题名

血塊受旋轉剪應力下之力學分析

并列篇名

Mechanics of rotation-induced shear on blood clot under suction

DOI

10.6342/NTU201701105

作者

孫瑞鴻

关键词

血塊 ; 接觸力學 ; 破壞 ; 吸 ; Blood clot ; contact mechanics ; fracture ; suction

期刊名称

國立臺灣大學機械工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

施文彬

内容语文

英文

中文摘要

顱內出血是一個腦內出血導致壓力快速上升而傷害腦部造成傷害甚至死亡的嚴重疾病。常見兩種治療方式,一種是藥物治療,另一種是用微創手術將內部出血排除。藥物治療需要專業的藥劑師控管劑量,而且只有符合要求的病患才可以使用。而在微創手術中,治療的速度很重要。但是微創手術排除出血時使用的管子很小,而出血中已經形成非常多血塊,容易造成管道阻塞,目前若是血塊阻塞管道則會需要取出管子排除之後再重新插入繼續,造成寶貴時間的浪費。減少血塊阻塞在管頭可以帶來很大的幫助。 根據觀察,血塊在管內的阻塞可以依靠使用比較低磨擦力的管材料來減少,而管口會有許多血塊卡住。目前現有的解決阻塞辦法多是結合藥物或是電動機械來對應,但是藥物有副作用,電動機械可能造成風險,所以純機械的解決方法可能會比較能更被接受。在想出純機械的設計之前,了解血塊在管口的力學可以幫助更了解這個問題。除了吸力帶來的影響,因為軟材料受到拉伸應力時相較壓縮應力來說更容易破壞,如果管口可以產生旋轉造成剪應力則可能可以減少阻塞。 血塊受管壓與吸力時,產生裂痕的關鍵在於表面所受之應力,這裡使用傳統破壞力學中的penny-shaped-crack與3-D punch 的模型結合有限元素分析找出單純吸力時的應力場,再結合參考Reissner-Sagoci與punch 模型所推得的剪力場,得出表面所受之應力場,再跟有限元素模擬之結果比較對應。其中應力場形狀雖同但是量值不同,透過模擬所求得知應力強度應子曲線近似出根據管口與管壁厚度之修正係數。 實驗第一部分透過自行設計的血塊之拉伸試驗驗證血塊之材料彈性係數,並且利用此架構測量粘彈性質。第二部分是比較一般管,銳利薄壁管口與旋轉之管口在以壓力吸除血塊時候之差異,使用洋菜凍模擬血塊,並透過三種管口與限定壓力之下之比較,實驗結果可以得到旋轉產生之剪應力可以降低使血塊順利吸除之需求壓力。 此論文中結合舊有簡單之彈性模型與有限元素法來求得血塊受管吸之應力場分佈,並且設計一個新的可以應用在非常軟且易破壞之材料之拉伸試驗,並且透過實際以旋轉與非旋轉管口比較測試差益證明旋轉產生之剪應力可以降低使血塊順利吸除之需求壓力。

