题名

三維架構之雙輻射狀功率合成技術之研究

并列篇名

Research of 3-D Dual-Radial Power Combining Technique

DOI

10.6342/NTU.2015.02367

作者

葉景富

关键词

三維功率放大器架構 ; 互補金氧化半導體 ; 折疊變壓器 ; 輻射狀功率分配網路 ; 輻射狀功率合成網路 ; 多模操作 ; 3D PA architecture ; CMOS ; folded-transformer ; radial power distribution network ; radial combining network ; multi-mode operation

期刊名称

臺灣大學電信工程學研究所學位論文

卷期/出版年月

2015年

学位类别

博士

导师

黃天偉

内容语文

英文

中文摘要

本篇論文主要是討論與發展可應用於晶片內的功率結合技術。本篇論文首先提出一個創新的三維架構之雙輻射狀功率放大器架構。這個架構提供了在阻抗選擇上的自由度。這個架構的概念可以突破目前都是二維功率結合技術的瓶頸,這架構可以在不用妥協的情況下同時達到電路佈局得對稱性並且可以達到所小晶片面積的優點。藉由使用所提出的功率放大器架構,在一個晶片面積內可以同時實現功率分配器與功率結合器的設計,因此可以達到縮小晶片面積的目的。這個架構所擁有的阻抗選擇自由度使得它能不受限操作頻率的限制而可應用於不同頻帶的設計。為了驗證這個創新的架構的可行性,我們針對不同的頻帶設計了許多三維功率放大器,並且也在不同的CMOS製程來驗證架構的可行性。 以應用於毫米波功率放大器而言,我們將三維功率放大器分別在不同的製程設計了應用在60GHz的頻帶上設計了結合四路功率放大器與八路的功率放大器。這二個功率放大器皆可以達到高輸出功率並且擁有高的單位輸出功率密度。其中60GHz的四路結合的功率放大器也是第一個在毫米波頻段上具有多模操作所需要的阻抗補償機制的設計。另一個八路功率結合的功率放大器更是目前利用CMOS技術可以達到23 dBm最大的輸出功率的設計,並且面積只有0.72平方毫米。 關於三維功率放大器在微波頻段的應用,我們也提出一個蝶型領結式的雙輻射狀功率放大器架構。這個架構主要是用來抑制雙輻射功率放大器架構中二個輻射網路中間存在的寄生電容可能造成回授的現象以致於會有穩定的問題。這樣的架構也同時實現於24-GHz與5-GHz的應用。其中24-GH的四路功率結合放大器更可輸出目前CMOS最高的輸出功率,可達到26.1 dBm的輸出並且具有非常高的單位面積可生產的功率密度,可達到635 mW/mm2。另外,實現於5-GHz的三維功率放大器分別可達到0.5瓦以及接近1瓦的輸出功率。 在論文的最後,我們提出一個改善IM3的線性化技術,這個技術實現於一個60-GHz的功率放大器。量測結果顯示IM3可以改善超過30 dBc的效果並且驗證在60-GHz應用中涵蓋7 GHz頻寬的四個頻道皆可以發揮效果。藉由這樣預失真的效果,輸出的OP1dB在四個頻道皆可以因此提高一倍的輸出功率。

英文摘要

The research on the development of on-chip power combining techniques is presented this dissertation. For the first time, an innovative 3-D dual-radial PA architecture is proposed. It provides design freedom of impedance selection of power device in TF-based mm-wave PA design. This idea also makes distinguished breakthrough to the traditional 2-D PA architecture without compromising symmetry and compact size of layout. This technique presents not only a power combiner but a new PA architecture. By taking advantage of the dual-radial architecture, the power splitting network and power combining network can share the same active area to complete the fully integration with symmetry layout. This new technique also possesses the impedance freedom to make its feasibility from mm-wave frequency band to microwave frequency band. To demonstrates the feasibility of the proposed 3-D dual-radial PA architecture. Various 3-D PAs have been successfully implemented in different frequency application and in different CMOS process. In terms of mm-wave 3-D PA, a 4-way 60-GHz 3-D PA and 8-way balanced 3-D PA are demonstrated not only the high output power but also high PAD performance. The 4-way 60-GHz PA is also the first mm-wave PA equipped with impedance compensation mechanism for multi-power operation. The 8-way balanced 3-D PA demonstrates the highest 60-GHz output power of 23 dBm in CMOS technology. The chip area of 8-way 60-GHz PA is only 0.72 mm2. In terms of microwave 3-D PA, a bowtie dual-radial architecture is proposed to mitigate the inherent feedback capacitor existing in the original dual-radial PA architecture for unconditional stability consideration. This idea is realized in 24-GHz and 5-GHz PA. The 4-way 3-D bowtie radial PA can achieves highest Pout of 26.1 dBm and high PAD of 635 mW/mm2. Furthermore, the proposed 3-D PA architecture is also adopted to implement a half-watt and one-watt 5-GHz PA in 180-nm CMOS. The proposed fully integrated 5-GHz PA can achieve Pout of 29.5 dBm in cost effective 180-nm CMOS with only 3.33 mm2. A 60-GHz power amplifier utilizing the pre-distortion linearizer was demonstrated at last. The proposed linearization technique can significantly improve IMD3 distortion over 30 dBc at 60-GHz. This technique is valid to cover the wide bandwidth form 57 GHz to 66 GHz. The performances of IP1dB of the 60-GHz PA can be extended around 7 dB and the corresponding OP1dB can be boosted 3 dB in average by enabling the proposed linearization technique.

