题名

以原子層法製備之奈米複合薄膜於應用於可撓可拉伸阻氣,介電層,與導電層之研究

并列篇名

Atomic Layer Deposition of Nano-laminated Films for use as Flexible and Stretchable Gas Barrier, Dielectrics, and Conductors

DOI

10.6342/NTU201601163

作者

曾銘宏

关键词

原子層沉積 ; 薄膜封裝 ; 可撓曲封裝 ; 可拉伸封裝 ; 超級電容 ; atomic layer deposition ; thin-film encapsulation ; flexible encapsulation ; stretchable encapsulation ; supercapacitor

期刊名称

國立臺灣大學材料科學與工程學系學位論文

卷期/出版年月

2016年

学位类别

博士

导师

蔡豐羽

内容语文

英文

中文摘要

本研究論文使用原子層沈積技術(ALD)與分子層沈積技術(MLD)製備可撓曲性阻氣薄膜,並藉由調控材料表面形貌、改變氧化劑、與添加有機材料來改善與最佳化薄膜之阻氣效果、撓曲度與可拉伸性,且阻氣效果可達OLED封裝需求(10-6 g m-2 day-1)。 本研究發現可藉由調整製程溫度與薄膜厚度來最佳化薄膜之表面形貌,平坦表面形貌之薄膜不僅氣體阻障效果佳,並可改善奈米複合薄膜之氣體滲透率與可撓曲度。 本研究亦使用強氧化劑(雙氧水)來降低阻氣薄膜製程溫度,又由於雙氧水反應性高,因此薄膜雜質少且品質與阻氣效果較佳,並可在低製程溫度下提昇OLED效率且元件封裝壽命與玻璃封裝具有相同效果。本研究亦開發新穎之MLD材料,並與ALD搭配製備有機-無機複合阻氣薄膜,不僅可提昇阻氣效果,並在經撓曲後與拉伸10%後,仍可達OLED封裝要求。 此外,本研究亦使用去合金法製備具有超高表面積多孔洞金屬銀,搭配使用ALD沈積介電層與導電層作為超級電容。與文獻相比,在最佳化去合金與ALD 製程條件後,元件之電容值可達使用相同介電層材料中最高之電容值。

英文摘要

In this dissertation, we used atomic layer deposition (ALD) and molecular deposition technology (MLD) to fabricate flexible and stretchable gas barrier films, and the gas barrier performances were optimized by regulating surface morphology, changing oxidant, adding organic material, and the WVTR of the optimized gas barrier met the requirement for OLED encapsulation (10-6 g m -2 day-1). We discovered that adjusting deposition temperature and thickness could optimize the surface morphology. The films with smooth morphology had low gas permeation rate, and improved ability of barrier and flexibility and stretchability of nano-laminated films. The hydrogen peroxide (H2O2) was used to reduce deposition temperature. The gas barrier by using H2O2 had higher films quality and gas barrier. The low deposition temperature not only prevented thermal degradation but also improved the performance of OLED. The ALD encapsulated OLED was comparable with that encapsulated using a thin glass cover. Finally, we optimized the process of dealloying and ALD process. Compared with other supercapacitor with same dielectric material, the supercapacitors by using nanoporous silver had the highest capacitance.

