题名

含咔啉之矽苯衍生物合成、性質探討及其在藍色磷光有機發光二極體之應用

并列篇名

Synthesis and Characterization of Carboline Substituted Arylsilane and Application in Blue Phosphorescent Organic Light Emitting Diodes

DOI

10.6342/NTU201601219

作者

黃瓊慧

关键词

矽苯 ; 咔唑 ; 咔啉 ; 主發光體材料 ; 有機發光二極體(OLED) ; Arylsilane ; carbazole ; carboline ; host ; OLED

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

梁文傑

内容语文

繁體中文

中文摘要

我們設計了一系列以tetraphenylsilane分子為中心,嘗試藉由控制咔唑 (carbazole) 及咔啉 (carboline) 基團數目以平衡主發光體中電子電洞對之傳輸速率。除此之外,亦比較了不同位置氮原子對磷光有機發光二極體元件表現的影響。利用矽苯基阻斷分子共軛系統,可成功維持主發光體材料所需的高三重態能隙,並具備高熱穩定性的優點。我們同時針對這系列化合物進行光物理及電化學性質的比較與探討,並將所得之主體摻雜客發光體FIrpic,應用於藍色磷光有機發光二極體元件的製作。結果顯示一系列咔啉因結構差異,造成主發光體在螢光及磷光放射光譜之差別,亦表現於電化學性質上。而在元件表現上,以化合物12為主發光體的藍光元件表現最佳,在電荷密度20 mA/cm2時的驅動電壓為 7.71 V;於操作電壓3.5 V時可達最大亮度13280 cd/m2,最大發光效率56.08 cd/A,最大發光功率50.04 lm/W,最大外部量子效率為26.02%。

英文摘要

We synthesized a series of carboline derivatives combined with tetraphenylsilane as host materials for blue phosphorescent organic light emitting diodes. In this thesis, we introduce tetraphenylsilane group to interrupt the conjugation length,and expect to maintain the high triplet energy and stable thermal properties. Additionly,we try to balance the electron and hole transporting abilities by adjusting the group numbers of carboline and carbazole.We also want to figure out the effect of position of nitrogen in carboline how to affect the device performance of PhOLED. The difference reflects on photophysical and electrochemical properties are also discussed. The PhOLED device shows that compound 12 as host material exists the better performance than other compounds in the device dopant 21% Firpic.It exhibitied the turn-on voltage at 20 mA/cm2 was 7.71 V, maximum luminance value (13280 cd/m2), the maximum current efficiency (56.08 cd/A), the maximum power efficiency (50.04 lm/W),and the maximum external quantum efficiency (26.02 %).

