题名

壓電能量擷取振子有限元素模型之實驗驗證與等效參數模擬評估

并列篇名

Finite Element Model of a Piezoelectric Energy Harvester Experimental Validation and Numerical Evaluation of Equivalent Parameters

DOI

10.6342/NTU201601184

作者

余帝嶢

关键词

壓電振動能量擷取系統 ; 有限元素法 ; 力電耦合 ; 標準整流電路 ; 並聯式之同步切換開關電感整流電路 ; Piezoelectric energy harvesting system ; Finite element ; Standard rectified interface ; Parallel synchronized switch harvesting on inductor

期刊名称

臺灣大學應用力學研究所學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

舒貽忠

内容语文

繁體中文

中文摘要

本論文主要可分為兩大部分,第一是為利用有限元素法分析多種量測系統等效參數的方法及其優劣性與準確度。第二是則是針對搭配整流電路的壓電振動試樣之有限元素模型並進行實驗之驗證。 第一部分:利用有限元素法建立出一個壓電振動模型,以此模型透過三種不同方法所得到的系統等效參數之輸出功率結果做討論。此三種方法分別為1.純能量法解法、2.有限元素數值模擬搭配能量法解法、3.等效電路解法。純能量法透過漢米爾頓定理與瑞利-里茲逼近法來求得系統等效參數,在中強力電耦合有不錯的精確度,但在材料參數不完整或是模型具有其他幾何形狀時將導致模態函數不易求得,純能量法將不適用。有限元素數值模擬搭配能量法在強中弱力電耦合皆具有優良的精準度,但此方法需要搭配一部分純能量法解法之公式。最後,等效電路解法在強中弱力電耦合情況皆具有優良的精準度,但此方法僅能求出壓電振動系統中的電學結果,無法得到力學方面的結果。 第二部分:利用壓電振動子試樣,將壓電振動材料參數輸入於有限元素法後建立出具有整流電路之有限元素模型並實際操作壓電振動懸臂樑之實驗結果相互驗證。而實驗當中的壓電振動懸臂樑試樣的後端介面電路包含了交流電路、標準整流電路、並聯式之同步切換開關電感整流電路(Parallel Synchronized Switch Harvesting on Inductor,P-SSHI)三種。最後得到其實驗結果與有限元素軟體之數值模擬解結果吻合且趨勢一致。

英文摘要

This thesis discusses some problems in piezoelectric energy harvesting based on certain finite element (FE) models. It consists of two parts. The first part uses the FE simulation for performance evaluation of different methods used for deriving the equivalent parameters of a piezoelectric energy harvesting system. The second part is to perform the experiment for validating the FE model of a rectified piezoelectric energy harvesting system. Specifically, there are three methods for finding the equivalent system parameters. The first one is based on the Hamiltonian energy principle and the Rayleigh-Ritz approximation. While all the parameters can be derived analytically, they can only be evaluated if the material properties of a device are known in advanced. In addition, the modal function used in Rayleigh-Ritz approximation may not be available for the case of irregular geometry of piezoelectric elements. The second one is based on the finite element simulation of a piezoelectric system together with the prescribed equivalent mass and force parameters derived from the energy formulation. This approach shows good accuracy, but it needs some parameters from the energy approach. Finally, the third approach is based on the equivalent circuit model. It shows very good accuracy in various magnitudes of electromechanical couplings. However, only the electric parameters can be revealed from this approach. The second part is to develop an experiment setting for validating the FE model of a rectified piezoelectric energy harvesting system proposed by Prof. Shu’s research group. A piezoelectric cantilevered bimorph is used and the interface circuits include the AC circuit, the standard rectified interface and the parallel synchronized switch harvesting on inductor (P-SSHI) circuit. The experimental results agree quite well with the proposed finite element simulations.