主题分类 電機資訊學院 > 電信工程學研究所
工程學 > 電機工程
参考文献
  1. [59] Y. Kawano, A. Mineyama, T. Suzuki, M. Sato, T. Hirose, K. Joshin, “A Fully-Integrated K-band CMOS Power Amplifier with Psat of 23.8 dBm and PAE of 25.1 %,” in RFIC Dig., May 2011, pp. 1–4.
    連結:
  2. [60] K. Kim, and C. Nguyen, “A 16.5-28 GHz 0.18-μm BiCMOS power amplifier with flat 19.4 +/- 1.2 dBm output power,” IEEE Microw. Wireless Compon. Lett, vol. 24, no. 2, pp. 108- 110, Jan. 2014.
    連結:
  3. [61] C.-C Kuo, Y.-H. Lin, H.-H. Lu, and H. Wang, “A K-band compact fully integrated transformer power amplifier in 0.18-μm CMOS technology,” in APMC. Dig., Nov. 2013, pp. 597-599.
    連結:
  4. [62] J. Y.-C. Liu, C.-T. Chen and S. S. H. Hsu, “A K-band power amplifier with adaptive bias in 90-nm CMOS,” IEEE EuMC Dig., Oct. 2014. Pp. 1376-1379.
    連結:
  5. [64] V. Giammello, E. Ragonese, and G. Palmisano, “A 15-dBm SiGe BiCMOS PA for 77-GHz automotive radar,” IEEE Trans. Micro-wave Theory Tech., vol. 59, no. 11, pp. 2910–2918, Nov. 2011.
    連結:
  6. [65] Z. Xu, Q. J. Gu, A. Tang, and M.-C. Frank Chang, “A 100-117 GHz W-band CMOS power amplifier with on-chip adaptive biasing,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 10, pp. 547-549, Oct. 2011.
    連結:
  7. [66] Q. J. Gu, Z. Xu, and M.-C. F. Chang, “Two-way current-combining W-band power amplifier in 65-nm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 5, pp. 1365–1374, May 2012.
    連結:
  8. [67] N. Deferm, J. F. Osorio, A. de Graauw, and Patrick Reynaert, “A 94GHz differential power amplifier in 45nm LP CMOS,” in RFIC Dig., June 2011.
    連結:
  9. [68] Y.-S. Jiang, J.-H. Tsai, and H. Wang, “A W-band medium power amplifier in 90nm CMOS,” IEEE Microwave Wireless Comp. Lett., vol. 18, no. 12, pp. 818–820, Dec. 2008.
    連結:
  10. [69] K.-Y. Wang, T.-Y. Chang, and C.-K. Wang, “A 1V 19.3dBm 79GHz power amplifier in 65nm CMOS,” in IEEE ISSCC Dig. Tech. Papers, Feb. 2012, pp. 260–261.
    連結:
  11. [70] I. Aoki, S. D. Kee, D. B. Rutledge, and A. Hajimiri, “Fully integrated CMOS power amplifier design using the distributed active-transformer architecture,” IEEE J. Solid-State Circuits, vol. 37, no. 3, pp. 371-383, March 2002.
    連結:
  12. [71] J. R. Long, “Monolithic transformer for silicon RF IC design,” IEEE J. Solid-State Circuits, vol. 35, no. 9, pp. 1368-1384, March 2000.
    連結:
  13. [72] J.-F. Yeh, J.-H. Tsai, and T.-W. Huang, “A multi-mode 60-GHz power amplifier with a novel power combination technique,” in RFIC Dig., June 2012, pp. 61-64.
    連結:
  14. [73] Maryam Fathi, David K. Su, Bruce A. Wooley, “A 30.3dBm 1.9GHz-bandwidth 2×4-array stacked 5.3GHz CMOS power amplifier”, Int. Solid-State Circuits Conf. Tech. Dig., Feb 2013.
    連結:
  15. [74] D. Chowdhury, C.D. Hull, O.B. Degani, Y. Wang, and A.M. Niknejad, "A Fully Integrated Dual-Mode Highly Linear 2.4 GHz CMOS Power Amplifier for 4G WiMax Applications," IEEE J. Solid-State Circuits, vol.44, no.12, pp. 3393-3402, Dec. 2009.
