题名

提升蔬菜作物水分利用效率之灌溉方式

并列篇名

Irrigation Practices for Improving Water Use Efficiency of Vegetable Crops

DOI

10.6342/NTU201701873

作者

陳映榕

关键词

節水農業 ; 水分利用效率 ; 調缺灌溉 ; 部分根區灌溉 ; W.E.F方案 ; Water saving agriculture ; water use efficiency ; partial root-zone drying irrigation ; regulated deficit irrigation ; W.E.F nexus

期刊名称

國立臺灣大學園藝暨景觀學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

張育森

内容语文

繁體中文

中文摘要

隨著世界人口數及極端氣候事件發生頻率增加,世界面臨糧食不足及水資源短缺的危機,農業耗水量佔世界用水量約70%,同時又在糧食生產上占重要的角色。傳統的農業灌溉方式使土壤養分經由淋洗作用而流失,同時消耗許多淡水用於灌溉;作物在適合的環境搭配節水灌溉方式下生長,可以減少水分的使用並保有產量,進而提升作物水分利用效率。本研究擬探討蔬菜作物生長於不同日夜溫環境及使用不同節水灌溉方式進行栽培的水分利用效率(Water use efficiency, WUE),期能提供節水農業之有用參考。 作物水分利用效率(WUEyield)方面,非洲及亞洲在各作物生產的水分利用效率皆較歐洲地區低;玉米水分利用效率以歐洲地區為最高,其次為美洲,接著為非洲,最差的亞洲;小麥以歐洲最高,其後依序為美洲、非洲及亞洲。部分根區灌溉 (Partial root-zone drying irrigation, PRD)及調缺灌溉(Regulated deficit irrigation, RDI) 可以有效提升作物水分利用效率,於地中海型氣候區生產玉米及鮮食用葡萄分別以RDI75~50、PRD50及PRD30~50具有最高的水分利用效率,於大陸型氣候生產高粱及棉花分別以RDI100、RDI75及RDI100;於半乾旱區栽培梨樹以PRD50;以PRD70於溫帶地區生產馬鈴薯具有最高的水分利用效率。於溫室內栽培甘藍以RDI50~70;辣椒以到達田間容水量65%再行PRD;萵苣以RDI0;番茄以PRD50具有較高的水分利用效率。 作物種植於適當的氣候及栽培管理的應用可以最大化作物的水分利用效率,光合作用C3及C4型作物對於環境溫度及水分需求有所差異,為了解不同生長環境對其影響進而達到栽培節水目的,以光合作用C3型作物菾菜(Beta vulgaris L.)、不結球萵苣‘脆美’ (Lactuca sativa L.)及光合作用C4型作物落葵(Basella alba L.)為材料,栽培於日夜溫30℃/25℃、25℃/20℃及20℃/15℃環境下四週,結果顯示: C4型作物落葵(Basella alba L.)在三種作物中需水量最少,在日夜溫30℃/25℃的葉片水利用效率(WUEi)、經濟產量水分利用效率(WUEyield)及總生物量水分利用效率 (WUEbiomass)皆最高,C3型作物菾菜(Beta vulgaris L.)及不結球萵苣‘脆美’ (Lactuca sativa L.)在日夜溫25℃/20℃及20℃/15℃的環境下具有較高的WUEi、WUEyield及WUEbiomass。由此可見,光合作用C4型作物在高溫環境下的水分利用效率較C3型作物高,但在中低溫環境下則較低。 為了解及證實調缺灌溉及部分根區灌溉可節省灌溉水使用,及各作物最適處理程度,以正常灌溉量的100%、70%、50%及30%進行玉米‘美珍’(Zea mays ‘Meichen’)、玉米‘華珍’ (Zea mays ‘Huachen’)、本島不結球型萵苣(Lactuca sativa L. sacriola L. var. sativa Bisch)、福山半結球型萵苣(Lactuca sativa L. var. capitata L.)及虎耳大葉種茼蒿(Glebionis coronaria)的RDI,另一部份進行以上五種作物的PRD,結果顯示:玉米‘美珍’及‘華珍’分別以70% RDI及30% RDI可以有效提升作物水分利用效率,並維持產量;圓葉萵苣及半結球萵苣以50% RDI處理可以有最高的產量及較高的水分利用效率;虎耳大葉種茼蒿的產量隨灌溉量減少而降低,70% RDI處理較符合維持產量及提升水分利用效率的目的。玉米‘美珍’及玉米‘華珍’以PRD70具有較高的產量及水分利用效率,圓葉萵苣、半結球萵苣及虎耳大葉種茼蒿皆以PRD30灌溉量具有較高的作物經濟產量水分利用效率(WUEyield),然其產量無法維持。調缺灌溉可以在維持產量的前提下達到減少灌溉水的目的,然而部分根區灌溉使經濟產量降低。

