINELLI, "High-strength, large-case-depth chemically strengthened lithium aluminosilicate glass," American Ceramic Society bulletin, vol. 88, pp. 27-33, 2009.
  43. [20] L. Sasaki Glass Co., "Laser beam glass cutting," United States Patent, 1987.
  44. [23] J. Bousinesq, "Application des Potentiels a l'Etude de l'Equilibre et du Mouvement des Solides Elastiques," Gauthier-Villars, pp. 398-402, 1885.
  45. [24] H. Hertz and J. R. Angew, "Hertz's Miscellaneous Papers," Macmillan Co. Ltd, p. chs. 5 and 6, 1896.
  46. [32] R. Tandon and D. Green, "Crack stabilization under the influence of residual compressive stress," J. Am. Ceram. Soc, vol. 74, pp. 1981-1986, 1991.
  47. [36] "Fracture Analysis, a Basic Tool to Solve Breakage Issues," Corning Incorporated Technical Information Paper, vol. p. TIP 201, 2004.
  48. [37] M. Yoshida, Y. Ogata, Y. Mochizuki, and M. Kozawa, "Cutting Wheel," Japan Patent 2010-126387, 2010.
  49. [39] S. C. Wang, C. C. Lin, M. S. Chen, and F. Y. Gan, "Glass-strength Dependence of Cutting Conditions in Thin Laminated TFT-LCD," IDW '07 the 14th International Display Workshops, vol. 2, pp. 513-516, 2007.
  50. [40] L. B. C. THK Co., "Scribing device," United States Patent 6,460,257B1, 2001.
  51. [41] L. B. C. THK Co., "Scribing device," United States Patent 6,832,439B2, 2000.
  52. [42] L. B. C. THK Co., "Scribing apparatus," United States Patent 6,536,121B1, 2000.
  53. [43] L. B. C. THK Co., "Scribing method," United States Patent 6,478,206B2, 2000.
  54. [53] T. Ono and Y. Ishida, "Cuttability of AMLCD Glass Substrates," SID Symposium Digest of Technical Papers, vol. 33, pp. 45-47, 2002.