题名

T92對304H合金異種銲接之碳遷移研究

并列篇名

The Study of Carbon Migration in T92-304H Dissimilar Weldment

DOI

10.6342/NTU201900723

作者

黃玄根

关键词

異質銲接 ; 鎳基填料 ; 碳遷移 ; 老化實驗 ; 軟區 ; Dissimilar welding ; Nickel-based filler ; Carbon migration ; Aging test ; Soft zone

期刊名称

國立臺灣大學材料科學與工程學系學位論文

卷期/出版年月

2019年

学位类别

碩士

导师

薛人愷

内容语文

繁體中文

中文摘要

本實驗使用不同填料 ( Inco 82、309L) 進行 T92 與 304H 異質氬銲製程。銲件經過非破壞性檢測後,將合格銲件用線切割的方式取出銲道部分並進行銲後熱處理。實驗中主要探討鋼材在異種銲接時所發生的碳遷移 (carbon migration) 現象。由於碳的含量會影響到合金在該處的硬度值,所以發生碳遷移的位置,會有一低碳軟區 (soft zone)。此區域可以經由光學顯微鏡及硬度值的變化發現。此 soft zone 產生會影響到銲道附近的機械性質。實驗結果發現,當銲道填料使用 Inco 82,經過長時間老化實驗後,銲道兩側介面處沒有鉻濃度的差異,沒有造成碳原子的擴散,所以並沒有發現 soft zone。若填料使用 309L,經過長時間老化實驗後,在銲道與 T92 交界處有鉻濃度的差異,造成碳原子的能量不同,產生 soft zone。 隨著老化時間的增長,soft zone 的區域也會持續長大。此外 soft zone 區域的硬度值大幅降低,可預期銲件機械性質與高溫應用之可靠度將明顯的降低。

英文摘要

In this experiment, different fillers (Inco 82, 309L) were used for T92 and 304H dissimilar TIG (Tungsten Inert Gas) welding. After the non-destructive (NDT) inspection of the weldment, the qualified weldment was machined by wire cutting and subjected to post-weld heat treatment. Because the content of carbon will affect the hardness of the alloy, so the location of carbon migration will produce a low carbon soft zone (soft zone). This area can be found in optical microscope obserration and hardness values. The production of soft zone will affect the mechanical properties near the weld pass. The results of the experiment show that the filler Inco 82, after a long aging experiment, the interface between the two sides of the weldment does not have the difference of chromium concentration, no carbon atom diffusion, so no soft zone produced. If the filler uses 309L, after a long aging experiment, the difference of chromium concentration at the interface between the weldment and the T92 leads to the different diffusion energy of the carbon atom and produces soft zone. As the aging time increases, the area of soft zone will continue to grow. In addition, the hardness of soft zone will be significantly reduced, resulting in deteriorated mechanical properties and high temperature reliability in application.

