题名

藉由優化光柵結構提高多彩量子井與超晶格紅外線光偵測器之響應度

并列篇名

Highly response multi color quantum well and superlattice infrared photodetector with grating structure optimization

DOI

10.6342/NTU201701977

作者

楊濤

关键词

表面消逝波 ; 光柵結構 ; 量子井紅外線光偵測器 ; 超晶格紅外線光偵測器 ; Evanescent wave ; grating structure ; Quantum Well infrared photodetector (QWIP) ; Superlattice infrared photodetector (SLIP)

期刊名称

臺灣大學生醫電子與資訊學研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

管傑雄

内容语文

繁體中文

中文摘要

量子井紅外線光偵測器在各領域中被廣泛應用,其中包含天文、醫療、建築、軍事、安全系統等領域。本論文通過添加超晶格結構與光柵結構,以提高元件的光吸收效率。 光柵的作用可使光能大量集中於基板主動層,增加光電流,並能大幅增加元件之光吸收率。超晶格的結構可使電子容易被光激發,讓元件可以在低偏壓下操作,其電阻小,可以有效降低暗電流並減少雜訊產生。本論文也通過改變光柵蝕刻深度,藉此改變光場的能量分佈,使光場集中於主動層,提高元件之響應度。 我們發現當光柵週期固定於2μm時,光柵深度與響應度之間的關係並不是遞增函數,而是在深度為1.3μm時達響應度之最佳值,與沒有光柵結構的元件相比較,有2.5倍的增益。最佳深度為1.3μm之光柵結構最高操作溫度可以量測到83K。

英文摘要

Quantum wells Infrared photodetector have been widely used in many fields, such as astronomy, medical, construction, military, security systems and etc. In our study, superlattice structure is added in order to enhance light absorption efficiency. Grating structure can also improve responsivity. The effect of grating system not only can concentrate light energy and then improve the photocurrent, but also can greatly increase its absorption in the active layer. Superlattice structure can help electrons easily excited by photons, which make our device can be operated at low bias voltage. Due to the small resistance, the dark current can be effectively reduced and then reduce the noise generation. Another study is to enhance responsivity of the photo detector by changing grating depth. We find that as the period of grating structure is fixed at 2μm, the relationship between the grating depth and the responsivity is not an increasing function. According to the results, the optimal value of the responsivity is detected when the grating depth is 1.3 μm. Compared with the devices without the grating structure, our best device had 2.5 times of the gain. The maximum operation temperature of our best device is measured at 83K.