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. 2. Pope, M.; Kallmann, H.; Magnante, P., Electroluminescence in organic crystals. The Journal of Chemical Physics 1963, 38 (8), 2042-2043.
    連結:
  2. 3. Tang, C. W.; VanSlyke, S. A., Organic electroluminescent diodes. Applied Physics Letters 1987, 51 (12), 913.
    連結:
  3. 4. Tang, C.; VanSlyke, S.; Chen, C., Electroluminescence of doped organic thin films. Journal of Applied Physics 1989, 65 (9), 3610-3616.
    連結:
  4. 6. Burroughes, J. H. B., D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B.,, Light-emitting diodes based on conjugated polymers. Nature. 1990, 347, 539-541.
    連結:
  5. 7. Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J., Polymer photovoltiac cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 1995, 270 (5243), 1789.
    連結:
  6. 8. Dodabalapur, A., Highlights in Condensed Matter Physics and Materials ScienceOrganic light emitting diodes. Solid State Communications 1997, 102 (2), 259-267.
    連結:
  7. 9. Baldo, M. A.; O'Brien, D. F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M. E.; Forrest, S. R., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395 (6698), 151-154.
    連結:
  8. 10. O’Brien, D. F.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Improved energy transfer in electrophosphorescent devices. Applied Physics Letters 1999, 74 (3), 442-444.
    連結:
  9. 11. Baldo, M. A.; Adachi, C.; Forrest, S. R., Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Physical Review B 2000, 62 (16), 10967-10977.
    連結:
  10. 13. Ishii, H.; Sugiyama, K.; Ito, E.; Seki, K., Energy level alignment and interfacial electronic structures at organic/metal and organic/organic interfaces. Advanced Materials 1999, 11 (8), 605-625.
    連結:
  11. 14. Forster, T., 10th Spiers Memorial Lecture. Transfer mechanisms of electronic excitation. Discussions of the Faraday Society 1959, 27 (0), 7-17.
    連結:
  12. 15. Dexter, D. L., A Theory of Sensitized Luminescence in Solids. The Journal of Chemical Physics 1953, 21 (5), 836-850.
    連結:
  13. 16. Ishida, T.; Kobayashi, H.; Nakato, Y., Structures and properties of electron‐beam‐evaporated indium tin oxide films as studied by x‐ray photoelectron spectroscopy and work‐function measurements. Journal of Applied Physics 1993, 73 (9), 4344-4350.
    連結:
  14. 17. Kim, J. S.; Granstrom, M.; Friend, R. H.; Johansson, N.; Salaneck, W. R.; Daik, R.; Feast, W. J.; Cacialli, F., Indium–tin oxide treatments for single- and double-layer polymeric light-emitting diodes: The relation between the anode physical, chemical, and morphological properties and the device performance. Journal of Applied Physics 1998, 84 (12), 6859-6870.
    連結:
  15. 21. Shirota, Y., Organic materials for electronic and optoelectronic devices. Journal of Materials Chemistry 2000, 10 (1), 1-25.
    連結:
  16. 22. Wakimoto, T.; Fukuda, Y.; Nagayama, K.; Yokoi, A.; Nakada, H.; Tsuchida, M., Organic EL cells using alkaline metal compounds as electron injection materials. IEEE Transactions on Electron Devices 1997, 44 (8), 1245-1248.
    連結:
  17. 23. Adachi, C.; Tsutsui, T.; Saito, S., Organic electroluminescent device having a hole conductor as an emitting layer. Applied Physics Letters 1989, 55 (15), 1489-1491.
    連結:
  18. 24. Junji, K.; Chikau, O.; Kenichi, H.; Katsuro, O.; Katsutoshi, N., 1,2,4-Triazole Derivative as an Electron Transport Layer in Organic Electroluminescent Devices. Japanese Journal of Applied Physics 1993, 32 (7A), L917.
    連結:
  19. 25. Shi, J. T., C. W.; Chen, C. H., US Patent 5 1997, 646, 948.
    連結:
  20. 26. Yang, J.; Huang, J.; Li, Q.; Li, Z., Blue AIEgens: approaches to control the intramolecular conjugation and the optimized performance of OLED devices. J. Mater. Chem. C 2016, 4 (14), 2663-2684.