主题分类 工學院 > 材料科學與工程學系
工程學 > 工程學總論
参考文献
  1. [2] S. T. Lee, Z. Q. Gao, L. S. Hung, Appl. Phys. Lett. 1999, 75, 1404.
    連結:
  2. [8] C.-Y. Chang, C.-T. Chou, Y.-J. Lee, M.-J. Chen, F.-Y. Tsai, Org. Electron. 2009, 10, 1300.
    連結:
  3. [14] J.-S. Park, H. Chae, H. K. Chung, S. I. Lee, Semicond. Sci. Technol. 2011, 26, 034001.
    連結:
  4. [15] C. Bishop, Roll-to-Roll Vacuum Deposition of Barrier Coatings, John Wiley & Sons, 2010.
    連結:
  5. [16] Y. G. Tropsha, N. G. Harvey, J. Phys. Chem. B 1997, 101, 2259.
    連結:
  6. [23] N. Kim, “Fabrication and characterization of thin-film encapsulation for organic electronics,” 2009.
    連結:
  7. [32] G. P. Crawford, Flexible Flat Panel Displays, John Wiley & Sons, Chichester, 2005.
    連結:
  8. [34] Y. Du, S. M. George, J. Phys. Chem. C 2007, 111, 8509.
    連結:
  9. [36] Y. H. Chang, M. L. Huang, P. Chang, C. A. Lin, Y. J. Chu, B. R. Chen, C. L. Hsu, J. Kwo, T. W. Pi, M. Hong, Microelectron. Eng. 2011, 88, 440.
    連結:
  10. [37] S. M. George, B. Yoon, A. A. Dameron, Acc. Chem. Res. 2009, 42, 498.
    連結:
  11. [40] T. Kasai, T. Higashihara, M. Ueda, J. Polym. Sci. Part Polym. Chem. 2013, 51, 1956.
    連結:
  12. [43] D. Choudhury, S. K. Sarkar, Chem. Vap. Depos. 2014, 1521.
    連結:
  13. [46] J. Liu, B. Yoon, E. Kuhlmann, M. Tian, J. Zhu, S. M. George, Y.-C. Lee, R. Yang, Nano Lett. 2013, 1530.
    連結:
  14. [50] M. L. Hammock, A. Chortos, B. C.-K. Tee, J. B.-H. Tok, Z. Bao, Adv. Mater. 2013, 25, 5997.
    連結:
  15. [53] Y. Yu, C. Yan, Z. Zheng, Adv. Mater. 2014, 26, 5508.
    連結:
  16. [54] B. Sun, Y.-Z. Long, Z.-J. Chen, S.-L. Liu, H.-D. Zhang, J.-C. Zhang, W.-P. Han, J. Mater. Chem. C 2014, 2, 1209.
    連結:
  17. [58] F. Xu, M.-Y. Wu, N. S. Safron, S. S. Roy, R. M. Jacobberger, D. J. Bindl, J.-H. Seo, T.-H. Chang, Z. Ma, M. S. Arnold, Nano Lett. 2014, 14, 682.
    連結:
  18. [59] M. Park, J. Park, U. Jeong, Nano Today 2014, 9, 244.
    連結:
  19. [61] S. Zhu, Y. Huang, T. Li, Appl. Phys. Lett. 2014, 104, 173103.
    連結:
  20. [64] J. W. Boley, E. L. White, G. T.-C. Chiu, R. K. Kramer, Adv. Funct. Mater. 2014, 24, 3501.
    連結:
  21. [69] K. M. Holder, B. R. Spears, M. E. Huff, M. A. Priolo, E. Harth, J. C. Grunlan, Macromol. Rapid Commun. 2014, 35, 960.
    連結:
  22. [70] K. B. Shelimov, D. N. Davydov, M. Moskovits, Appl. Phys. Lett. 2000, 77, 1722.
    連結:
  23. [73] H.-C. Han, C.-W. Chong, S.-B. Wang, D. Heh, C.-A. Tseng, Y.-F. Huang, S. Chattopadhyay, K.-H. Chen, C.-F. Lin, J.-H. Lee, L.-C. Chen, Nano Lett. 2013, 13, 1422.
    連結:
  24. [76] A. Wittstock, J. Biener, M. Bäumer, Phys. Chem. Chem. Phys. 2010, 12, 12919.
    連結:
  25. [77] A. Wittstock, J. Biener, M. Bäumer, Phys. Chem. Chem. Phys. 2010, 12, 12919.
    連結:
  26. [78] H. Qiu, Z. Zhang, X. Huang, Y. Qu, ChemPhysChem 2011, 12, 2118.
    連結:
  27. [83] H. Ji, X. Wang, C. Zhao, C. Zhang, J. Xu, Z. Zhang, CrystEngComm 2011, 13, 2617.
    連結:
  28. [85] J. Zhang, C. M. Li, Chem. Soc. Rev. 2012.
    連結:
  29. [89] D. M. Hausmann, R. G. Gordon, J. Cryst. Growth 2003, 249, 251.
    連結:
  30. [90] Y.-Y. Lin, Y.-N. Chang, M.-H. Tseng, C.-C. Wang, F.-Y. Tsai, Nanotechnology 2015, 26, 024005.
    連結:
  31. [93] M.-C. Sun, J.-H. Jou, W.-K. Weng, Y.-S. Huang, Thin Solid Films 2005, 491, 260.
    連結:
  32. [95] H. Ham, J. Park, Y. Kim, Org. Electron. 2011, 12, 2174.
    連結:
  33. [97] G. P. Crawford, Flexible Flat Panel Displays, John Wiley & Sons, 2005.
    連結:
  34. [1] Z. D. Popovic, H. Aziz, N.-X. Hu, A.-M. Hor, G. Xu, Synth. Met. 2000, 111–112, 229.
  35. [3] J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang, J. Shi, Synth. Met. 2000, 111–112, 233.
  36. [4] C. J. Brabec, A. Cravino, D. Meissner, N. S. Sariciftci, M. T. Rispens, L. Sanchez, J. C. Hummelen, T. Fromherz, Thin Solid Films 2002, 403–404, 368.
  37. [5] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, G. Xu, Science 1999, 283, 1900.
  38. [6] S. Cros, R. de Bettignies, S. Berson, S. Bailly, P. Maisse, N. Lemaitre, S. Guillerez, Sol. Energy Mater. Sol. Cells 2011, 95, Supplement 1, S65.
  39. [7] S.-W. Seo, E. Jung, H. Chae, S. M. Cho, Org. Electron. 2012, 13, 2436.
  40. [9] Y.-Q. Yang, Y. Duan, P. Chen, F.-B. Sun, Y.-H. Duan, X. Wang, D. Yang, J. Phys. Chem. C 2013, 117, 20308.
  41. [10] R. Ricciari, M. Bertini, E. P. Ferlito, G. Pizzo, G. Anastasi, D. Mello, G. Franco, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2007, 257, 257.
  42. [11] L. M. Do, E. M. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda, A. J. Ikushima, J. Appl. Phys. 1994, 76, 5118.
  43. [12] N. Kim, W. J. Potscavage, A. Sundaramoothi, C. Henderson, B. Kippelen, S. Graham, Sol. Energy Mater. Sol. Cells 2012, 101, 140.
  44. [13] P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M.-K. Shi, M. Hall, E. Mast, C. Bonham, W. Bennett, M. B. Sullivan, Displays 2001, 22, 65.
  45. [17] A. P. Roberts, B. M. Henry, A. P. Sutton, C. R. M. Grovenor, G. A. D. Briggs, T. Miyamoto, M. Kano, Y. Tsukahara, M. Yanaka, J. Membr. Sci. 2002, 208, 75.
  46. [18] A. G. Erlat, B.-C. Wang, R. J. Spontak, Y. Tropsha, K. D. Mar, D. B. Montgomery, E. A. Vogler, J. Mater. Res. 2000, 15, 704.
  47. [19] A. G. Erlat, R. J. Spontak, R. P. Clarke, T. C. Robinson, P. D. Haaland, Y. Tropsha, N. G. Harvey, E. A. Vogler, J. Phys. Chem. B 1999, 103, 6047.
  48. [20] W. Kowalsky, J. Meyer, P. Görrn, F. Bertram, S. Hamwi, T. Winkler, H.-H. Johannes, T. Weimann, P. Hinze, T. Riedl, Adv. Mater. 2009, 21, 1845.
  49. [21] P. F. Carcia, R. S. McLean, M. H. Reilly, M. D. Groner, S. M. George, Appl. Phys. Lett. 2006, 89, 031915.
  50. [22] R. Paetzold, A. Winnacker, D. Henseler, V. Cesari, K. Heuser, Rev. Sci. Instrum. 2003, 74, 5147.