    連結:
  16. [75] G. Liu, P. Haldi, T.-J. King Liu, and A.M. Niknejad, "Fully Integrated CMOS Power Amplifier With Efficiency Enhancement at Power Back-Off," IEEE J. Solid-State Circuits, vol.43, no.3, pp. 600-609, March 2008.
    連結:
  17. [76] J. Kim, Y. Yoon, H. Kim, K. H. An, W. Kim, H.-W. Kim, C.-H. Lee, and K. T. Kornegay, "A Linear Multi-Mode CMOS Power Amplifier With Discrete Resizing and Concurrent Power Combining Structure," IEEE J. Solid-State Circuits, vol.46, no.5, pp. 1034-1048, May. 2011.
    連結:
  18. [77] Jihwan Kim; Woonyun Kim; Hamhee Jeon; Yan-Yu Huang; Youngchang Yoon; Hyungwook Kim; Chang-Ho Lee; Kornegay, K.T.; , "A Fully-Integrated High-Power Linear CMOS Power Amplifier With a Parallel-Series Combining Transformer," IEEE J. Solid-State Circuits, vol.47, no.3, pp. 599-614, March. 2012.
    連結:
  19. [78] A. Scuderi, C. Santagati, M. Vaiana, F. Pidala, and M. Paparo, “Balanced SiGe PA module for multi-band and multi-mode cellular-phone applications,” in ISSCC Dig. Tech. Papers, Feb. 2008, pp. 572-637.
    連結:
  20. [79] G. Hau and M. Singh, “Multi-mode WCDMA power amplifier module with improved low-power efficiency using stage-bypass,” in RFIC Dig., May 2010, pp. 163-166.
    連結:
  21. H. Jeon, Y. Park, Y.-Y. Huang, J. Kim, K.-S. Lee, C.-H. Lee, and J.S. Kenney, "A triple-mode balanced linear CMOS power amplifier using a switched-quadrature Coupler," IEEE J. Solid-State Circuits, vol. 47, no. 9, pp. 2019-2032, Sept. 2012.
    連結:
  22. [80] Y. Yoon, J. Kim, H. Kim, K. H. An, O. Lee, C.-H. Lee, and J.S. Kenney, “A dual-mode CMOS RF power amplifier with integrated tunable matching network,” IEEE Microw. Wireless Compon. Lett., vol. 60, no. 1, pp. 77-88, Jan. 2012.
    連結:
  23. [81] B. Koo, T. Joo, Y. Na, and S. Hong, “A fully integrated dual-mode CMOS power amplifier for WCDMA applications,” in ISSCC Dig. Tech. Papers, Feb. 2012, pp. 82-84.
    連結:
  24. [82] P. Haldi , D. Chowdhury , P. Reynaert , G. Liu and A. M. Niknejad “A 5.8 GHz 1 V linear power amplifier using a novel on-chip transformer power combiner in standard 90 nm CMOS”, IEEE J. Solid-State Circuits, vol.43,no.5,pp.1054-1063, May 2008.
    連結:
  25. [83] C. Lu , A. V. H. Pham , M. Shaw and C. Saint "Linearization of CMOS broadband power amplifiers through combined multi-gated transistors and capacitance compensation", IEEE Trans. Microw. Theory Tech., vol. 55, no. 11, pp.2320 -2328, 2007.
    連結:
  26. [84] H. Solar , R. Berenguer , I. Adin , U. Alvarado and I. Cendoya "A fully integrated 26.5 dBm CMOS power amplifier for IEEE 802.11a WLAN standard with on-chip "power inductors"", IEEE MTT-S Int. Microwave Symp. Dig., pp.1875 -1878, 2006.
    連結:
  27. [86] S. C. Cripps, RF Power Amplifiers for Wireless Communications. Boston, MA: Artech House, 1999, ch. 7.
    連結:
  28. [88] J.-H. Tsai, H.-Y. Chang, P.-S. Wu, Y.-L. Lee, T.-W. Huang, and H. Wang, “Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487–2496, June. 2006.