    連結:
  21. 28. Adachi, C.; Kwong, R. C.; Djurovich, P.; Adamovich, V.; Baldo, M. A.; Thompson, M. E.; Forrest, S. R., Endothermic energy transfer: A mechanism for generating very efficient high-energy phosphorescent emission in organic materials. Applied Physics Letters 2001, 79 (13), 2082-2084.
    連結:
  22. 29. Wang, Q.; Wu, Z.; Zhao, Y.; Chen, J.; Ma, D., Improving lifetime of phosphorescent organic light-emitting diodes by using a non-conjugated hybrid host. Organic Electronics 2016, 32, 21-26.
    連結:
  23. 30. Kim, S. M.; Kim, J. H.; Jeon, S. K.; Lee, J. Y., Molecular design of host materials for stable blue phosphorescent organic light-emitting diodes. Dyes and Pigments 2016, 125, 274-281.
    連結:
  24. 31. Seo, J.-A.; Jeon, S. K.; Lee, J. Y., Acridine derived stable host material for long lifetime blue phosphorescent organic light-emitting diodes. Organic Electronics 2016, 34, 33-37.
    連結:
  25. 32. Liu, D.; Li, D.; Wang, M.; Li, W., 1,2,4-Triazole-containing bipolar hosts for blue and green phosphorescent organic light-emitting diodes. J. Mater. Chem. C 2016.
    連結:
  26. 33. Lin, G.; Peng, H.; Chen, L.; Nie, H.; Luo, W.; Li, Y.; Chen, S.; Hu, R.; Qin, A.; Zhao, Z.; Tang, B. Z., Improving Electron Mobility of Tetraphenylethene-Based AIEgens to Fabricate Nondoped Organic Light-Emitting Diodes with Remarkably High Luminance and Efficiency. ACS Appl Mater Interfaces 2016, 8 (26), 16799-808.
    連結:
  27. 34. Lin, T.-A.; Chatterjee, T.; Tsai, W.-L.; Lee, W.-K.; Wu, M.-J.; Jiao, M.; Pan, K.-C.; Yi, C.-L.; Chung, C.-L.; Wong, K.-T.; Wu, C.-C., Sky-Blue Organic Light Emitting Diode with 37% External Quantum Efficiency Using Thermally Activated Delayed Fluorescence from Spiroacridine-Triazine Hybrid. Advanced Materials 2016.
    連結:
  28. 35. Udagawa, K.; Sasabe, H.; Cai, C.; Kido, J., Low-driving-voltage blue phosphorescent organic light-emitting devices with external quantum efficiency of 30%. Adv Mater 2014, 26 (29), 5062-5066.
    連結:
  29. 36. Cho, H.; Lee, J.; Lee, J.-I.; Cho, N. S.; Park, J. H.; Lee, J. Y.; Kang, Y., Phenylimidazole-based homoleptic iridium(III) compounds for blue phosphorescent organic light-emitting diodes with high efficiency and long lifetime. Organic Electronics 2016, 34, 91-96.
    連結:
  30. 37. Chan, L. H.; Yeh, H. C.; Chen, C. T., Blue Light-Emitting Devices Based on Molecular Glass Materials of Tetraphenylsilane Compounds. Advanced Materials 2001, 13 (21), 1637-1641.
    連結:
  31. 38. Ren, X.; Li, J.; Holmes, R. J.; Djurovich, P. I.; Forrest, S. R.; Thompson, M. E., Ultrahigh Energy Gap Hosts in Deep Blue Organic Electrophosphorescent Devices. Chemistry of Materials 2004, 16 (23), 4743-4747.
    連結:
  32. 39. Hu, D.; Lu, P.; Wang, C.; Liu, H.; Wang, H.; Wang, Z.; Fei, T.; Gu, X.; Ma, Y., Silane coupling di-carbazoles with high triplet energy as host materials for highly efficient blue phosphorescent devices. Journal of Materials Chemistry 2009, 19 (34), 6143-6148.
    連結:
  33. 40. Hu, D.; Cheng, G.; Liu, H.; Lv, Y.; Lu, P.; Ma, Y., Carbazole/oligocarbazoles substituted silanes as wide bandgap host materials for solution-processable electrophosphorescent devices. Organic Electronics 2012, 13 (12), 2825-2831.
    連結:
  34. 42. 楊萬璽. 含矽的噁唑基團且具有高三重態能階之小分子合成、性質探討及其在藍色磷光有機發光二極體上的應用. 台灣大學, 2012.
    連結:
  35. 43. Fukagawa, H.; Yokoyama, N.; Irisa, S.; Tokito, S., Pyridoindole derivative as electron transporting host material for efficient deep-blue phosphorescent organic light-emitting diodes. Adv Mater 2010, 22 (42), 4775-4578.
    連結:
  36. 44. Su, S.-J.; Gonmori, E.; Sasabe, H.; Kido, J., Highly Efficient Organic Blue-and White-Light-Emitting Devices Having a Carrier- and Exciton-Confining Structure for Reduced Efficiency Roll-Off. Advanced Materials 2008, 20 (21), 4189-4194.
