题名

奈米界面析出物強化雙相鋼之顯微組織及機械性質研究

并列篇名

Investigation on Microstructure and Mechanical Properties of Nanometer-Sized Interphase Precipitation Strengthened Dual-Phase Steels

DOI

10.6342/NTU201704503

作者

蔡劭璞

关键词

奈米級界面析出物 ; 雙相鋼 ; (掃描)穿透式電子顯微鏡 ; Gleeble ; 熱膨脹儀 ; nanometer-sized interphase precipitation ; dual-phase steels ; (scanning) transmission electron microscopy ((S)TEM) ; Gleeble ; dilatometer

期刊名称

國立臺灣大學材料科學與工程學系學位論文

卷期/出版年月

2017年

学位类别

博士

导师

楊哲人

内容语文

英文

中文摘要

界面析出物為一種成核於沃斯田鐵至肥粒鐵相變過程當中的細微析出物。自從2004年JFE製鋼將界面析出物導入強化肥粒鐵的研究以來,至今奈米級陣列型MC碳化物用於肥粒鐵單相強化的研究已成果豐碩。本研究目的在於利用此種奈米界面析出物強化傳統雙相鋼之肥粒鐵基地,並且透過熱處理、顯微組織觀察,以及機械性質測試得以深入了解界面析出強化雙相鋼之組織及性質間之關聯。 本研究首先單純探討界面析出物添加前後雙相組織以及機械性質的變化。在精準控制晶粒度以及雙相比例之下,吾人發現添加界面析出物後肥粒鐵的強化會伴隨著麻田散鐵的弱化。利用Gleeble熱處理所得試片的拉伸結果顯示雙相鋼強度大幅提升,然延性卻沒有減損,且降伏比提升。後者揭示著相對傳統雙相鋼而言較佳的擴孔性質。透過階段拉伸並且利用(掃描)穿透式電子顯微鏡觀測變形組織的結果呈現,界面析出物能有效抑制差排的蜂巢狀結構的產生,且阻止幾何必須差排層的展延,減少變形過程的應變集中。除此之外,試片傾轉對於差排以及界面析出物的顯像也在本研究被深入探討:若要觀察到界面析出物,析出物所在陣列平面必須要完全與電子束平行;在不同的雙束條件之下,差排的柏格斯向量則可以被決定。 針對開發界面析出雙相鋼當中的合金添加,熱膨脹儀結果顯現鉻及鋁雖同為肥粒鐵穩定元素,卻分別展現為抑制及促進肥粒鐵相變態之能力。肥粒鐵生成速度影響界面析出物之中的顆粒間距甚鉅:鉻貢獻較慢的肥粒鐵生成速度被證實有效減小顆粒間距,增加介面析出物貢獻之強度。 在相同的雙相比例之下,雙相區持溫溫度的降低使得肥粒鐵晶粒度減小、肥粒鐵強化並且伴隨著麻田散鐵的弱化。持溫溫度較低能造就優異的總體機械性質:較高的強度且優良的延伸率。鉬作為硬化能元素,對於抑制肥粒鐵成長以及促進析出這兩方面皆有顯著貢獻,在本研究中證實能提升雙相鋼整體強度。 此外,散亂型析出物以及陣列型界面析出物在本研究中透過選區繞射以及方位關係得以釐清。本研究中觀測到的散亂型析出有二:一為於沃斯田鐵階段形成的散亂型高溫析出物;另一為雙相區肥粒鐵生成時伴隨而生。前者與肥粒鐵基地可能存在有Kurdjumov-Sachs或是Nishiyama-Wessermann之方位關係,亦可能不存在任何方位關係;後者與肥粒鐵基地保持有Baker-Nutting (B-N)的方位關係。後者所提及的散亂型析出物文獻中均無進行方位關係判定,僅靠形貌敘述。本研究證實這類散亂型析出物其實只是沒有平行於入射電子束的陣列型界面析出物,因其與肥粒鐵基地均只保有一組B-N方位關係。 利用熱膨脹儀實施高溫變形對於先前沃斯田鐵及隨後生成的肥粒鐵均有顯著影響。變形溫度決定沃斯田鐵能否發生再結晶行為;變形程度則影響沃斯田鐵的細緻程度。降低變形溫度以及提升變形量均會促進肥粒鐵相變以及細化肥粒鐵晶粒。沃斯田鐵若存在鬆餅狀組織肥粒鐵較易不均勻成核,甚至會導致兩極化晶粒的產生。界面析出物於高溫變形後的所量測到的陣列間距皆有縮小,顆粒間距則無明顯改變,兩者加乘之下的結果將會增加界面析出物的強化貢獻。然而在高溫變形過程當中引發的散亂型析出物將會弱化界面析出物的貢獻,肥粒鐵界面移動快速也將導致界面析出物不易生成。本研究拿兩極化晶粒作為深入研究對象進行進一步探討,並且發現先前生成的細小晶粒內部並無界面析出的發生,導致硬度相較於粗大晶粒為低。此研究成果顯示傳統細晶強化的概念一旦考慮界面析出物則必須做調整。