    連結:
  29. [89] J.-H. Tsai, C-H. Wu, H.-Y. Yang, T.-W. Huang, “A 60 GHz CMOS power amplifier with built-in pre-distortion linearizer,” IEEE Microw. Wireless Compon.Lett., vol. 21, no. 12, pp. 676–678, Dec. 2011.
    連結:
  30. [90] J.-F. Yeh, J.-H. Cheng , J.-H. Tsai and T.-W. Huang, “A 57-66 GHz power amplifier with a linearization in 65-nm CMOS process,” IEEE EuMC Dig., Oct. 2014. Pp. 309-312.
    連結:
  31. [91] J. Y.-C Liu, R. Bergenguer, and M.-C. Frank Chang, “Millimeter-wave self-healing power amplifier with adaptive amplitude and phase linearization in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1342-1352, May 2012.
    連結:
  32. [92] R. D. Singh and K. W. Yu, “A linear mode CMOS power amplifier with self-linearizing bias,” ASSCC Dig. Tech. Papers, pp. 251-254, Nov. 2006.
    連結:
  33. [93] 蔡政翰撰,毫米波發射器線性化及十億位元無線通信系統, 國立台灣大學電信工程研究所博士論文,2007年1月。
    連結:
  34. [94] J. C. Pedro, and N. B. de Carvalho, “On the use of multitones techniques for assessing RF components’ intermodulation distortion,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2393–2402, Dec. 1999.
    連結:
  35. [97] J.-H. Tsai, C.-H. Wu, H.-Y. Yang, and T.-W. Huang, “A 60 GHz CMOS power amplifier with built-in pre-distortion linearizer,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 12, pp. 676–678, Dec. 2011.
    連結:
  36. [98] J. C. Pedro, and N. B. de Carvalho, “On the use of multitones techniques for assessing RF components’ intermodulation distortion,” IEEE Trans. Microw. Theory Tech., vol. 47, no. 12, pp. 2393–2402, Dec. 1999.
    連結:
  37. [99] J. Y.-C. Liu,Q. J.Gu,A. Tang, N.-Y.Wang, andM.-C. F. Chang, “A 60 GHZ tunable output profile power amplifier in 65 nm CMOS,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 8, pp. 377–379, Jul. 2011.
    連結:
  38. [100] J. Y.-C. Liu, R. Berenguer, and M.-C. F. Chang, “Millimeter-wave self-healing power amplifier with adaptive amplitude and phase linearization in 65-nm CMOS,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 5, pp. 1342–1352, May 2012.
    連結:
  39. [58] F. Shirinfar, M. Nariman, T. Sowlati, M. Rofougaran, R. Rofougaran, and S. Pamarti, “A fully integrated 22.6dBm mm-Wave PA in 40nm CMOS,” in RFIC Dig., June 2013.
  40. [63] J.-F. Yeh, Yu-Fang Hsiao, J.-H. Tsai, and T.-W. Huang, “MMW ultra-compact N-way transformer PAs using bowtie-radial architecture in 65-nm CMOS,” accepted by IEEE Microw. Wireless Compon. Let., 2015.
  41. [85] S. Pinel, S. Sarkar, P. Sen, B. Perumana, D. Yeh, D. Dawn, J. Laskar, “A 90nm CMOS 60GHz radio,” ISSCC Dig. Tech. Papers, pp. 130-131, Feb. 2008.
  42. [87] 曾奕恩撰,應用於無線通訊之瓦等級變壓器功率結合式CMOS功率放大器之研製,國立台灣大學電信工程研究所博士論文,2013年6月。
  43. [95] N. B. de Carvalho, and J. C. Pedro, “Compact formulas to relate ACPR and NPR to two-tone IMR and IP3” IEEE Microwave Magazine.
  44. [96] http://www.maximintegrated.com/en/app-notes/index.mvp/id/3902
被引用次数
  1. 許峰毓(2016)。40奈米LDMOS多路變壓器結合及65奈米CMOS預失真線性器功率放大器之研製。臺灣大學電信工程學研究所學位論文。2016。1-84。