    連結:
  37. 45. Motoyama, T.; Sasabe, H.; Seino, Y.; Takamatsu, J.-i.; Kido, J., An α-Carboline-containing Host Material for High-efficiency Blue and Green Phosphorescent OLEDs. Chemistry Letters 2011, 40 (3), 306-308.
    連結:
  38. 46. Lee, C. W.; Lee, J. Y., Above 30% external quantum efficiency in blue phosphorescent organic light-emitting diodes using pyrido[2,3-b]indole derivatives as host materials. Adv Mater 2013, 25 (38), 5450-5454.
    連結:
  39. 47. Lee, C. W.; Im, Y.; Seo, J. A.; Lee, J. Y., Carboline derivatives with an ortho-linked terphenyl core for high quantum efficiency in blue phosphorescent organic light-emitting diodes. Chem Commun 2013, 49 (84), 9860-9862.
    連結:
  40. 48. Yang, J. W.; Lee, J. Y., Pyridoindole modified carbazole compounds as high triplet energy host materials of imidazole derived blue triplet emitters for high quantum efficiency. Organic Electronics 2015, 22, 74-80.
    連結:
  41. 49. (a) Kang, J. S.; Hong, T. R.; Kim, H. J.; Son, Y. H.; Lampande, R.; Kang, B. Y.; Lee, C.; Bin, J.-K.; Lee, B. S.; Yang, J. H.; Kim, J.; Park, S.; Cho, M. J.; Kwon, J. H.; Choi, D. H., High-performance bipolar host materials for blue TADF devices with excellent external quantum efficiencies. J. Mater. Chem. C 2016, 4 (20), 4512-4520; (b) Im, Y.; Lee, J. Y., Effect of the position of nitrogen in pyridoindole on photophysical properties and device performances of alpha-, beta-, gamma-carboline based high triplet energy host materials for deep blue devices. Chem Commun 2013, 49 (53), 5948-5950; (c) Zhang, Z.; Xie, J.; Wang, Z.; Shen, B.; Wang, H.; Li, M.; Zhang, J.; Cao, J., Manipulation of electron deficiency of δ-carboline derivatives as bipolar hosts for blue phosphorescent organic light-emitting diodes with high efficiency at 1000 cd m−2. J. Mater. Chem. C 2016, 4 (19), 4226-4235.
    連結:
  42. 52. Liang, Y.; Feng, D.; Wu, Y.; Tsai, S.-T.; Li, G.; Ray, C.; Yu, L., Highly Efficient Solar Cell Polymers Developed via Fine-Tuning of Structural and Electronic Properties. Journal of the American Chemical Society 2009, 131 (22), 7792-7799.
    連結:
  43. 55. He, J.; Liu, H.; Dai, Y.; Ou, X.; Wang, J.; Tao, S.; Zhang, X.; Wang, P.; Ma, D., Nonconjugated Carbazoles: A Series of Novel Host Materials for Highly Efficient Blue Electrophosphorescent OLEDs. The Journal of Physical Chemistry C 2009, 113 (16), 6761-6767.
    連結:
  44. 56. Chen, P.; Wang, L.-P.; Tan, W.-Y.; Peng, Q.-M.; Zhang, S.-T.; Zhu, X.-H.; Li, F., Delayed Fluorescence in a Solution-Processable Pure Red Molecular Organic Emitter Based on Dithienylbenzothiadiazole: A Joint Optical, Electroluminescence, and Magnetoelectroluminescence Study. ACS Applied Materials & Interfaces 2015, 7 (4), 2972-2978.
    連結:
  45. 1. 黃孝文, 陳金鑫., OLED-夢幻顯示器.
  46. 5. (a) Friend, R.; Gymer, R.; Holmes, A.; Burroughes, J.; Marks, R.; Taliani, C.; Bradley, D.; Dos Santos, D.; Bredas, J.; Logdlund, M., Electroluminescence in conjugated polymers. Nature 1999, 397 (6715), 121-128; (b) Dimitrakopoulos, C. D.; Malenfant, P. R., Organic thin film transistors for large area electronics. Advanced Materials 2002, 14 (2), 99-117.
  47. 12. (a) Holmes, R. J.; Forrest, S. R.; Tung, Y.-J.; Kwong, R. C.; Brown, J. J.; Garon, S.; Thompson, M. E., Blue organic electrophosphorescence using exothermic host-guest energy transfer. Applied Physics Letters 2003, 82 (15), 2422-2424; (b) Holmes, R. J.; D’Andrade, B. W.; Forrest, S. R.; Ren, X.; Li, J.; Thompson, M. E., Efficient, deep-blue organic electrophosphorescence by guest charge trapping. Applied Physics Letters 2003, 83 (18), 3818-3820.