英文摘要

Interphase precipitation forms during austenite-to-ferrite transformation. Since the development of interphase precipitation strengthened ferritic steels by JFE company in 2004, there have been enormous studies regarding the nanometer-sized MC-type carbide strengthened ferrite. The present study makes use of this kind of precipitation to strengthen conventional dual-phase steels. Through heat treatments, microstructural observations, and mechanical property testing, the relationship between microstructures and properties of interphase precipitation strengthened dual-phase steels can be built up. The present study in the first place simply investigated the addition of interphase precipitation to the dual-phase structures. Under the precise control over structural parameters such as grain size and volume fraction, interphase precipitation was found to strengthen ferrite but weaken martensite. Tensile specimens heat treated by Gleeble showed higher strength with unsacrificed elongation. Yield ratio could also be increased, which implies better hole expansion properties in the present steel. (Scanning) transmission electron microscopy ((S)TEM) was used to ex-situ observe the deformed structures in the dual-phase steel, and we found out that the formation of cell structures and the development of geometrically necessary dislocation (GNDs) can be effectively hindered by interphase precipitation. The strain localization and better stress-strain balance can be achieved by the simple addition of interphase precipitation. Furthermore, effect of the specimen tilting on both interphase precipitation and dislocation imaging was also comprehensively addressed: where for the observation of interphase precipitation, a rigorous edge-on condition is needed (i.e., sheet plane of carbides should be parallel to the incident beam); Burgers vector of dislocations can, on the other hand, be determined by using different two-beam conditions. The alloy addition of Cr or Al showed different characteristics of either retarding or accelerating ferrite transformation, which was thoroughly studied by a dilatometer. Different ferrite transformation rates gave rise to different morphologies of interphase precipitation. Addition of Cr was proved to bring about smaller intercarbide spacing than Al, which increased the strength contribution from interphase precipitation. Under the same volume fraction of martensite, decreasing the dual-phase holding temperatures reduced the ferrite grain size, increasing ferrite hardness, yet weakening martensite hardness. These factors made the overall mechanical properties excellent, which bore higher strength together with good elongation. Mo, as an element to raise hardenability, retarded ferrite transformation and contributes to denser precipitation, which gave rise to increasing the strength of dual-phase structures. Moreover, the present study clarified the difference between random precipitates and interphase precipitates by using selected area diffraction pattern (SADP) as a tool. Random precipitates can further be divided into two classes: one is random strain-induced precipitation formed in the austenite state; the other is formed in the two-phase holding period. The former holds either Kurdjumov-Sachs, Nishiyama-Wessermann, or none of the above-mentioned orientation relationship with the ferrite matrix, while the latter holds Baker-Nutting orientation relationship instead. The present work initiatively proved that the latter random precipitation holds only single variant Baker-Nutting orientation relationship with the ferrite matrix. Therefore, the seemingly “random” precipitation is regarded as interphase precipitation that is simply not in an edge-on condition by the present author. Moreover, through dilatometer, hot deformation had great impact on both austenite and the subsequent ferrite transformation. Deformation temperatures determined the ability for recrystallization of austenite; increasing deformation strain, on the other hand, refined austenite structures. It was shown that lower deformation temperature or increased deformation strain lead to faster ferrite transformation and finer ferrite grains. Pancaked austenite structures brought about inhomogeneous nucleation of ferrite grains, even making grain distribution bimodal. Hot deformation decreased the sheet spacings of interphase precipitation, but had nearly no influence on intercarbide spacing, which leads to higher strengthening contribution. However, if high-temperature strain-induced precipitates are also considered, the precipitation hardening will be reduced. High temperature precipitates together with very fast transformation movement are thought to obstruct interphase precipitation from forming. Bimodal grain distribution was taken as a case study in the present research, where earlier-formed tiny-grained ferrite was discovered to be devoid of interphase precipitation but distributed with strain-induced larger precipitation, resulting in a lower hardness than larger-grained counterpart. This result reveals that when interphase precipitation is considered, the concept of strengthening through grain refinement should be modified.