  51. [24] R. Dunkel, R. Bujas, A. Klein, V. Horndt, Proc. IEEE 2005, 93, 1478.
  52. [25] R. L. Puurunen, J. Appl. Phys. 2005, 97, 121301.
  53. [26] Suntola, Antson, “US Patent 4 058 430 (1977),” .
  54. [27] H. S. Nalwa, Handbook of Thin Film Materials, Academic Press, 2002.
  55. [28] J. Meyer, D. Schneidenbach, T. Winkler, S. Hamwi, T. Weimann, P. Hinze, S. Ammermann, H.-H. Johannes, T. Riedl, W. Kowalsky, Appl. Phys. Lett. 2009, 94, 233305.
  56. [29] P. Görrn, T. Riedl, W. Kowalsky, J. Phys. Chem. C 2009, 113, 11126.
  57. [30] Y. G. Lee, Y.-H. Choi, I. S. Kee, H. S. Shim, Y. Jin, S. Lee, K. H. Koh, S. Lee, Org. Electron. 2009, 10, 1352.
  58. [31] J. R. W. Jr, Multilayer Flexible Packaging: Technology and Applications for the Food, Personal Care, and Over-the-Counter Pharmaceutical Industries, William Andrew, 2009.
  59. [33] T. W. Kim, M. Yan, A. G. Erlat, P. A. McConnelee, M. Pellow, J. Deluca, T. P. Feist, A. R. Duggal, M. Schaepkens, J. Vac. Sci. Technol. A 2005, 23, 971.
  60. [35] N. M. Adamczyk, A. A. Dameron, S. M. George, Langmuir 2008, 24, 2081.
  61. [38] S. Ishchuk, D. H. Taffa, O. Hazut, N. Kaynan, R. Yerushalmi, ACS Nano 2012, 6, 7263.
  62. [39] S. Ishchuk, D. H. Taffa, O. Hazut, N. Kaynan, R. Yerushalmi, ACS Nano 2012, 6, 7263.
  63. [41] M. Leskelä, M. Ritala, O. Nilsen, MRS Bull. 2011, 36, 877.
  64. [42] A. A. Dameron, D. Seghete, B. B. Burton, S. D. Davidson, A. S. Cavanagh, J. A. Bertrand, S. M. George, Chem. Mater. 2008, 20, 3315.
  65. [44] F. Güder, Y. Yang, M. Krüger, G. B. Stevens, M. Zacharias, ACS Appl. Mater. Interfaces 2010, 2, 3473.
  66. [45] A. Sood, P. Sundberg, M. Karppinen, Dalton Trans. 2013, 42, 3869.
  67. [47] M. Park, S. Oh, H. Kim, D. Jung, D. Choi, J.-S. Park, Thin Solid Films 2013, 546, 153.
  68. [48] D. J. Lipomi, B. C.-K. Tee, M. Vosgueritchian, Z. Bao, Adv. Mater. 2011, 23, 1771.
  69. [49] M. S. White, M. Kaltenbrunner, E. D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D. A. M. Egbe, M. C. Miron, Z. Major, M. C. Scharber, T. Sekitani, T. Someya, S. Bauer, N. S. Sariciftci, Nat. Photonics 2013, 7, 811.
  70. [51] S. Bauer, S. Bauer-Gogonea, I. Graz, M. Kaltenbrunner, C. Keplinger, R. Schwödiauer, Adv. Mater. 2014, 26, 149.
  71. [52] H.-J. Chung, M. S. Sulkin, J.-S. Kim, C. Goudeseune, H.-Y. Chao, J. W. Song, S. Y. Yang, Y.-Y. Hsu, R. Ghaffari, I. R. Efimov, J. A. Rogers, Adv. Healthc. Mater. 2014, 3, 59.
  72. [55] H. Cheng, Y. Zhang, K.-C. Hwang, J. A. Rogers, Y. Huang, Int. J. Solids Struct. 2014, 51, 3113.
  73. [56] C. Yan, J. Wang, X. Wang, W. Kang, M. Cui, C. Y. Foo, P. S. Lee, Adv. Mater. 2014, 26, 943.
  74. [57] J. A. Fan, W.-H. Yeo, Y. Su, Y. Hattori, W. Lee, S.-Y. Jung, Y. Zhang, Z. Liu, H. Cheng, L. Falgout, M. Bajema, T. Coleman, D. Gregoire, R. J. Larsen, Y. Huang, J. A. Rogers, Nat. Commun. 2014, 5, 3266.