  48. 18. (a) Shirota, Y.; Kuwabara, Y.; Inada, H.; Wakimoto, T.; Nakada, H.; Yonemoto, Y.; Kawami, S.; Imai, K., Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4‘‐tris(3‐methylphenylphenylamino)triphenylamine, as a hole transport material. Applied Physics Letters 1994, 65 (7), 807-809; (b) Heithecker, D.; Kammoun, A.; Dobbertin, T.; Riedl, T.; Becker, E.; Metzdorf, D.; Schneider, D.; Johannes, H.-H.; Kowalsky, W., Low-voltage organic electroluminescence device with an ultrathin, hybrid structure. Applied Physics Letters 2003, 82 (23), 4178-4180.
  49. 19. (a) Kraft, A.; Grimsdale, A. C.; Holmes, A. B., Electroluminescent Conjugated Polymers—Seeing Polymers in a New Light. Angewandte Chemie International Edition 1998, 37 (4), 402-428; (b) Lussem, G.; Wendorff, J. H., Liquid crystalline materials for light-emitting diodes. Polymers for Advanced Technologies 1998, 9 (7), 443-460.
  50. 20. VanSlyke, S. A. T., C. W, US Patent 5 1991, 061, 569.
  51. 27. (a) Leung, M.-k.; Yang, C.-C.; Lee, J.-H.; Tsai, H.-H.; Lin, C.-F.; Huang, C.-Y.; Su, Y. O.; Chiu, C.-F., The Unusual Electrochemical and Photophysical Behavior of 2,2‘-Bis(1,3,4-oxadiazol-2-yl)biphenyls, Effective Electron Transport Hosts for Phosphorescent Organic Light Emitting Diodes. Organic Letters 2007, 9 (2), 235-238; (b) Lee, J.-H.; Tsai, H.-H.; Leung, M.-K.; Yang, C.-C.; Chao, C.-C., Phosphorescent organic light-emitting device with an ambipolar oxadiazole host. Applied Physics Letters 2007, 90 (24), 243501; (c) Lee, J.-H.; Huang, C.-L.; Hsiao, C.-H.; Leung, M.-K.; Yang, C.-C.; Chao, C.-C., Blue phosphorescent organic light-emitting device with double emitting layer. Applied Physics Letters 2009, 94 (22), 223301.
  52. 41. (a) Sun, D.; Ren, Z.; Bryce, M. R.; Yan, S., Arylsilanes and siloxanes as optoelectronic materials for organic light-emitting diodes (OLEDs). J. Mater. Chem. C 2015, 3 (37), 9496-9508; (b) Dehua Hu, P. L., Chunlei Wang, He Liu, Huan Wang, Zhiming Wang, Teng Fei, Xin Gu and Yuguang Ma, Silane coupling di-carbazoles with high triplet energy as host materials for highly efficient blue phosphorescent devices. Journal of Materials Chemistry 2009, 19, 6143-6148.
  53. 50. 丁沛翎, 三種噁二唑咔啉化合物之合成、性質探討及其在藍色磷光有機發光二極體之應用. 台灣大學, 2015.
  54. 51. (a) Tang, X.; Yao, L.; Liu, H.; Shen, F.; Zhang, S.; Zhang, H.; Lu, P.; Ma, Y., An efficient AIE-active blue-emitting molecule by incorporating multifunctional groups into tetraphenylsilane. Chemistry 2014, 20 (25), 7589-92; (b) Tang, X.; Yao, L.; Liu, H.; Shen, F.; Zhang, S.; Zhang, Y.; Zhang, H.; Lu, P.; Ma, Y., Novel violet emitting material synthesized by stepwise chemical reactions. Journal of Materials Chemistry C 2014, 2 (25), 5019-5027.
  55. 53. (a) Huang, J.-J.; Leung, M.-k.; Chiu, T.-L.; Chuang, Y.-T.; Chou, P.-T.; Hung, Y.-H., Novel Benzimidazole Derivatives as Electron-Transporting Type Host To Achieve Highly Efficient Sky-Blue Phosphorescent Organic Light-Emitting Diode (PHOLED) Device. Organic Letters 2014, 16 (20), 5398-5401; (b) Dandrade, B.; Datta, S.; Forrest, S.; Djurovich, P.; Polikarpov, E.; Thompson, M., Relationship between the ionization and oxidation potentials of molecular organic semiconductors. Organic Electronics 2005, 6 (1), 11-20; (c) Djurovich, P. I.; Mayo, E. I.; Forrest, S. R.; Thompson, M. E., Measurement of the lowest unoccupied molecular orbital energies of molecular organic semiconductors. Organic Electronics 2009, 10 (3), 515-520.
  56. 54. (a) Rausch, A. F.; Thompson, M. E.; Yersin, H., Matrix Effects on the Triplet State of the OLED Emitter Ir(4,6-dFppy)2(pic) (FIrpic): Investigations by High-Resolution Optical Spectroscopy. Inorganic Chemistry 2009, 48 (5), 1928-1937; (b) Tsuboi, T.; Murayama, H.; Yeh, S.-J.; Wu, M.-F.; Chen, C.-T., Photoluminescence characteristics of blue phosphorescent Ir3+-compounds FIrpic and FIrN4 doped in mCP and SimCP. Optical Materials 2008, 31 (2), 366-371.