主题分类 工學院 > 材料科學與工程學系
工程學 > 工程學總論
参考文献
  1. [1] O. Bouaziz, H. Zurob, M.X. Huang, Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications, Steel Res. Int. 84(10) (2013) 937-947.
    連結:
  2. [4] R.G. Davies, INFLUENCE OF MARTENSITE COMPOSITION AND CONTENT ON PROPERTIES OF DUAL PHASE STEELS, Metallurgical Transactions a-Physical Metallurgy and Materials Science 9(5) (1978) 671-679.
    連結:
  3. [5] R.G. Davies, EARLY STAGES OF YIELDING AND STRAIN AGING OF A VANADIUM-CONTAINING DUAL-PHASE STEEL, Metallurgical Transactions a-Physical Metallurgy and Materials Science 10(10) (1979) 1549-1555.
    連結:
  4. [6] G.R. Speich, V.A. Demarest, R.L. Miller, FORMATION OF AUSTENITE DURING INTERCRITICAL ANNEALING OF DUAL-PHASE STEELS, Metallurgical Transactions a-Physical Metallurgy and Materials Science 12(8) (1981) 1419-1428.
    連結:
  5. [8] A.P. Coldren, G. Tither, DEVELOPMENT OF A MN-SI-CR-MO AS-ROLLED DUAL-PHASE STEEL, Journal of Metals 30(4) (1978) 6-9.
    連結:
  6. [9] K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 604 (2014) 135-141.
    連結:
  7. [10] J.R. Yang, L.J. Chen, DUAL FERRITE MARTENSITE TREATMENTS OF A HIGH-STRENGTH LOW-ALLOY ASTM-A588 STEEL, J. Mater. Sci. 26(4) (1991) 889-898.
    連結:
  8. [11] N.J. Kim, G. Thomas, EFFECTS OF MORPHOLOGY ON THE MECHANICAL-BEHAVIOR OF A DUAL PHASE FE-2SI-0.1C STEEL, Metallurgical Transactions a-Physical Metallurgy and Materials Science 12(3) (1981) 483-489.
    連結:
  9. [12] X.-L. Cai, J. Feng, W.S. Owen, The dependence of some tensile and fatigue properties of a dual-phase steel on its microstructure, Metallurgical Transactions A 16(8) (1985) 1405-1415.
    連結:
  10. [13] L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, D. Mattissen, Alloying effects on microstructure formation of dual phase steels, Acta Mater. 95 (2015) 386-398.
    連結:
  11. [14] M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater. 59(2) (2011) 658-670.
    連結:
  12. [15] M. Mazinani, W.J. Poole, Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 38A(2) (2007) 328-339.
    連結:
  13. [16] Y.L. Kang, Q.H. Han, X.M. Zhao, M.H. Cai, Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium, Mater. Des. 44 (2013) 331-339.
    連結:
  14. [17] M.P. Rao, V.S. Sarma, S. Sankaran, Development of high strength and ductile ultra fine grained dual phase steel with nano sized carbide precipitates in a V-Nb microalloyed steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 568 (2013) 171-175.
    連結:
  15. [18] Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, D.H. Shin, Ultrafine grained ferrite-marten site dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties, Acta Mater. 53(11) (2005) 3125-3134.
    連結:
  16. [19] R.D.K. Misra, H. Nathani, J.E. Hartmann, F. Siciliano, Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 394(1-2) (2005) 339-352.
    連結:
  17. [20] J. Hu, L.X. Du, J.J. Wang, C.R. Gao, T.Z. Yang, A.Y. Wang, R.D.K. Misra, Microstructures and Mechanical Properties of a New As-Hot-Rolled High-Strength DP Steel Subjected to Different Cooling Schedules, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 44A(11) (2013) 4937-4947.
    連結:
  18. [21] H. Niakan, A. Najafizadeh, Effect of niobium and rolling parameters on the mechanical properties and microstructure of dual phase steels, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 527(21-22) (2010) 5410-5414.
    連結:
  19. [22] R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, A. Charai, Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties, Acta Mater. 47(12) (1999) 3475-3481.
    連結:
  20. [23] R. Bengochea, B. Lopez, I. Gutierrez, Microstructural evolution during the austenite-to-ferrite transformation from deformed austenite, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 29(2) (1998) 417-426.
    連結:
  21. [24] T. Inoue, S. Torizuka, K. Nagai, K. Tsuzaki, T. Ohashi, Effect of plastic strain on grain size of ferrite transformed from deformed austenite in Si-Mnsteel, Mater. Sci. Technol. 17(12) (2001) 1580-1588.
    連結:
  22. [25] M. Umemoto, H. Ohtsuka, I. Tamura, TRANSFORMATION TO PEARLITE FROM WORK-HARDENED AUSTENITE, Transactions of the Iron and Steel Institute of Japan 23(9) (1983) 775-784.
    連結:
  23. [26] M. Calcagnotto, D. Ponge, D. Raabe, On the Effect of Manganese on Grain Size Stability and Hardenability in Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 43A(1) (2012) 37-46.
    連結:
  24. [27] F.G. Caballero, A. Garcia-Junceda, C. Capdevila, C.G. de Andres, Evolution of microstructural banding during the manufacturing process of dual phase steels, Mater. Trans. 47(9) (2006) 2269-2276.