主题分类 基礎與應用科學 > 物理
工學院 > 應用力學研究所
参考文献
  1. [1] A. Erturk and D. J. Inman (2008) Issues in mathematical modeling of piezoelectric energy harvesters. Smart Materials and Structures. 17 065016
    連結:
  2. [2] L. K. Jeffrey and A. George (2009) A low-order model for the design of piezoelectric energy harvesting devices. Material Systems and Structures. 20 495–504
    連結:
  3. [3] P. Shashank (2005) Modeling of electric energy harvesting using piezoelectric windmill Applied Physics Letters. 87 184101
    連結:
  4. [4] S.O. Thiago (2009) On the reduced-order modeling of energy harvesters. Journal of Intelligent Material Systems and Structures. 20 2003–16
    連結:
  5. [5] Y.C. Shu and I.C. Lien (2006) Efficiency of energy conversion for a piezoelectric power harvesting system. Journal of Micromechanics and Microengineering. 16 2429–38
    連結:
  6. [6] W. Quan and W. Nan (2012) Optimal design of a piezoelectric coupled beam for power harvesting. Smart Materials and Structures. 21 085013
    連結:
  7. [7] M.A. Karami , B. Onur , J. Inman Daniel and I. Friswell Michael (2011) Experimental and analytical parametric study of singlecrystal unimorph beams for vibration energy harvesting. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 58 1508–20
    連結:
  8. [8] M. Alex , M. Kee. S. and Y. Jingang. (2009) A vibration-based PMNPT energy harvester. IEEE Sensors Journal. 9 731–9
    連結:
  9. [9] S. R. Oh , T. C. Wong , C. Y. Tan , K. Yao and F. E. Tay (2014) Fabrication of piezoelectric polymer multilayers on flexible substrates for energy harvesting. Smart Materials and Structures. 23 015013
    連結:
  10. [10] P. H. Hsieh , C. H. Chen and H. C. Chen (2015) Improving the scavenged power of nonlinear piezoelectric energy harvesting interface at off-resonance by introducing switching delay. IEEE Transactions on Power Electronics. 30 3142–55
    連結:
  11. [11] M. Lallart and D. Guyomar (2008) An optimized self-powered switching circuit for non-linear energy harvesting with low voltage output. Smart Materials and Structures. 17 035030
    連結:
  12. [12] J. R. Liang and W. H. Liao (2012) Impedance modeling and analysis for piezoelectric energy harvesting systems IEEE/ASME Transactions on Mechatronics 17 1145–57
    連結:
  13. [13] J. R. Liang and W. H. Liao (2012) Improved design and analysis of self-powered synchronized switch interface circuit for piezoelectric energy harvesting systems IEEE Transactions on Industrial Electronics. 59 1950–60
    連結:
  14. [14] I. C. Lien, Y. C.Shu , W. J. Wu, S. M. Shiu and H. C. Lin (2010) Revisit of series-SSHI with comparisons to other interfacing circuits in piezoelectric energy harvesting. Smart Materials and Structures. 19 125009
    連結:
  15. [15] Y. Liu, G. Tian , Y. Wang, J. Lin , Q. Zhang and H. F. Hofmann (2009) Active piezoelectric energy harvesting: general principle and experimental demonstration. Journal of Intelligent Material Systems and Structures. 20 575–85
    連結:
  16. [16] J. T. Scruggs (2009) An optimal stochastic control theory for distributed energy harvesting networks. Journal of Sound and Vibration. 320 707–25
    連結:
  17. [17] Y. C. Shu and I. C. Lien (2006) Analysis of power output for piezoelectric energy harvesting systems. Smart Materials and Structures. 15 1499–512
    連結:
  18. [18] Y. C. Shu , I. C. Lien and W. J. Wu (2007) An improved analysis of the SSHI interface in piezoelectric energy harvesting. Smart Materials and Structures. 16 2253–64
    連結:
  19. [19] A. M. Wickenheiser and E. Garcia (2010) Power optimization of vibration energy harvesters utilizing passive and active circuits. Journal of Intelligent Material Systems and Structures. 21 1343–61
    連結:
  20. [20] A. Erturk, J. M. Renno and D. J. Inman (2009) Modeling of piezoelectric energy harvesting from an L-shaped beammass structure with an application to UAVs. Journal of Intelligent Material Systems and Structures 20 529–44
    連結:
  21. [21] M. Zhu, E. Worthington and J. Njuguna (2009) Analyses of power output of piezoelectric energy-harvesting devices directly connected to a load resistor using a coupled piezoelectric-circuit finite element method. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency. 56 1309–18
    連結:
  22. [22] A. Abdelkefi , N. Barsallo, L. Tang, Y. Yang and M. R. Hajj (2014) Modeling, validation, and performance of low-frequency piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures. 25 1429–44
    連結:
  23. [23] J. Schoeftner and G. Buchberger (2013) A contribution on the optimal design of a vibrating cantilever in a power harvesting application—optimization of piezoelectric layer distributions in combination with advanced harvesting circuits. Engineering Structures. 53 92–101
    連結:
  24. [24] X. Xiong and S. O. Oyadiji (2014) Modal electromechanical optimization of cantilevered piezoelectric vibration energy harvesters by geometric variation. Journal of Intelligent Material Systems and Structures. 25 1177–95
    連結:
  25. [25] C. D. Marqu Jr. , A. Erturk and D. J. Inman (2009) An electromechanical finite element model for piezoelectric energy harvester plates. Journal of Sound and Vibration. 327 9–25
    連結:
  26. [26] J. E. Kim and Y. Y. Kim (2011) Analysis of piezoelectric energy harvesters of a moderate aspect ratio with a distributed tip mass. Journal of Vibration and Acoustics. 133 041010
    連結:
  27. [27] M. F. Lumentut and I. M. Howard (2014) Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offsand under base excitations. Smart Materials and Structures. 23 095037
    連結:
  28. [28] N. G. Elvin and A. A. Elvin (2009) A coupled finite element circuit simulation model for analyzing piezoelectric energy generators. Journal of Intelligent Material Systems and Structures. 20 587–95
    連結:
  29. [29] Y. Yang and L. Tang (2009) Equivalent circuit modeling of piezoelectric energy harvesters. Journal of Intelligent Material Systems and Structures. 20 2223–35
    連結:
  30. [30] I. C. Lien and Y. C. Shu (2012) Array of piezoelectric energy harvesting by equivalent impedance approach. Smart Materials and Structures.21 082001
    連結:
  31. [31] P. H. Wu and Y. C. Shu (2015) Finite element modeling of electrically rectified piezoelectric energy harvesters. Smart Materials and Structures. 24 094008
    連結:
  32. [32] 連益慶(2011), 陣列式壓電能量擷取系統在多種介面電路下之動態特性分析. 台灣大學應用力學研究所博士論文.
    連結:
  33. [33] 連益慶(2005), 壓電能量擷取系統之分析研究. 台灣大學應力所碩士論文.
    連結:
  34. [34] ANSI/IEEE Standard 176-1987 IEEE Standard on Piezoelectricity.
    連結:
  35. [35] Singiresu S.Rao. Mechanical Vibrations.
    連結:
  36. [36] Ikeda, T. 1990. Fundamentals of Piezoelectricity, Oxford University Press,Oxford.
  37. [37] 莊欽雄(2015), 陣列式壓電能量擷取系統之半自動化人機介面設計. 台灣大學應力所碩士論文.