主题分类 工學院 > 材料科學與工程學系
工程學 > 工程學總論
参考文献
  1. 1. 郭信廷,T92 合金異種銲件碳遷移之研究,國立台灣大學,中華民國102年07月19日。
  2. 2. C. Sudha, A.L.E.T., S.K. Albert, M. Vijayalakshmi, Systematic study of formation of soft and hard zones in the dissimilar weldments of Cr-Mo steels. Journal of Nuclear Materials, (2002). 302, 193-205.
  3. 3. 游郁瑩,改良型 9 Cr-1Mo 鋼材銲接顯微組織及碳遷移研究,國立東華大學, 中華民國89年6月27日。
  4. 4. J. Berchman, S.Muralidhatan, N. S. Rengaswamy, S. Natarajan, V. Sivan and S. V. Iyer, , Designing of CK45 carbon steel and AISI 304 stainless steel dissimilar welds, British Corrosion Journal, (1996). 31(3), 223-226.
  5. 5. 陳廣中,T91 鉻鉬合金鋼銲接探討。 銲接與切割,(民國84年)。 5(4),12-20.
  6. 6. M. Regev, S. Berger and B. Z. Weiss, Investigation of microstructure mechanical and creep properties of weldments between T91 and T22 steels, Welding Journal, (1996). 75(8), 261-268.
  7. 7. M. K. Brooker, V.K.S. and B.L.P.B., Modified 9Cr-1Mo Steel- an improved alloy for steam generator application, ASM International, (2002). 257-273.
  8. 8. M. Ueta, K. Douzaki, M. Sukekawa, Y. Asada and H. Koto, The evaluation of material degradation in modified 9Cr-1Mo steel by the electrochemical technique, ASME- Pressure Vessels and Piping Division, (1993). 262, 175-180.
  9. 9. S. Kato, M. Aoki, E. Yoshida, T. Kobayashi and Y. Wada, Evaluation of carburization and decarburization behavior of Fe-9Cr-Mo ferritic steels in sodium environment, Journal of Nuclear Science and Technology, (1992). 29(4), 367-377.
  10. 10. B. Poulson, Stress corrosion cracking of type 316 stainless steel in caustic solutions: crack velocities and leak before break considerations, Corrosion Science, (1992). 33(10), 1541-1556.
  11. 11. Kanemara, M. Shimiza, T. Ohba, K. Yagi, Y. Kata and K. Hattore, Life prediction by the iso-stress method of boiler tubes after prolonged service, International Journal of Pressure Vessels and Piping, (1991). 48(2), 167-182.
  12. 12. Y. Tsuchida, K. Hashimot and K. Tokuno, Development and BOF manufacture of modified 9Cr-1Mo steel plates with excellent strength and toughness, Nippon Steel Technical Report, (1993). 58, 27-35.
  13. 13. W. R. Oates and A. M. Saitta, Welding handbook-8th ed., Vol. 5, American Welding Society, (1998).
  14. 14. D. L. Olson et. al., A.H.-V.W., Brazing and soldering, ASM International, 1993.
  15. 15. G.R.J. and P. Sathiya, Failure analysis on T92 steel tube and compared with predicted number of cycles to failure using coffin–manson equation, International Journal of Engineering Science and Technology, (2010). 2(10), 5017-5033.
  16. 16. Vaillant, J.C., et al., T/P23, 24, 911 and 92: New grades for advanced coal - fired power plants - Properties and experience. International journal of Pressure Vessels and Piping, (2008). 85(1), 38-46.
  17. 17. S. Kuo, Welding metallurgy, (1987).
  18. 18. J.C. et al., Effect of microstructure and crystallographic texture on mechanical properties of modified 9Cr-1Mo steel, Materials Science and Engineering, (1997). 225, 22-28.
  19. 19. Y. Tsuchida, K. Tokuno and K. Hashimoto, Development and BOF manufacture of modified 9Cr-1Mo steel plates with excellent strength and toughness, Nippon Steel Technical Report, (1993). 58, 27-35.
  20. 20. B. K. Choudhary, K. B. S. Rao and S. L. Mannan, Effects of strain rate and temperature on tensile deformation and fracture behaviour of forged thick section 9Cr-1Mo ferritic steel, Journal of Pressure Vessel and Piping, (1994). 58, 151-160.
  21. 21. S. Ahila, S.Ramakrishna Iyer, V.M. Radhakrishnan, Assessment of high temperature performance of induction pressure welded 2.25Cr-1Mo steel in corrosive environment, Scripta Metallurgica, (1993). 28, 1223- 1228.
  22. 22. M. DeWitte and C. Coussement., Effect of off-normal austenization on creep strength of ferritic-martensitic steels, Materials at High Temperatures, (1991). 9(4), 178-184.
  23. 23. Yunjian Wu, B.M. Patchett, C. Bicknell, The interfacial microstructure of weld overlay of corrosion resistant alloys, Scripta Metallurgica, (1994). 30(9), 1133-1138.
  24. 24. S Saroja, M Vijayalakshmi, Effect of prolonged exposures of 9Cr-1Mo-0.07C steel to elevated temperatures, Materials Transaction JIM, (1993). 34(10), 901-906.
  25. 25. B. Poulson, A simple SCC specimen incorporating heat transfer with a crevice or deposits, Corrosion Science, (1992). 31(10), 1541-1556.
  26. 26. T Cool, H Bhadeshia, Austenite formation in 9Cr–1Mo type power plant steels, Science and Technology of Welding and Joining, (1997). 2(1), 36-42.
  27. 27. C. D. Lundin, K.K. Khan and D. Yang, Effect of carbon migration in Cr-Mo weldments on metallurgical structure and mechanical properties, WRC Bulletin, (1995). 407, 1-49.
  28. 28. C. Shiga, A. Gotoh, T. Kojima, Y. Horii, K. Fukada, K. Ikenti and F. Matuda, State of the art review on the effect of PWHT on properties of steel weld metal, Welding in the World, (1996). 37(4), 163-176.
  29. 29. C.E. Spaeder and W.D. Doty, ASME post-weld heat treating practices: An interpretive report, WRC Bulletin, (1995). 407, 50-65.
  30. 30. S.K. Albert et al., Soft zone formation in dissimilar welds between two Cr-Mo steels, Welding Journal, (1997). 76(3), 135-142.
  31. 31. Kobelco welding consumables for heat-resistant low-alloy steel, KOBELCO Welding Today, 3rd special edition, (2012).
  32. 32. G. E. Dieter, Mechanical metallurgy, McGraw-Hill Book Company, New York, (1988).