    連結:
  25. [28] C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers, Microstructural banding effects clarified through micrographic digital image correlation, Scr. Mater. 62(11) (2010) 835-838.
    連結:
  26. [29] X.L. Cai, A.J. Garrattreed, W.S. Owen, THE DEVELOPMENT OF SOME DUAL-PHASE STEEL STRUCTURES FROM DIFFERENT STARTING MICROSTRUCTURES, Metallurgical Transactions a-Physical Metallurgy and Materials Science 16(4) (1985) 543-557.
    連結:
  27. [30] M.S. Rashid, DUAL PHASE STEELS, Annu. Rev. Mater. Sci. 11 (1981) 245-266.
    連結:
  28. [31] T. Sakaki, K. Sugimoto, T. Fukuzato, ROLE OF INTERNAL-STRESS FOR CONTINUOUS YIELDING OF DUAL-PHASE STEELS, Acta Metallurgica 31(10) (1983) 1737-1746.
    連結:
  29. [32] D.A. Korzekwa, D.K. Matlock, G. Krauss, DISLOCATION SUBSTRUCTURE AS A FUNCTION OF STRAIN IN A DUAL-PHASE STEEL, Metallurgical Transactions a-Physical Metallurgy and Materials Science 15(6) (1984) 1221-1228.
    連結:
  30. [33] A.M. Sarosiek, W.S. Owen, THE WORK-HARDENING OF DUAL-PHASE STEELS AT SMALL PLASTIC STRAINS, Materials Science and Engineering 66(1) (1984) 13-34.
    連結:
  31. [34] M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 527(10-11) (2010) 2738-2746.
    連結:
  32. [35] J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels, Acta Mater. 59(11) (2011) 4387-4394.
    連結:
  33. [36] J.M. Moyer, G.S. Ansell, VOLUME EXPANSION ACCOMPANYING MARTENSITE-TRANSFORMATION IN IRON-CARBON ALLOYS, Metallurgical Transactions a-Physical Metallurgy and Materials Science 6(9) (1975) 1785-1791.
    連結:
  34. [37] S. Gunduz, Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels, Mater. Lett. 63(27) (2009) 2381-2383.
    連結:
  35. [39] X. Fang, Z. Fan, B. Ralph, P. Evans, R. Underhill, Effects of tempering temperature on tensile and hole expansion properties of a C-Mn steel, J. Mater. Process. Technol. 132(1-3) (2003) 215-218.
    連結:
  36. [40] K. Hasegawa, K. Kawamura, T. Urabe, Y. Hosoya, Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets, ISIJ Int. 44(3) (2004) 603-609.
    連結:
  37. [42] Z.H. Jiang, Z.Z. Guan, J.S. Lian, EFFECTS OF MICROSTRUCTURAL VARIABLES ON THE DEFORMATION-BEHAVIOR OF DUAL-PHASE STEEL, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 190(1-2) (1995) 55-64.
    連結:
  38. [43] K.T. Park, S.Y. Han, B.D. Ahn, D.H. Shin, Y.K. Lee, K.K. Um, Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing, Scr. Mater. 51(9) (2004) 909-913.
    連結:
  39. [44] M. Calcagnotto, D. Ponge, D. Raabe, Ultrafine grained ferrite/martensite dual phase steel fabricated by large strain warm deformation and subsequent intercritical annealing, ISIJ Int. 48(8) (2008) 1096-1101.
    連結:
  40. [45] N. Saeidi, F. Ashrafizadeh, B. Niroumand, Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 599 (2014) 145-149.
    連結:
  41. [46] K. Mukherjee, S.S. Hazra, M. Militzer, Grain Refinement in Dual-Phase Steels, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 40A(9) (2009) 2145-2159.
    連結:
  42. [47] K.T. Park, Y.S. Kim, J.G. Lee, D.H. Shin, Thermal stability and mechanical properties of ultrafine grained low carbon steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 293(1-2) (2000) 165-172.
    連結:
  43. [48] Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419(6910) (2002) 912-915.
    連結:
  44. [49] N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, D. Terada, Managing both strength and ductility in ultrafine grained steels, ISIJ Int. 48(8) (2008) 1114-1121.
    連結:
  45. [50] M. Calcagnotto, D. Ponge, D. Raabe, Effect of grain refinement to 1 mu m on strength and toughness of dual-phase steels, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 527(29-30) (2010) 7832-7840.
    連結:
  46. [51] P.H. Chang, A.G. Preban, THE EFFECT OF FERRITE GRAIN-SIZE AND MARTENSITE VOLUME FRACTION ON THE TENSILE PROPERTIES OF DUAL PHASE STEEL, Acta Metallurgica 33(5) (1985) 897-903.
    連結:
  47. [52] Q.Q. Lai, L. Brassart, O. Bouaziz, M. Goune, M. Verdier, G. Parry, A. Perlade, Y. Brechet, T. Pardoen, Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling, Int. J. Plast. 80 (2016) 187-203.
    連結:
  48. [53] A.R. Marder, Deformation characteristics of dual-phase steels, Metallurgical Transactions A 13(1) (1982) 85-92.
    連結:
  49. [54] A. Bag, K.K. Ray, E.S. Dwarakadasa, Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 30(5) (1999) 1193-1202.
    連結:
  50. [55] Y. Mazaheri, A. Kermanpur, A. Najafizadeh, Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing, Materials Science and Engineering: A 639 (2015) 8-14.