主题分类 基礎與應用科學 > 資訊科學
醫藥衛生 > 醫藥總論
電機資訊學院 > 生醫電子與資訊學研究所
参考文献
  1. [3]. Gunapala, S. D., & Bandara, S. V. (n.d.). GaAs / AIGaAs based quantum well infrared photodetector focal plane arrays.
    連結:
  2. [4]. RK, N. (1994). Chapter 1: Introduction, 1–10. https://doi.org/10.1016/S0167-8922(08)70751-X
    連結:
  3. [5]. Andersson, J. Y., Lundqvist, L., & Paska, Z. F. (1991). Quantum efficiency enhancement of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a grating coupler. Applied Physics Letters, 58(20), 2264–2266. https://doi.org/10.1063/1.104917
    連結:
  4. [6]. Andersson, J. Y., & Lundqvist, L. (1991). Near-unity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating coupler. Applied Physics Letters, 59(7), 857–859. https://doi.org/10.1063/1.105259
    連結:
  5. [7]. Moon, J., Li, S. S., & Lee, J. H. (2003). A high performance quantum well infrared photodetector using superlattice-coupled quantum wells for long wavelength infrared detection. Infrared Physics and Technology, 44(4), 229–234. https://doi.org/10.1016/S1350-4495(02)00226-8
    連結:
  6. [9]. Kalchmair, S., Gansch, R., Ahn, S. I., Andrews, A. M., Detz, H., Zederbauer, T., … Strasser, G. (2012). Detectivity enhancement in quantum well infrared photodetectors utilizing a photonic crystal slab resonator. Optics Express, 20(5), 5622. https://doi.org/10.1364/OE.20.005622
    連結:
  7. [10]. Photodetectors, S. I. (n.d.). Development of Superlattice Infrared Photodetectors, 113–137.
    連結:
  8. [11]. Chen, C. C., Chen, H. C., Hsu, M. C., Hsieh, W. H., Kuan, C. H., Wang, S. Y., & Lee, C. P. (2002). Performance and application of a superlattice infrared photodetector with a blocking barrier. Journal of Applied Physics, 91(3), 943–948. https://doi.org/10.1063/1.1430887
    連結:
  9. [12]. Li, K., Jiang, K., Zhang, L., Wang, Y., Mao, L., Zeng, P. (2016). Raman scattering enhanced within the plasmonic gap between an isolated Ag triangular nanoplate and Ag film. Nanotechnology, 27(16), 165401. https://doi.org/10.1088/0957-4484/27/16/165401
    連結:
  10. [13]. Levine, B. F. (1993). Quantum-well infrared photodetectors. Journal of Applied Physics, 74(8). https://doi.org/10.1063/1.354252
    連結:
  11. [14]. Choi, K. K. (2012). Electromagnetic modeling of edge coupled quantum well infrared photodetectors. Journal of Applied Physics, 111(12), 18–22. https://doi.org/10.1063/1.4729810
    連結:
  12. [15]. Liu, D., Fu, Y.-Q., Yang, L.-C., Zhang, B.-S., Li, H.-J., Fu, K., & Xiong, M. (2012). Influence of Passivation Layers for Metal Grating-Based Quantum Well Infrared Photodetectors. Chinese Physics Letters, 29(6), 60701. https://doi.org/10.1088/0256-307X/29/6/060701
    連結:
  13. [16]. Lee, M.-L., Hsieh, C.-J., You, Y.-H., Su, V.-C., Chen, P.-H., Lin, H.-C., … Kuan, C.-H. (2013). Performance enhancement in Quantum Well Infrared Photodetector utilizing the Grating Structure. Cleo: 2013, CM3F.7. https://doi.org/10.1364/CLEO_SI.2013.CM3F.7
    連結:
  14. [17]. Ii, T. (n.d.). Superlattice Detectors.
    連結:
  15. [18]. E. Dupont, “Optimization of lamellar gratings for quantum-well infrared photodetectors,” J. Appl. Phys. 88, 5 (2000).
    連結:
  16. [19]. C. H . Kuan, W. H. Hsieh, S. Y. Lin, C. C. Chen, and J. M. Chen, “Proceedings of SPIE ”The International Society for optical Engineering,” v4288, p151-162 (2001)
    連結:
  17. [20]. Sarath D. Gunapala, Jin S. Park, Gabby Sarusi, True-Lon Lin, John K. Liu, Paul D. Maker, Richard E. Muller, Craig A. Shott, and Ted Hoelter, “15-μm 128*128 GaAs /AlxGa1-xAs Quantum Well Infrared Photodetector Focal Plane Array Camera,”IEEE Transactions on Electron Devices, Vol. 44, No. 1, (1997)
    連結:
  18. [21]. H. C. Liu, Z. R. Wasilewski, and M. Buchanan, “Segregation of Si doping in GaAs-AlGaAs quantum wells and the cause of the asymmetry in the current–voltage characteristics of intersubband infrared detectors,” Appl. Phys. Lett. vol. 63, pp. 761–763 (1993)
    連結:
  19. [22]. Wei, Wu et al. ”A normal-incident quantum well infrared photodetector enhanced by surface plasmon resonance”. (2010)
    連結:
  20. [23]. S. Kalchmair, et al. “Photonic crystal slab quantum well infrared photodetector” (2011)
    連結:
  21. [24]. Wook Jae Yoo, Kyoung Won Jang, Jeong Ki Seo, Jinsoo Moon, Ki-Tek Han, Jang-Yeon Park, Byung Gi Park and Bongsoo Lee, “Development of a 2-channel embedded infrared fiber-optic temperature sensor using silver halide optical fibers”, Sensors (2011)
    連結:
  22. [1]. Science, C. (2016). 國立臺灣大學電機資訊學院電子工程學研究所 碩士論文. https://doi.org/10.6342/NTU201603052
  23. [2]. Lin, S. H., Feng, D. J. Y., Lee, M. L., Lay, T. S., Sun, T. P., & Kuan, C. H. (2012). Double-barrier superlattice infrared photodetector integrated with multiple quantum-well infrared photodetector to improve performance. International Journal of Electrochemical Science, 7(7), 5746–5753.
  24. [8]. Gunapala, S. D., Bandara, S. V, Liu, J. K., Mumolo, J. M., Rafol, S. B., Ting, D. Z., … Hill, C. (2014). Quantum Well Infrared Photodetector Technology and Applications. IEEE Journal of Selected Topics in Quantum Electronics, 20(6). https://doi.org/10.1109/JSTQE.2014.2324538
  25. [25]. Wikipedia, “Evanescent Field” https://en.wikipedia.org/wiki/Evanescent_field
  26. [26]. Wikipedia, “近紅外線影像技術” https://zh.wikipedia.org/wiki/%E8%BF%91%E7%B4%85%E5%A4%96%E7%B7%9A%E5%BD%B1%E5%83%8F%E6%8A%80%E8%A1%93
  27. [27]. Wikipedia, “無限深位能井” https://zh.wikipedia.org/wiki/%E7%84%A1%E9%99%90%E6%B7%B1%E6%96%B9%E5%BD%A2%E9%98%B1