英文摘要

The world faces the food and water crisis due to the increase of world population and the frequency of extreme weather happened. Agriculture plays a vital role in food production whereas agricultural irrigation water occupied 70% of world water usage. Large amount of water and nutrient would lost through leaching in the conventional agricultural irrigation practices. Crops plant with suitable environment and saving water irrigation practices could not only maintain production, or even increase productions in some crops, but also increase production quality. This study aimed to investigate the water use efficiency of vegetable crops that grow under different environments or irrigation practices. The climate and water resources are different between areas in the world. How to use water efficiently become important nowadays. The climate in Europe is more suitable for maize and wheat than other continents, therefore, Europe had the highest maize wheat water use efficiency. Moreover, applying partial root-zone drying irrigation (PRD) and regulated deficit irrigation (RDI) could higher the crop water use efficiency. Applying RDI75~50 or PRD50 on maize; PRD50 on pear; RDI100 and PRD75 on sorghum; PRD70 on potato; RDI100 on cotton; RDI50~70 on cabbage; PRD100 after reaching 65% full field capacity on hot pepper; RDI0 on lettuce; and PRD50 on tomato achieved the highest water use efficiency. Beta vulgaris L., Basella alba L. and Lactuca sativa L. grew under day/night temperature 30℃/25℃, 25℃/20℃ and 20℃/15℃ for 4 weeks. The results showed that there was no significant effect of crops late stage growing between different temperature treatments. Basella alba L. which is a C4 plant consumed the least water among three experimental crops. Moreover, it reached the highest WUEi, WUEyield and WUEbiomass under 30℃/25℃ environment. Beta vulgaris L. and Lactuca sativa L., which are C3 plants, had higher WUEi, WUEyield and WUEbiomass under 25℃/20℃ and 20℃/15℃ environment. C4 plants could achieve the higher water use efficiency under warm surroundings. Applying regulated deficit irrigation (RDI) practice with 100%, 70%, 50% and 30% irrigation amounts on Zea mays ‘Meichen’, Zea mays ‘Huachen’, Lactuca sativa L. sacriola L. var. sativa Bisch, Lactuca sativa L. var. capitata L. and Glebionis coronaria. The results showed that Zea mays ‘Meichen’ and Zea mays ‘Huachen’ reached the highest water use efficienct under RDI70 and PRD30 treatments respectively. Both of Lactuca sativa L. sacriola L. var. sativa Bisch and Lactuca sativa L. var. capitata L. reached the highest water use efficiency under RDI50 treatments. There was no significant difference between all of RDI treatments that was applied on Glebionis coronaria. Applying partial root-zone irrigation (PRD) practice with 100%, 70%, 50% and 30% irrigation amounts on Zea mays ‘Meichen’, Zea mays ‘Huachen’, Lactuca sativa L. sacriola L. var. sativa Bisch, Lactuca sativa L. var. capitata L. and Glebionis coronaria had the similar results as RDI treatments. Applying either RDI or PRD could higher crops water use efficiency.