英文摘要

Intracerebral hemorrhage is also known as cerebral bleed. Rapid increase pressure can cause unconsciousness or death. Victims of intracerebral hemorrhage are suggested to receive medical treatment immediately. One of the common treatment is thrombolysis using medicine. However, certain criterion should be met by the patients and side effects could be caused by the medicine. While performing minimal invasive surgery, the blood clot in the head can clog the aspiration tube. This requires surgeon to take to the tube and clean it. This process wastes the precious time. A solution to this problem can save lots of people. Based on observation, the clog inside the tube can be avoided by choosing low friction tube and most clots clog at the tip. Most of current solutions are combining medicine or electrical-driven component. The mechanical solution and the mechanism are worth investigating because drugs could have side effects and electric driven mechanism may have risk of electricity leaking. Further analysis of the mechanism between suction tube and blood clot is needed. The stress components on the contact surface of blood clot are important for crack initiation. Traditional penny shaped crack model and 3-D punch is investigated. From Reissner-Sagoci and punch problem, the shear stress on the surface can be derived. Combining the traditional models and finite element analysis of stress intensity factor, the stress field of pure suction and suction with rotational tip can be approximated by proposed equation. Specially designed experiments were conducted to measure the blood clot elastic modulus by tensile test and viscus modulus by relaxation test. A suction test is studied to compare a normal tip, a sharp thin edge tip and a rotational sharp thin tip by aspirate agar blocks which simulate blood clots. The result is that with a rotational tip, the pressure required to clean the clots can be reduced. This study combines several traditional model and finite element results of stress intensity factor to approximate the stress field of a blood clot under rotating suction tip. A dedicated experiment for soft materials are done to measure the material constant of blood clot. Then, a rotating suction tip is proved to be more effective than the normal tip by reducing the pressure requirement.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. [3] W. Hacke, et al.(1995) “Intravenous Thrombolysis With Recombinant Tissue Plasminogen Activator For Acute Hemispheric Stroke,” The European Cooperative Acute Stroke Study (ECASS). JAMA 274(13):1017,
    連結:
  2. [4] G.A. ,Donnan.(1996) “Streptokinase for acute ischemic stroke with relationship to time of administration: Australian Streptokinase (ASK).” Trial Study Group. JAMA 276(12):961-6,
    連結:
  3. [5] D. J. Miller, J. R. Simpson, & B. Silver, (2011). ”Safety of Thrombolysis in Acute Ischemic Stroke: A Review of Complications, Risk Factors, and Newer Technologies.” The Neurohospitalist, 1(3), 138–147. Available: http://doi.org/10.1177/1941875211408731
    連結:
  4. [7] J. C. Hemphill, 3rd; S. M. Greenberg; C. S. Anderson; K. Becker; B. R. Bendok, M. Cushman; G. L. Fung, J. N. Goldstein; R.L. Macdonald; P. H. Mitchell; P.A. Scott, M. H. Selim,; D. Woo; (2015). “Guidelines for the Management of Spontaneous Intracerebral Hemorrhage: A Guideline for Healthcare Professionals From the American Heart Association/American Stroke Association.” Stroke; a journal of cerebral circulation. 46 (7): 2032–60.
    連結:
  5. [9] K. Badran, P. Karkos, (2007), “Recurrent blockage of the sucker during otological surgery: a simple solution,” J Laryngol Otol. 2007;121:266–7.
    連結:
  6. [10] E. Abdu, D. F. Hanley, and D. W. Newe ll, (2012), “Minimally invasive treatment for intracerebral hemorrhage,” Neurosurg Focus 32 (4):E3, 2012
    連結:
  7. [11] A. V. Alexandrov, (2009), “Ultrasound Enhancement of Fibrinolysis,” Stroke. 2009;40:S107-S110
    連結:
  8. [12] A. V. Alexandrov, A. M. Demchuk, W. S. Burgin, D. J. Robinson, and J. C. Grotta, (2004), “Ultrasound-Enhanced Thrombolysis for Acute Ischemic Stroke: Phase I. Findings of the CLOTBUST Trial.” Journal of Neuroimaging, 14: 113–117.
    連結:
  9. [13] P. Cintas, F. Nguyen, B. Boneu, and V. Larrue, (2004), “Enhancement of enzymatic fibrinolysis with 2-MHz ultrasound and microbubbles.” Journal of Thrombosis and Haemostasis, 2: 1163–1166.
    連結:
  10. [16] R. D. Turner, J. Vargas, A. S. Turk, M. I. Chaudry, A. M. Spiotta, (2015) “Novel Device and Technique for Minimally Invasive Intracerebral Hematoma Evacuation in the Same Setting of a Ruptured Intracranial Aneurysm: Combined Treatment in the Neurointerventional Angiography Suite.” Oper Neurosurg (Hagerstown) 2015; 11 (1): 43-51.
    連結:
  11. [23] J. Jesty and E. Beltrami, (2005) “Positive Feedbacks of Coagulation,” Arteriosclerosis, Thrombosis, and Vascular Biology. 2005;25:2463-2469
    連結:
  12. [24] J.W. Weisel, (2008) “Enigmas of Blood Clot Elasticity”, Science 320 (5875), 456-457.
    連結:
  13. [25] L. H. Sperling. (2015) “Introduction to Physical Polymer Science.” John Wiley & Sons
    連結:
  14. [26] O. Chaikumpollert, Y. Yamamoto, K. Suchiva and S. Kawahara. (2012). “Mechanical properties and cross-linking structure of cross-linked natural rubber,” Polymer Journal 44, 772–777
    連結:
  15. [29] W. Liu, L. M. Jawerth, E. A. Sparks, M. R. Falvo, R. R. Hantgan, R. Superfine, M. Guthold, (2006). “Fibrin Fibers Have Extraordinary Extensibility and Elasticity.” Science (New York, N.Y.), 313(5787), 634
    連結:
  16. [32] N. Krasokha, W. Theisen, S. Reese, P. Mordasini, C. Brekenfeld, J. Gralla, J. Slotboom, G. Schrott, and H. Monstadt, (2010), “Mechanical properties of blood clots – a new test method.” “Mechanische Eigenschaften von Thromben – Neue Untersuchungsmethoden.” Mat.-wiss. u. Werkstofftech., 41: 1019–1024.
    連結:
  17. [33] E. Reyssat, T. Tallinen, M. Le Merrer, and L. Mahadevan. (2012) “Slicing Softly with Shear.” Phys Rev Lett. 109(24):244301
    連結:
  18. [36] I. N. Sneddon, M. Lowengrub, (1970), “Crack Problems in the Classical Theory of Elasticity.” (The SIAM Series in Applied Mathematics). John Wiley & Sons,
    連結:
  19. [37] I. N. Sneddon, (1945), “The Distribution of Stress in the Neighbourhood of a Crack in an elastic solid.” Proc. R. Soc. Lond. A 1946 187 229-260;
    連結:
  20. [38] I. N. Sneddon, (1945), “BOUSSINESQ'S PROBLEM FOR A FLAT-ENDED CYLINDER.” Mathematical Proceedings of the Cambridge Philosophical Society, 42(1), 29-39.
    連結:
  21. [41] M. K. Kassir, (1967), “The Torsion of a Semi-infinite Elastic Solid by an Elliptical Stamp.” Glasgow Mathematical Journal, 9(1), 36-45.
    連結:
  22. [42] S. Wang, C. Niu, (2016), “Torsional Tribological Behavior and Torsional Friction Model of Polytetrafluoroethylene against 1045 Steel.” PLoS One. 2016; 11(1):
    連結:
  23. [43] A. Mugadu, D.A. Hills , J.R. Barber 1 , A. Sackfield, (2003), “The application of asymptotic solutions to characterising the process zone in almost complete frictional contacts,” International Journal of Solids and Structures 41(2004) 385–397
    連結:
  24. [44] V. T. Nayar, J.D. Weiland, C.S. Nelson, A. M. Hodge, (2011), “Elastic and viscoelastic characterization of agar.” J Mech Behav Biomed Mater. 2012 Mar;7:60-8
    連結:
  25. [1] T. P. Naidich, M. Castillo, S. Cha, J. G. Smirniotopoulos (2012). “Imaging of the Brain ,Expert Radiology Series,1st Edition.” Elsevier Health Sciences. p. 387. ISBN 1416050094.
  26. [2] “tPA for Stroke – Potential Benefit, Risk and Alternatives,” (2007) American Academy of Emergency Medicine Available: http://www.aaem.org/UserFiles/file/tpaedtool-AAEM.pdf
  27. [6] D. S Liebeskind, (2016), “Intracranial Hemorrhage Treatment & Management”, Medscape. Available: http://emedicine.medscape.com/article/1163977-treatment
  28. [8] R. O Borden, (1957), “Non-clogging surgical aspirator,” U.S. Patent US2804075A, Aug. 27, 1957
  29. [14] R. S. Hensler, (2013), “Anti-clog suction tip apparatus and methods,” U.S. Patent US8845618 B2, Nov. 4, 2013
  30. [15] Penumbra (2017 Mar.) “Apollo System Cases.” Available: http://www.penumbrainc.com/apollo-system-cases/
  31. [17] D. Lillicrap; N. Key; M. Makris; D. O'Shaughnessy, (2009). “Practical Hemostasis and Thrombosis.”Wiley-Blackwell. pp. 1–5.
  32. [18] D. Costa, L. Rib, O. Mora, (2010). “Clotting factors (Serine proteinases),” Structural BioInformatics Lab, Barcelona Biomedical Research Park, Barcelona, Spain. Available: http://sbi.imim.es/web/files/projects/master/2010/Coagulation_serine_proteases/coagulationProcess.html
  33. [19] A. D. Michelson, (26 October 2006). “Platelets.” Academic Press. pp. 3–5. ISBN 978-0-12-369367-9. Retrieved 18 October 2012.
  34. [20] N. Key; M. Makris; et al. (2009). “Practical Hemostasis and Thrombosis.” Wiley-Blackwell. p. 2.
  35. [21] C.J. Pallister,M.S.Watson (2010). “Haematology.” Scion Publishing. pp. 336–347.
  36. [22] Dr. Graham Beards, (2012) Wikipedia. “Coagulation.” [Online]. Available: https://en.wikipedia.org/wiki/Coagulation
  37. [27] G. .A. Holzapfel, (2001), “Biomechanics of soft tissue,” The handbook of material behavior nonlinear models and properties, 3th ed., Graz, Austria: LMT-Cachan, 2001, pp. 1049-1063.
  38. [28] P. P. Purslow, T. J. Wess, D. W. L. Hukins, (1997), “Collagen orientation and molecular spacing during creep and stress-relaxation in soft connective tissues,” Journal of Experimental Biology 1998 201: 135-142;
  39. [30] A. Brown, (2007). “Exploring The Molecular Origin Of Blood Clot Flexibility,” Science Daily, University of Pennsylvania School of Medicine
  40. [31] J.-P. Collet, H. Shuman, R. E. Ledger, S. Lee, & J. W.Weisel, (2005). “The elasticity of an individual fibrin fiber in a clot.” Proceedings of the National Academy of Sciences of the United States of America, 102(26), 9133–9137.
  41. [34] T. Atkins, (2009). “The Science and Engineering of Cutting: The Mechanics and Processes of Separating, Scratching and Puncturing Biomaterials, Metals and Non-metals.” 1st edition, Butterworth-Heinemann,
  42. [35] K. L. Johnson, (1987), “Contact Mechanics,” Cambridge University Press
  43. [39] ANSYS® Mechanical APDL, 16.1, Guide, Chapter 10.2 , ANSYS, Inc. Available: http://www.ansys.stuba.sk/html/guide_55/g-str/gstr10.htm
  44. [40] I. N. Sneddon, (1965) , “The Reissner-Sagoci Problem.” Proceedings of the Glasgow Mathematical Association, 7(3), 136-144.