  75. [60] X. Huang, Y. Liu, K. Chen, W.-J. Shin, C.-J. Lu, G.-W. Kong, D. Patnaik, S.-H. Lee, J. F. Cortes, J. A. Rogers, Small 2014, 10, 3083.
  76. [62] D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. Hyeon, D.-H. Kim, Nat. Nanotechnol. 2014, 9, 397.
  77. [63] S. Savagatrup, A. D. Printz, T. F. O’Connor, A. V. Zaretski, D. J. Lipomi, Chem. Mater. 2014, 26, 3028.
  78. [65] S. Han, S. Hong, J. Ham, J. Yeo, J. Lee, B. Kang, P. Lee, J. Kwon, S. S. Lee, M.-Y. Yang, S. H. Ko, Adv. Mater. 2014, n/a.
  79. [66] J. T. Muth, D. M. Vogt, R. L. Truby, Y. Mengüç, D. B. Kolesky, R. J. Wood, J. A. Lewis, Adv. Mater. 2014, 26, 6307.
  80. [67] A. Chortos, J. Lim, J. W. F. To, M. Vosgueritchian, T. J. Dusseault, T.-H. Kim, S. Hwang, Z. Bao, Adv. Mater. 2014, 26, 4253.
  81. [68] F. Xiang, S. M. Ward, T. M. Givens, J. C. Grunlan, ACS Macro Lett. 2014, 3, 1055.
  82. [71] A. S. Aricò, P. Bruce, B. Scrosati, J.-M. Tarascon, W. van Schalkwijk, Nat. Mater. 2005, 4, 366.
  83. [72] M. Kemell, M. Ritala, M. Leskelä, E. Ossei-Wusu, J. Carstensen, H. Föll, Microelectron. Eng. 2007, 84, 313.
  84. [74] P. Banerjee, I. Perez, L. Henn-Lecordier, S. B. Lee, G. W. Rubloff, Nat Nano 2009, 4, 292.
  85. [75] C. L. Pint, N. W. Nicholas, S. Xu, Z. Sun, J. M. Tour, H. K. Schmidt, R. G. Gordon, R. H. Hauge, Carbon 2011.
  86. [79] X. Wang, Z. Qi, C. Zhao, W. Wang, Z. Zhang, J Phys Chem C 2009, 113, 13139.
  87. [80] Z. Qi, C. Zhao, X. Wang, J. Lin, W. Shao, Z. Zhang, X. Bian, J. Phys. Chem. C 2009, 113, 6694.
  88. [81] Y. H. Tan, J. A. Davis, K. Fujikawa, N. V. Ganesh, A. V. Demchenko, K. J. Stine, J. Mater. Chem. 2012, 22, 6733.
  89. [82] W. Liu, S. Zhang, N. Li, S. An, J. Zheng, Int. J. Electrochem. Sci. 2012, 7, 9707.
  90. [84] M. M. Biener, J. Biener, A. Wichmann, A. Wittstock, T. F. Baumann, M. Bäumer, A. V. Hamza, Nano Lett. 2011, 11, 3085.
  91. [86] E. Detsi, Z. Vuković, S. Punzhin, P. M. Bronsveld, P. R. Onck, J. T. M. D. Hosson, CrystEngComm 2012, 14, 5402.
  92. [87] J.-H. Jou, Y.-S. Chiu, C.-P. Wang, R.-Y. Wang, H.-C. Hu, Appl. Phys. Lett. 2006, 88, 193501.
  93. [88] V. Miikkulainen, M. Leskelä, M. Ritala, R. L. Puurunen, J. Appl. Phys. 2013, 113, 021301.
  94. [91] T. J. Park, J. H. Kim, J. H. Jang, U. K. Kim, S. Y. Lee, J. Lee, H. S. Jung, C. S. Hwang, Chem. Mater. 2011, 23, 1654.
  95. [92] J. Meyer, H. Schmidt, W. Kowalsky, T. Riedl, A. Kahn, Appl. Phys. Lett. 2010, 96, 243308.
  96. [94] M. A. Mohd Sarjidan, S. H. Basri, W. H. Abd Majid, Adv. Mater. Res. 2013, 795, 110.
  97. [96] J. Durner, M. Stojanovic, E. Urcan, W. Spahl, U. Haertel, R. Hickel, F.-X. Reichl, Dent. Mater. 2011, 27, 573.
  98. [98] E. Detsi, E. De Jong, A. Zinchenko, Z. Vuković, I. Vuković, S. Punzhin, K. Loos, G. ten Brinke, H. A. De Raedt, P. R. Onck, J. T. M. De Hosson, Acta Mater. 2011, 59, 7488.