主题分类 生物資源暨農學院 > 園藝暨景觀學系
生物農學 > 農業
参考文献
  1. 姚銘輝. 陳守泓. 漆匡時. 2007. 氣候變遷下水道氣象資源利用效率之研究. 台灣農業研究. 56:31-44.
    連結:
  2. 許志聖. 鄭佳綺. 楊嘉凌. 2012. 非洲與大洋洲國家稻米生產概況. 台中區農業專訊. 76:15-21.
    連結:
  3. 張元馨. 2011. 台灣農業水足跡之估算-以稻作生產為例. 台灣大學生物環境系統工程學研究所碩士論文.
    連結:
  4. 陳令錫. 2013. 淺談作物生長環境之蒸發散. 臺中區農業改良場特刊. 109-114.
    連結:
  5. 廖宜倫. 林雲康. 2015. 釀酒高梁知多少. 臺中區農情月刊. 190:1.
    連結:
  6. Abbate, P. E., J. L. Dardanelli, M. G. Cantarero, M. Maturano, R. J. M. Melchiori, and E. E. Suero. 2004. Climatic and water availability effects on water-use efficiency. Wheat. Crop Sci. 44:474-483.
    連結:
  7. Ahmadi, S.H., M. N. Andersen, F. Plauborg, R. T. Poulsen, C. R. Jensen, A. R. Sepaskhah, and S. Hansen. 2010. Effects of irrigation strategies and soils on field grown potatoes: Yield and water productivity. Agri. Water Mgt. 97:1923-1930.
    連結:
  8. Aldaya, M. M., G. Muñoz, and A.Y. Hoekstra. 2010. Water footprint of cotton, wheat and rice production in central Asia.
    連結:
  9. Aydinsakira, K., S. Erdala, D. Buyuktasb, R. Bastugb, and R. Tokera. 2013. The influence of regular deficit irrigation applications on water use, yield, and quality components of two corn (Zea mays L.) genotypes. Agric. Water Manage. 128:65-71.
    連結:
  10. Berry, J. A. and O. Björkman. 1980. Photosynthetic response and adaptation to temperature in higher plants. Ann. Rev. Plant Physiol. 31:491-543.
    連結:
  11. Boland, A. M., P. D. Mitchell, P. H. Jerie and I. Goodwin. 1993. The effect of regulated deficit irrigation on tree water use and growth of peach. J. Hortic. Sci. 68:261-264.
    連結:
  12. Bozkurt, Y., A. Yazar, B. Gencel, and S. M. Sezen. 2006. Optimum lateral spacing for drip irrigated corn in the Mediterranean Region of Turkey. Agr.. Water Mgnt. 85:113-120.
    連結:
  13. Cavero, J., I. Farre, P. Debaeke, and T. M. Faci. 2000. Simulation of maize yield under water stress with EPIC phase and Cropwat models. Agron. J. 92:679-690.
    連結:
  14. Clifton-Brown, J. C. and I. Lewandowski. 2000. Water Use Efficiency and Biomass Partitioning of Three Different Miscanthus Genotypes with Limited and Unlimited Water Supply. Ann. Bot. 86:191-200.
    連結:
  15. Cunningham, S. C. and J. Read. 2002. Comparison of temperate and tropical rainforest tree species: photosynthetic responses to growth temperature. Oecol. 133:112-119.
    連結:
  16. Chaves, M. M. and M. M. Oliveira. 2004. Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J. Exp. Bot. 55:2365-2384.
    連結:
  17. Campos, H., C. Trejo, C. B. Pena-Valdivia, C. Ramirez-Ayala, and P. Sanchez-Garcia. 2009. Effect of partial rootzone drying on growth, gas exchange, and yield of tomato (Solanum lycopersicum L.). Sci. Hort. 120:493-499.
    連結:
  18. Chai, Q., Y. Gan, C. Zhai, H. L. Xu, R. M. Waskom, Y. Niu, and K. H. M. Siddique. 2016. Regulated deficit irrigation for crop production under drought stress. A review. Agron. Sustain. Dev. 36: 3.
    連結:
  19. Davies, W.J. and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying soil. Ann. Rev. Plant Physiol. Plant Mol. Biol. 42:55-76.
    連結:
  20. Deng X. P., L. Shan, H. Zhang, and N. C. Turner. 2006. Improving agricultural water use efficiency in arid and semiarid areas of China. Agr. water Mgnt. 80:23-40.
    連結:
  21. Du, T., S. Kang, J. Zhang, and F. Li. 2008a. Water use and yield responses of cotton to alternate partial root-zone drip irrigation in the arid area of north-west China. Irrig. Sci. 26:147-159.
    連結:
  22. Du, T., S. Kang, J. Zhang , F. Li, and B. Yan. 2008b. Water use efficiency and fruit quality of table grape under alternate partial root-zone drip irrigation. Agr. water Mgnt. 95:659-668.
    連結:
  23. Dalla Marta A., M. Mancini, F. Orlando, F. Natali, L. Capecchi, and S. Orlandini. 2014. Sweet sorghum for bioethanol production: Crop responses to different water stress levels. Biomass Bioenrg. 64:211-219.