    連結:
  51. [56] L.M. Brown, D.R. Clarke, WORK-HARDENING DUE TO INTERNAL STRESSES IN COMPOSITE-MATERIALS, Acta Metallurgica 23(7) (1975) 821-830.
    連結:
  52. [57] A. Kumar, S.B. Singh, K.K. Ray, Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels, Materials Science and Engineering: A 474(1–2) (2008) 270-282.
    連結:
  53. [58] M. Delince, Y. Brechet, J.D. Embury, M.G.D. Geers, P.J. Jacques, T. Pardoen, Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model, Acta Mater. 55(7) (2007) 2337-2350.
    連結:
  54. [59] A.P. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, L. Brassart, The influence of microstructure and composition on the plastic behaviour of dual-phase steels, Acta Mater. 73 (2014) 298-311.
    連結:
  55. [60] D. Das, P.P. Chattopadhyay, Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel, J. Mater. Sci. 44(11) (2009) 2957-2965.
    連結:
  56. [61] A. Karmakar, S. Sivaprasad, S. Kundu, D. Chakrabarti, Tensile Behavior of Ferrite-Carbide and Ferrite-Martensite Steels with Different Ferrite Grain Structures, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 45A(4) (2014) 1659-1664.
    連結:
  57. [62] J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel, Materials Science and Engineering: A 627 (2015) 230-240.
    連結:
  58. [63] H.K.D.H. Bhadeshia, A rationalisation of shear transformations in steels, Acta Metallurgica 29(6) (1981) 1117-1130.
    連結:
  59. [64] B.-M. Huang, H.-W. Yen, D. Ho, H. Ho, J.-R. Yang, The influence of Widmanstätten ferrite on yielding behavior of Nb-containing reinforcing steel bars, Scr. Mater. 67(5) (2012) 431-434.
    連結:
  60. [65] X.L. Cai, J. Feng, W.S. Owen, THE DEPENDENCE OF SOME TENSILE AND FATIGUE PROPERTIES OF A DUAL-PHASE STEEL ON ITS MICROSTRUCTURE, Metallurgical Transactions a-Physical Metallurgy and Materials Science 16(8) (1985) 1405-1415.
    連結:
  61. [67] A.T. Davenport, R.W. Honeycombe, PRECIPITATION OF CARBIDES AT GAMMA-ALPHA BOUNDARIES IN ALLOY STEELS, Proc. R. Soc. Lond. A-Math. Phys. Sci. 322(1549) (1971) 191-+.
    連結:
  62. [68] R.W.K. Honeycombe, R.F. Mehl, Transformation from austenite in alloy steels, Metallurgical Transactions A 7(7) (1976) 915-936.
    連結:
  63. [69] H.W. Yen, P.Y. Chen, C.Y. Huang, J.R. Yang, Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel, Acta Mater. 59(16) (2011) 6264-6274.
    連結:
  64. [70] R.A. Ricks, P.R. Howell, BOWING MECHANISM FOR INTERPHASE BOUNDARY MIGRATION IN ALLOY-STEELS, Metal Science 16(6) (1982) 317-321.
    連結:
  65. [71] R.A. Ricks, P.R. Howell, The formation of discrete precipitate dispersions on mobile interphase boundaries in iron-base alloys, Acta Metallurgica 31(6) (1983) 853-861.
    連結:
  66. [73] A.D. Batte, R.W.K. Honeycombe, Strengthening of Ferrite by Vanadium Carbide Precipitation, Metal Science Journal 7(1) (1973) 160-168.
    連結:
  67. [74] R. Okamoto, A. Borgenstam, J. Ågren, Interphase precipitation in niobium-microalloyed steels, Acta Mater. 58(14) (2010) 4783-4790.
    連結:
  68. [77] M.-Y. Chen, H.-W. Yen, J.-R. Yang, The transition from interphase-precipitated carbides to fibrous carbides in a vanadium-containing medium-carbon steel, Scr. Mater. 68(11) (2013) 829-832.
    連結:
  69. [78] G.R. Purdy, DYNAMICS OF TRANSFORMATION INTERFACES IN STEELS .2. TRANSFORMATIONS IN FE-C-MO ALLOYS AT INTERMEDIATE TEMPERATURES, Acta Metallurgica 26(3) (1978) 487-498.
    連結:
  70. [79] Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, Quantitative measurements of phase equilibria at migrating α/γ interface and dispersion of VC interphase precipitates: Evaluation of driving force for interphase precipitation, Acta Mater. 128 (2017) 166-175.
    連結:
  71. [80] U.F. Kocks, ON SPACING OF DISPERSED OBSTACLES, Acta Metallurgica 14(11) (1966) 1629-&.
    連結:
  72. [81] T. Gladman, The physical metallurgy of microalloyed steels, Institute of Materials1997.
    連結:
  73. [82] S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson, Three-dimensional atom probe microscopy study of interphase precipitation and nanoclusters in thermomechanically treated titanium–molybdenum steels, Acta Mater. 61(7) (2013) 2521-2530.
    連結:
  74. [83] H.W. Yen, C.Y. Huang, J.R. Yang, Characterization of interphase-precipitated nanometer-sized carbides in a Ti-Mo-bearing steel, Scr. Mater. 61(6) (2009) 616-619.
    連結:
  75. [84] N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Stress strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater. 83 (2015) 383-396.
    連結:
  76. [85] G. Miyamoto, R. Hori, B. Poorganji, T. Furuhara, Crystallographic Analysis of Proeutectoid Ferrite/Austenite Interface and Interphase Precipitation of Vanadium Carbide in Medium-Carbon Steel, Metallurgical and Materials Transactions A 44(8) (2013) 3436-3443.
    連結:
  77. [86] Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, Effects of α/γ orientation relationship on VC interphase precipitation in low-carbon steels, Scr. Mater. 69(1) (2013) 17-20.
    連結:
  78. [87] Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, T. Ohmura, T. Suzuki, K. Tsuzaki, Effects of transformation temperature on VC interphase precipitation and resultant hardness in low-carbon steels, Acta Mater. 84 (2015) 375-384.
    連結:
  79. [88] S. Mukherjee, I. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson, Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel, J. Alloy. Compd. 690 (2017) 621-632.
    連結:
  80. [89] I. Timokhina, M.K. Miller, J.T. Wang, H. Beladi, P. Cizek, P.D. Hodgson, On the Ti-Mo-Fe-C atomic clustering during interphase precipitation in the Ti-Mo steel studied by advanced microscopic techniques, Mater. Des. 111 (2016) 222-229.
    連結:
  81. [90] J.B. Seol, S.H. Na, B. Gault, J.E. Kim, J.C. Han, C.G. Park, D. Raabe, Core-shell nanoparticle arrays double the strength of steel, Sci Rep 7 (2017) 9.
    連結:
  82. [91] I.B. Timokhina, P.D. Hodgson, S.P. Ringer, R.K. Zheng, E.V. Pereloma, Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography, Scr. Mater. 56(7) (2007) 601-604.
    連結:
  83. [92] F.A. Khalid, D.V. Edmonds, INTERPHASE PRECIPITATION IN MICROALLOYED ENGINEERING STEELS AND MODEL ALLOY, Mater. Sci. Technol. 9(5) (1993) 384-396.
    連結:
  84. [93] R.M. Smith, D.P. Dunne, Structural aspects of alloy carbonitride precipitation in microalloyed steels, Materials Forum 11 (1988) 166-181.
    連結:
  85. [94] G. Miyamoto, R. Hori, B. Poorganji, T. Furuhara, Interphase Precipitation of VC and Resultant Hardening in V-added Medium Carbon Steels, ISIJ Int. 51(10) (2011) 1733-1739.
    連結:
  86. [95] N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa, T. Furuhara, Tensile Behavior of Ti,Mo-added Low Carbon Steels with lnterphase Precipitation, ISIJ Int. 54(1) (2014) 212-221.
    連結:
  87. [96] ASTM E112-10, Standard Test Methods for Determining Average Grain Size, ASTM International, 2010.
    連結:
  88. [98] ASTM E8 / E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, 2016.
    連結:
  89. [99] D.L. Steinbrunner, D.K. Matlock, G. Krauss, Void formation during tensile testing of dual phase steels, Metallurgical Transactions A 19(3) (1988) 579-589.
    連結:
  90. [100] P.J. Phillips, M.C. Brandes, M.J. Mills, M. De Graef, Diffraction contrast STEM of dislocations: Imaging and simulations, Ultramicroscopy 111(9–10) (2011) 1483-1487.
    連結:
  91. [101] P.J. Phillips, M.J. Mills, M. De Graef, Systematic row and zone axis STEM defect image simulations, Philosophical Magazine 91(16) (2011) 2081-2101.
    連結:
  92. [102] P.J. Phillips, M. De Graef, M.J. Mills, A Practical Guide to Bright/Dark Field Scanning Transmission Electron Microscopy, Microscopy and Microanalysis 18(S2) (2012) 1964-1965.
    連結:
  93. [105] H.W. Yen, TEM Investigation on the Interphase Precipitation of Nanometer-sized Carbides in Advanced Ultra High-Strength Steels Department of Materials and Engineering, National Taiwan University, 2011.
    連結:
  94. [106] D.B. Williams, C.B. Carter, Low-Loss and No-Loss Spectra and Images, Transmission Electron Microscopy: A Textbook for Materials Science, Springer US, Boston, MA, 2009, pp. 699-713.
    連結:
  95. [107] R.G. Davies, DEFORMATION-BEHAVIOR OF A VANADIUM-STRENGTHENED DUAL PHASE STEEL, Metallurgical Transactions a-Physical Metallurgy and Materials Science 9(1) (1978) 41-52.
    連結:
  96. [108] M. Sudo, S.-i. Hashimoto, S. Kambe, Niobium Bearing Ferrite-Bainite High Strength Hot-rolled Sheet Steel with Improved Formability, Transactions of the Iron and Steel Institute of Japan 23(4) (1983) 303-311.
    連結:
  97. [109] S.G. M. Azuma, N. Hansen, G. Winther & X. Huang, Effect of hardness of martensite and ferrite on void formation in dual phase steel, Mater. Sci. Technol. 28(9-10) (2012) 1092-1100.
    連結:
  98. [110] Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides, ISIJ Int. 44(11) (2004) 1945-1951.
    連結:
  99. [111] J.H. Jang, C.H. Lee, Y.U. Heo, D.W. Suh, Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations, Acta Mater. 60(1) (2012) 208-217.
    連結:
  100. [112] C.Y. Chen, C.C. Chen, J.R. Yang, Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel, Materials Characterization 88 (2014) 69-79.