    連結:
  24. Du, T., S. Kang, J. Zhang, and W. J. Davies. 2015. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 66:2253–2269.
    連結:
  25. El-Waheda, M. H. A. and E.A. Ali. 2013. Effect of irrigation systems, amounts of irrigation water and mulching on corn yield, water use efficiency and net profit. Agr. Water Mgnt. 120:64-71.
    連結:
  26. Erteka , A. and B. Karab. 2013. Yield and quality of sweet corn under deficit irrigation. Agric. water Mgt. 129:138-144.
    連結:
  27. Fischer, R. A. and N. C. Turner. 1978. Plant productivity in the arid and semiarid zones. Annu. Rev. Plant Physiol. 29:277-317.
    連結:
  28. Fischer, R.A., and N.C. Turner. 1979. Plant productivity in the arid and semiarid zones. Annu. Rev. Plant Physiol. 29:277-317.
    連結:
  29. FAO. 2011. The state of the world’s land and water resources for food and agriculture (SOLAW) – Managing systems at risk. Rome: Food and Agriculture Organization of the United Nations and London, Earthscan.
    連結:
  30. Forouzani, M. and E. Karami. 2011. Agricultural water poverty index and sustainability. Agron. Sustain. Dev. 31:415-432.
    連結:
  31. Farihi, J., B. T. Gänsick, and D. Koester. 2013. Evidence for water in the rocky debris of a disrupted extrasolar minor planet. Science 342:218-220.
    連結:
  32. FAO. 2014. The water-energy-food nexus: a new approach in support of food security and sustainable agriculture. Rome: Food and Agriculture Organization of the United Nations and London, Earthscan.
    連結:
  33. Gerbens-Leenesa, W., A. Y. Hoekstraa, and T. H. van der Meerb. 2009. The water footprint of bioenergy. PNAS. 106:10219-10223.
    連結:
  34. Girones, R., M. A. Ferrús, J. L. Alonso, J. Rodriguez-Manzano, B. Calgua, C. A. de Abreu, A. Hundesa, A. Carratala, and S. Bofill-Mas. 2010. Molecular detection of pathogens in water-the pros and cons of molecular techniques. Water Res. 44:4325-4339.
    連結:
  35. Gleick, P. H. and M. Palaniappan. 2010. Peak water limits to freshwater with drawa land use. Proc. Natl. Acad. Sci. 107:11155-11162.
    連結:
  36. Gan,Y., K. H. M. Siddique, N. C. Turner, X. G. Li, J. Y. Niu, C. Yang, L. Liu, and Q. Chai. 2013. Ridge-furrow mulching systems-an innovative technique for boosting crop productivity in semiarid rain-fed environments. Adv. Agr. 118:429-476.
    連結:
  37. Hill, R. S., J. Read, J. R. Busby. 1988. The temperature-dependence of photosynthesis of some Australian temperate rainforest trees and its biogeographical significance. J. Biogeogr. 15:431-449.
    連結:
  38. Hoekstra, A.Y. and A. K. Chapagain. 2008. Globalization of water: Sharing the planet’s freshwater resources, Blackwell Publishing, Oxford, UK.
    連結:
  39. IEA. 2010. World Energy Outlook 2010. Paris: OECD/ International Energy Agency.
    連結:
  40. Kirkham, M. B. 1983. Physical model of water in a split-root system. Plant Soil. 75:153–168.
    連結:
  41. Katerji, N., J. W. van Hoorn, A. Hamdy, M. Mastrorilli and E. M. Karzel. 1997. Osmotic adjustment of sugar beets in response to soil salinity and its influence on stomata conductance, growth and yield N. Agric. Water Manage. 34:57-69.
    連結:
  42. Kang, S. Z., Z. S. Liang, W. Hu, and J. H. Zhang. 1998. Water use efficiency of controlled alternate irrigation on root divided maize plants. Agri. Water Mgnt. 38: 69-76.
    連結:
  43. Kang S., W. Shi, and J. Zhang. 2000. An improved water-use efficiency for maize grown under regulated deficit irrigation. Field Crop Res. 67:207-214.
    連結:
  44. Kriedmann, P.E. and I. Goodwin, I. 2003. Regulated deficit irrigation and partial root-zone drying. Irrigation insights no. 4, Land and Water Australia, Canberra, 102p.
    連結:
  45. Kang, S. Z. and J. H. Zhang. 2004. Controlled alternate partial root-zone irrigation: its physiological consequences and impact on water use efficiency. J. Exp. Bot. 55:2437-2446.
    連結:
  46. Kubien, D. S. and Sage, R. F. 2004. Low-temperature photosynthetic performance of a C4 grass and a co-occurring C3 grass native to high latitudes. Plant Cell Environ. 27:907-916.
    連結:
  47. Kirda C., M. Cetin, Y. Dasgan, S. Topcu, H. Kaman, B. Ekici, M. R. Derici, and A. I. Ozguven. 2004. Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agr. water Mgnt. 69:191-201.
    連結:
  48. Kirda, C., S. Topcu, H. Kaman, A.C. Ulger, A. Yazici, M. Cetin, and M.R. Derici. 2005. Grain yield response and N-fertiliser recovery of maize under deficit irrigation. Field crops Res. 93:132-141.
    連結:
  49. Liu, F. and H. Stützel. 2004. Biomass partitioning, specific leaf area, and water use efficiency of vegetable amaranth (Amaranthus spp.) in response to drought stress. Sci. Hort. 102:15–27.
    連結:
  50. Liu, F., C. R. Jensen, and M. N. Andersen. 2005. A review of drought adaptation in crop plants:changes in vegetative and reproductive physiology induced by ABA-based chemical signals. Aust. J. of Agri. Res. 56: 1245-1252.
    連結:
  51. Leib, B.G., H. W. Caspari, C. A. Redulla, P. K. Andrews, and J. Jabro. 2006. Partial root-zone drying and deficit irrigation of ‘Fuji’ apples in a semi-arid climate. Irr. Sci. 24:85-99.
    連結:
  52. Liu, F., A. Shahnazari, M. N. Andersen, S. E. Jacobsen, and C. R. Jensen. 2006. Physiological responses of potato (Solanum tuberosum L.) to partial root-zone drying: ABA signalling, leaf gas exchange, and water use efficiency. J. Expt. Bot. 57:3727-3735.
    連結:
  53. Liu, F., A. Shahnazari, M. N. Andersen, S. E. Jacobsen, and C. R. Jensen. 2006. Effects of deficit irrigation (DI) and partial root drying (PRD) on gas exchange, biomass partitioning, and water use efficiency in potato. Sci. Hort. 109:113–117.
    連結:
  54. Lei, S., Q. Yunzhou, J. Fengchao1, S. Changhai1, Y. Chao1, L. Yuxinl, L. Mengyu1, and D. Baodi1. 2009. Physiological mechanism contributing to efficient use of water in field tomato under different irrigation. Plant soil Environ. 55:128-133.
    連結:
  55. Li, F., J. Yu, M. Nong, S. Kang, and J. Zhang. 2010. Partial root-zone irrigation enhanced soil enzyme activities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers. Agrc. Water Mngt.. 97:231-239.
    連結:
  56. Morison, J.I.L., N.R. Baker, P.M. Mullineaux, and W.J. Davies. 2008. Improving water use in crop production. Phil. Trans. R. Soc. B. 363:639-658.
    連結:
  57. Narayanan S., M. Robert, P. V. Aiken, P. Vara, Z. Xin, and J. Yu. 2013. Water and radiation use efficiencies in sorghum. Agron. J. 105:649-656.
    連結:
  58. Oberhuber, W.T. and G. E. Edwards. 1993. Temperature dependence of the linkage of quantum yield of photosystem II to CO2 fixation in C4 and C3 plants. Plant Physiol. 101:507-512.
    連結:
  59. Otegui, M. E., F. H. Andrade, and E. E. Suero. 1995. Growth, water use, and kernel abortion of maize subjected to drought at silking. Field Crops Res. 40:87-94.
    連結:
  60. Osborne, C. P., E. J. Wythe, D. G. Ibrahim, M. E. Gilbert and, B. S. Ripley. 2008. Low temperature effects on leaf physiology and survivorship in the C3 and C4 subspecies of Alloteropsis semialata. J. Exp. Bot. 59:1743-1754.
    連結:
  61. Pearcy, R. W. 1977. Acclimation of photosynthetic and respiratory carbon dioxide exchange to growth temperature in Atriplex lentiformis (Torr.). Plant Physiol. 59:795-799.
    連結:
  62. Pandey, R.K., J. W. Maranville, and A. Admou. 2000. Deficit irrigation and nitrogen effects on maize in a Sahelion environment I. Grain yield and yield components. Agr.. Water Mgt. 46:1-13.
    連結:
  63. Pérez-Pastor, A., M. C. Ruiz-Sánchez, and R. Domingo. 2014. Effects of timing and intensity of deficit irrigation on vegetative and fruit growth of apricot trees. Agrc. Water Manag. 134:110–118.
    連結:
  64. Read, J. 1990. Some effects of acclimation temperature on net photosynthesis in some tropical and extra-tropical Australasian Nothofagus species. J. Ecol. 78:100-112.
    連結:
  65. Reddy, P. P. 2016. Sustainable Intensification of Crop Production. Springer. Singapore.
    連結:
  66. Slatyer, R. O. 1977. Altitudinal variation in the photosynthetic characteristics of snow gum, Eucalyptus pauciflora Sieb. ex Spreng. IV. Temperature response of four populations grown at different temperatures. Aust. J. Plant Physiol. 4:583-594.
    連結:
  67. Sammis, T.W., B. A. Kratky, and I. P. Wu. 1988. Effects of limited irrigation on lettuce and Chinese cabbage yields. Irr. Sci. 9:187-198.
    連結:
  68. Siddique K. H. M., D. Tennant, M. W. Perry, and R. K. Belford. 1990. Water use and water use efficiency of old and modern wheat cultivars in a Mediterranean-type environment. Austral. J. Agr. Res. 41:431-447.
    連結:
  69. Sepaskhah, A.R. and A. A. Kamgar-Haghighi. 1997. Water use and yields of sugar beet grown under every-other furrow irrigation with different irrigation intervals. Agri. Water Mgnt. 34:71-79.
    連結:
  70. Stoll, M., B. Loveys, and P. Dry. 2000. Hormonal changes induced by partial rootzone drying of irrigated grapevine. Jour. of Experimental Botany, 51:1627-1634.
    連結:
  71. Schroeder, J. I., J. M. Kwak, G. J. Allen. 2001. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327– 330.
    連結:
  72. Somerville C., J. Briscoe. 2001. Genetic Engineering and Water. Science 5525:2217.
    連結:
  73. Sunder Singh, S. D. 2001. Effect of irrigation regimes and nitrogen levels on growth yield and quality of baby corn. Madras Agric. J. 88:367-370.
    連結:
  74. Shahnazari, A., F. Liu, M. N. Andersen, S. E. Jacobsen, and C. R. Jensen. 2007. Effects of partial root-zone drying on yield, tuber size and water use efficiency in potato under field conditions. Field crops Res. 100:117-124.
    連結:
  75. Shao, G. C., Z. Y. Zhang, N. Liu, S. E. Yu, and W. G. Xing. 2008. Comparative effects of deficit irrigation (DI) and partial root-zone drying (PRD) on soil water distribution, water use, growth and yield in greenhouse grown hot pepper. Sci. Hort. 119:11-16.
    連結:
  76. Sepaskhah, A. R. and S. N. Hosseini. 2008. Effects of alternate furrow irrigation and nitrogen application rates on yield and water-and nitrogen-use efficiency of Winter Wheat (Triticum aestivum L.). Plant Prod. Sci. 11:250- 259.
    連結:
  77. Shivakumar, H. K., B. K. Ramachandrappa, and H. V. N. Mudalagiriyappa. 2011. Effect of phenophase based irrigation schedules on growth, yield and quality of baby corn (Zea mays L.). Agric. Sci. 2:267-272.
    連結:
  78. Sivakumar, B. 2011. Water crisis: from conflict to cooperation-an overview. Hydrol. Sci. J. 56:531-552.
    連結:
  79. Sawargaonkara, G. L., M.D. Patil, S. P. Wania, E. Pavania, B. V. S. R. Reddya, and S. Marimuthub. 2013. Nitrogen response and water use efficiency of sweet sorghum cultivars. Field Crop Res. 149:245-251.
    連結:
  80. Taiz, L. and E. Zeiger. 2006. Plant physiology. Sinauer Associates, Inc., Publishers, 764p.
    連結:
  81. Wakrim, R., S. Wahbi, H. Tahi, B. Aganchich, and R. Serraj. 2005. Comparative effects of partial root drying (PRD) and regulated deficit irrigation (RDI) on water relations and water use efficiency in common bean (Phaseolus vulgaris L.). Agric. Ecosyst. Environ. 106:275-287.
    連結:
  82. Xu, H. L., F. Qin, Q. Xu, J. Tan, and G. Liu. 2011. Applications of xerophytophysiology in plant production—the potato crop improved by partial root zone drying of early season but not whole season. Sci. Hortic. 129:528–534.
    連結:
  83. Xu, C. and D.I. Leskovar. 2014. Growth, physiology and yield responses of cabbage to deficit irrigation. Hort. Sci. 41:138-146.
    連結:
  84. Yao, M. H., S. H. Chen, and S. Chen. 2006. Studies on use efficiency of meteorological resources for rice. II. Water use efficiency. J. Taiwan Agric. Res. 55:43-56. (In Chinese with English abstract)
    連結:
  85. Yazar, A., F. Gökçeli, and S. M. Sezen. 2009. Corn yield response to partial rootzone drying and deficit irrigation strategies applied with drip system. Plant Soil Environ. 55:494-503.
    連結:
  86. Yamori, W., K. Hikosaka, and D. A. Way. 2014. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119:101-117.
    連結:
  87. Zhang, J., U. Schurr, and W.J. Davies. 1987. Control of stomatal behaviour by abscisic acid which apparently originates in roots. J. Exp. Bot. 38:1174-1181.
    連結:
  88. Zhang, H. 2003. Improving water productivity through deficit irrigation: examples from Syria, the North China Plain and Oregon, USA. In: Kijne JW, Barker R, Molden D (eds) Water productivity in agriculture: limits and opportunities for improvement. International Water Management Institute, Colombo, pp 301-309.
    連結:
  89. Zwart, S. J. and W. G. M. Bastiaanssen. 2004. Review of measured crop water productivity values for irrigated wheat, rice, cotton and maize. Agr. Water. Mgnt. 69:115-133.
    連結:
  90. Zegbel, J. A., M. Hossein Behboudian, and B. E. Clothier. 2007. Response of tomato to partial rootzone drying and deficit irrigation. Rev. Fitotec. Mex. 30:125-131.
    連結:
  91. 艾群. 2010. 農業生產節水技術與系統研發, p21-37. 農業工程與節能減碳學術研討會專刊. 行政院農業委員會農業試驗所編印, 臺中, 臺灣.
  92. 行政院水利署. 2014. 水資源運用實況. http://file.wra.gov.tw/public/PDF/511241128371.pdf
  93. 曹生奎. 馮起. 司建華. 常宗強. 卓瑪錯. 席海洋. 蘇永紅. 2009. 植物葉片水分利用效率研究綜述. 生態學報. 29:3882-3892.
  94. 曹彩云. 黨紅凱. 鄭春蓮. 郭麗. 馬俊永. 李科江. 2016. 不同灌溉模式對小麥產量、耗水及水分利用效率的影響. 華北農學報. 31:17-24.
  95. 張尊國. 2009. 水足跡概念介紹暨臺灣水稻水足跡分析, p2-11. 農業工程研討會論文集. 臺北, 臺灣.
  96. 郭松年. 丁林. 王福霞. 2009. 作物調虧灌溉理論與技術研究進展及發展趨勢. 中國農村水利水電. 8:12-16.
  97. 陳宗禮. 2009. 作物之生長調控. 花卉健康管理研討會專刊 81-89. 農業試驗所特刊第143號. 行政院農業委員會. 214頁.
  98. 陳鵬獅. 米娜. 張玉書. 紀瑞鵬. 蔡福. 2009. 氣候變化對作物產量影響的研究進展. 作物雜誌. 2:5-9.
  99. 魏超. 2006. 溫室茼蒿栽培技術. 特種經濟動植物. 8:30.
  100. 樊巍. 農林複合系统的林網對冬小麥水分利用效率影響的研究. 2000. 林業科學. 4:16-20.
  101. 蕭巧玲. 2016. 耕作方式對稻麥輪作系統小麥產量之影響. 小麥主題館. https://kmweb.coa.gov.tw/subject/ct.asp?xItem=1052781&ctNode=9364&mp=399&kpi=0&hashid=
  102. Anac, S. and I. H. Tuzel. 1992. Corn yield as affected by deficit irrigation. In: Fyen, J., Mwendera, E., Badji, M. (Eds.), Advances in Planning Design and Management of Irrigation Systems as Related to Sustainable Land Use. Center for Irrigation Engineering (CIE), European Committee for Water Resources Management (ECOWARM), Belgium.
  103. Björkman, O., H. A. Mooney, and J. Ehleringer. 1975. Photosynthetic responses of plants from habitats with contrasting thermal environments: comparison of photosynthetic characteristics of intact plants. Carnegie Inst. Wash. 74:743-748.
  104. Bauerle, W.L., W. W. Inman, and J. B. Dudley. 2006. Leaf abscisic acid accumulation in response to substrate water content: Linking leaf gas exchange regulation with leaf abscisic acid concentration. J. Amer. Soc. Hort. Sci. 131:295-301.
  105. Chapagain, A.K. and Hoekstra, A.Y. 2004. Water Footprints of Nations, Value of Water Research Report Series, Vol. 16, UNESCO-IHE, Delft, the Netherlands.
  106. Chaves, M.M., Osório, J., and Pereira, J. S. 2004. Water use efficiency and photosynthesis. In: Water use efficiency in plant biology. ed: B. A., Mark. Blackwell publishing. P42-66.
  107. Chai, Q., Y. Gan, N. C. Turner, R. Z. Zhang, C. Yang, Y. Niu, and K. H. M. Siddique. 2014. Water-saving innovations in Chinese agriculture. Adv. Agron. 126:147-197.
  108. English, M. J., J. T. Musick, and V. V. N. Murty. 1990. Deficit irrigation. In: Management of farm irrigation systems (Hoffman, G.J., Howell, T.A., and Solomon, K.H., Editors). ASAE Monograph no. 9. American Society of Agricultural Engineers publisher, 1020p.
  109. Fischer, R.A. 1980. Influence of water stress on crop yield in semiarid regions. p. 323-338. In N.C. Turner and P.J. Kramer (ed.) Adaptation of plants to water and high temperature stress. John Wiley & Sons.
  110. Gençoğlan, C. and A. Yazar. 1999. Corn yield and water use water applications to yield. J. Agr. For. 23:233-241.
  111. Goodwin, I. and A. M. Boland. 2002. Scheduling deficit irrigation of fruit trees for optimizing water use efficiency. In: Deficit irrigation practices, Water reports 22. FAO, Rome, pp 67-78
  112. Global Yield Gap Atlas. 2017. GYGA results. .
  113. Hoekstra, A.Y. and Hung, P.Q. 2002. Virtual water trade: A quantification of virtual water flows between nations in relation to international crop trade, Value of Water Research Report Series, Vol. 11, UNESCO-IHE, Delft, the Netherlands.
  114. Kirda, C. 2002. Deficit irrigation scheduling based on plant growth stages showing water stress tolerance. In: Deficit irrigation practices. FAO, Rome, pp 3-10.
  115. Küppers, M., L. O’Rourke, D. Bockelée-Morvan, V. Zakharov, S. Lee, P. Von Allmen, B. Carry, D. Teyssier, A. Marston, T. Müller, J. Crovisier, M. A. Barucci, and R. Moreno. 2014. Localized sources of water vapor on the dwarf planet (1) Ceres. Nature 505:525-527.
  116. Molden, D., 2003. A water-productivity framework for understanding and action. In: Kijne, J.W., Barker, R., Molden, D. (Eds.), Water Productivity in Agriculture: Limits and Opportunities for Improvement. International Water Management Institute, Colombo, Sri Lanka, pp.1-18.
  117. Morgounov, A., Braun, H.J., Ketata, H., Paroda R. 2004. International Cooperation for Winter Wheat Improvement in Central Asia: Results and Perspectives. Turk. J. Agr. For. 29:137-142.
  118. Mohammadkhani, N. and R. Heidari. 2008. Drought-induced accumulation of soluble sugars and proline in two maize varieties. World Appl. Sci. J. 3:448-453.
  119. Mekonnen, M. M., and A. Y. Hoekstra. 2011. National water footprint accounts: The green, blue and grey water footprint of production and consumption. Value of Water Res. Rep. Ser. No. 50. UNESCO-IHE, Delft, the Netherlands.
  120. Siemonsma, J.S. and K. Piluek. Basella alba L. 1993. In: Plant resources of South-East Asia No 8. Vegetables. Wageningen, Netherlands: Pudoc Scientific Publishers.
  121. Sepaskhah A. R. and S. H. Ahmadi. 2010. A Review on Partial Root-Zone Drying Irrigation. Intl. J. Plant Prod. 4:241-258.
  122. Sadras, V., P. Grassini, and P. Steduto. 2011. Status of water use efficiency of main crops: SOLAW Background Thematic Report - TR07. Rome: Food and Agricultural Organization.
  123. Siddique, K. H. M. and H. Bramley. 2014. Water deficits: development. Encyclop. Natural Res. 1-4.
  124. Tanner, C.B., and T.R. Sinclair. 1983. Efficient water use in crop production: Research or re-research? p.1-27. In H.M. Taylor et al. (ed.) Limitations to efficient water use in crop production. ASSA, CSSA, SSSA, Madison, WI.
  125. de Wit, C.T. 1958. Transpiration and crop yields. Inst. Biol. Chem. Res. Field Crop Herb., Wageningen, Netherlands. Versl. Landbouwhogesch. Onderz. No. 64.6.
  126. World economic forum. 2017. The global risks report 2017 12th edition. Geneva:World economic forum.
  127. World resources institute. 2017. Water risk atlas.
  128. Yazgan, S., A. Serhat, D. Cigdem, B. Hakan, and B. N. Candogan. 2008. Deficit irrigation effects on lettuce (Lactuca sativa var. Olenka) yield in unheated greenhouse condition. J. Food Agr. Environ. 6:357-361.