    連結:
  101. [113] F.Z. Bu, X.M. Wang, S.W. Yang, C.J. Shang, R.D.K. Misra, Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti-Nb and Ti-Nb-Mo microalloyed steels, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 620 (2015) 22-29.
    連結:
  102. [114] S. Clark, V. Janik, A. Rijkenberg, S. Sridhar, Analysis of the extent of interphase precipitation in V-HSLA steels through in-situ characterization of the gamma/alpha transformation, Materials Characterization 115 (2016) 83-89.
    連結:
  103. [115] S. Freeman, R.W.K. Honeycombe, Strengthening of titanium steels by carbide precipitation, Metal Science 11(2) (1977) 59-64.
    連結:
  104. [116] G. Krauss, Martensite in steel: strength and structure, Materials Science and Engineering: A 273–275(0) (1999) 40-57.
    連結:
  105. [119] N. Kamikawa, M. Hirohashi, Y. Sato, E. Chandiran, G. Miyamot, T. Furuhara, Tensile Behavior of Ferrite-martensite Dual Phase Steels with Nano-precipitation of Vanadium Carbides, ISIJ Int. 55(8) (2015) 1781-1790.
    連結:
  106. [120] B. Karlsson, B.O. Sundström, Inhomogeneity in plastic deformation of two-phase steels, Materials Science and Engineering 16(1-2) (1974) 161-168.
    連結:
  107. [121] Q. Han, Y. Kang, P.D. Hodgson, N. Stanford, Quantitative measurement of strain partitioning and slip systems in a dual-phase steel, Scr. Mater. 69(1) (2013) 13-16.
    連結:
  108. [122] J. Kang, Y. Ososkov, J.D. Embury, D.S. Wilkinson, Digital image correlation studies for microscopic strain distribution and damage in dual phase steels, Scr. Mater. 56(11) (2007) 999-1002.
    連結:
  109. [124] S.-P. Tsai, C.-H. Jen, H.-W. Yen, C.-Y. Chen, M.-C. Tsai, C.-Y. Huang, Y.-T. Wang, J.-R. Yang, Effects of interphase TiC precipitates on tensile properties and dislocation structures in a dual phase steel, Materials Characterization 123 (2017) 153-158.
    連結:
  110. [125] C.N. Li, X.L. Li, G. Yuan, R.D.K. Misra, J. Kang, G.D. Wang, Precipitation behavior and mechanical properties of a hot rolled Ti-bearing dual phase steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 673 (2016) 213-221.
    連結:
  111. [126] L.F. Ramos, D.K. Matlock, G. Krauss, On the deformation behavior of dual-phase steels, Metallurgical Transactions A 10(2) (1979) 259-261.
    連結:
  112. [127] A.F. Szewczyk, J. Gurland, STUDY OF THE DEFORMATION AND FRACTURE OF A DUAL-PHASE STEEL, METALL TRANS A V 13A(N 10) (1982) 1821-1826.
    連結:
  113. [128] H. Bhadeshia, BAINITE - OVERALL TRANSFORMATION KINETICS, Journal De Physique 43(NC-4) (1982) 443-448.
    連結:
  114. [129] M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, N.B. Konyer, The lattice parameters of austenite and ferrite in FeC alloys as functions of carbon concentration and temperature, Scripta Metallurgica et Materiala 29(8) (1993) 1011-1016.
    連結:
  115. [130] F.B. Pickering, Physical metallurgy and the design of steels, Applied Science Publishers1978.
    連結:
  116. [131] W.C. Leslie, The physical metallurgy of steels, Hempisphere Pub. Corp.1981.
    連結:
  117. [132] W.C. Leslie, IRON AND ITS DILUTE SUBSTITUTIONAL SOLID-SOLUTIONS, Metallurgical Transactions 3(1) (1972) 5-&.
    連結:
  118. [135] H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, J.R. Yang, Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel, Mater. Sci. Technol. 26(4) (2010) 421-430.
    連結:
  119. [136] H. Bhadeshia, DIFFUSIONAL TRANSFORMATIONS - A THEORY FOR THE FORMATION OF SUPERLEDGES, Phys. Status Solidi A-Appl. Res. 69(2) (1982) 745-750.
    連結:
  120. [137] T. Sakuma, R.W.K. Honeycombe, Microstructures of isothermally transformed Fe-Nb-C alloys, Metal Science 18(9) (1984) 449-454.
    連結:
  121. [138] E. Fereiduni, S.S.G. Banadkouki, Reliability/unreliability of mixture rule in a low alloy ferrite-martensite dual phase steel, J. Alloy. Compd. 577 (2013) 351-359.
    連結:
  122. [139] C.-Y. Chen, J.-R. Yang, C.-C. Chen, S.-F. Chen, Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti–Mo microalloyed steels during continuous cooling process, Materials Characterization 114 (2016) 18-29.
    連結:
  123. [140] C. Chih-Yuan, C. Chien-Chon, Y. Jer-Ren, Dualism of precipitation morphology in high strength low alloy steel, Materials Science and Engineering: A 626 (2015) 74-79.
    連結:
  124. [141] C. Chih-Yuan, C. Shih-Fan, C. Chien-Chon, Y. Jer-Ren, Control of precipitation morphology in the novel HSLA steel, Materials Science and Engineering: A 634 (2015) 123-133.
    連結:
  125. [142] Z. Peng, L. Li, J. Gao, X. Huo, Precipitation strengthening of titanium microalloyed high-strength steel plates with isothermal treatment, Materials Science and Engineering: A 657 (2016) 413-421.
    連結:
  126. [143] J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Influence of cooling paths on microstructural characteristics and precipitation behaviors in a low carbon V-Ti microalloyed steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 594 (2014) 389-393.
    連結:
  127. [145] L.J. Cuddy, Microstructures developed during thermomechanical treatment of HSLA steels, Metallurgical Transactions A 12(7) (1981) 1313-1320.
    連結:
  128. [146] C. Ouchi, T. Sampei, I. Kozasu, THE EFFECT OF HOT-ROLLING CONDITION AND CHEMICAL-COMPOSITION ON THE ONSET TEMPERATURE OF GAMMA-ALPHA-TRANSFORMATION AFTER HOT-ROLLING, Transactions of the Iron and Steel Institute of Japan 22(3) (1982) 214-222.
    連結:
  129. [147] B. Dutta, C.M. Sellars, Effect of composition and process variables on Nb(C, N) precipitation in niobium microalloyed austenite, Mater. Sci. Technol. 3(3) (1987) 197-206.
    連結:
  130. [148] I. Weiss, J.J. Jonas, Interaction between recrystallization and precipitation during the high temperature deformation of HSLA steels, Metallurgical Transactions A 10(7) (1979) 831-840.
    連結:
  131. [149] C.-Y. Chen, C.-C. Chen, J.-R. Yang, Synergistic effect of austenitizing temperature and hot plastic deformation strain on the precipitation behavior in novel HSLA steel, Materials Science and Engineering: A 639 (2015) 145-154.
    連結:
  132. [150] E.V. Pereloma, A.G. Kostryzhev, A. AlShahrani, C. Zhu, J.M. Cairney, C.R. Killmore, S.P. Ringer, Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel, Scr. Mater. 75 (2014) 74-77.
    連結:
  133. [151] Y.W. Kim, J.H. Kim, S.G. Hong, C.S. Lee, Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 605 (2014) 244-252.
    連結:
  134. [152] H.-W. Park, K. Shimojima, S. Sugiyama, H. Komine, J. Yanagimoto, Microstructural evolution and formation mechanism of bimodal structure of 0.2% carbon steel subjected to the heavy-reduction controlled rolling process, Materials Science and Engineering: A 624 (2015) 203-212.
    連結:
  135. [153] S.Y. Ok, J.K. Park, Dynamic austenite-to-ferrite transformation behavior of plain low carbon steel within (γ + α) 2-phase field at low strain rate, Scr. Mater. 52(11) (2005) 1111-1116.
    連結:
  136. [154] N. Park, S. Khamsuk, A. Shibata, N. Tsuji, Effect of austenite grain size on kinetics of dynamic ferrite transformation in low carbon steel, Scr. Mater. 68(8) (2013) 611-614.
    連結:
  137. [155] N. Park, S. Khamsuk, A. Shibata, N. Tsuji, Occurrence of dynamic ferrite transformation in low-carbon steel above Ae(3), Scr. Mater. 68(7) (2013) 538-541.
    連結:
  138. [156] L. Sun, K. Muszka, B.P. Wynne, E.J. Palmiere, Effect of strain path on dynamic strain-induced transformation in a microalloyed steel, Acta Mater. 66 (2014) 132-149.
    連結:
  139. [157] H. Azizi-Alizamini, M. Militzer, W.J. Poole, A novel technique for developing bimodal grain size distributions in low carbon steels, Scr. Mater. 57(12) (2007) 1065-1068.
    連結:
  140. [158] M. Papa Rao, V. Subramanya Sarma, S. Sankaran, Processing of Bimodal Grain-Sized Ultrafine-Grained Dual Phase Microalloyed V-Nb Steel with 1370 MPa Strength and 16 pct Uniform Elongation Through Warm Rolling and Intercritical Annealing, Metallurgical and Materials Transactions A 45(12) (2014) 5313-5317.
    連結:
  141. [159] S.-P. Tsai, T.-C. Su, J.-R. Yang, C.-Y. Chen, Y.-T. Wang, C.-Y. Huang, Effect of Cr and Al additions on the development of interphase-precipitated carbides strengthened dual-phase Ti-bearing steels, Mater. Des. 119 (2017) 319-325.
    連結:
  142. [160] Y. Xu, W. Zhang, M. Sun, H. Yi, Z. Liu, The blocking effects of interphase precipitation on dislocations’ movement in Ti-bearing micro-alloyed steels, Mater. Lett. 139(0) (2015) 177-181.
    連結:
  143. [161] W.C. Oliver, G.M. Pharr, AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS, J. Mater. Res. 7(6) (1992) 1564-1583.
    連結:
  144. [162] A. Bodin, J. Sietsma, S. van der Zwaag, On the nature of the bimodal grain size distribution after intercritical deformation of a carbon–manganese steel, Materials Characterization 47(3–4) (2001) 187-193.
    連結:
  145. [163] A. Karmakar, A. Karani, S. Patra, D. Chakrabarti, Development of Bimodal Ferrite-Grain Structures in Low-Carbon Steel Using Rapid Intercritical Annealing, Metallurgical and Materials Transactions A 44(5) (2013) 2041-2052.
    連結:
  146. [2] K. Seto, Y. Funakawa, S. Kaneko, Hot Rolled High Strength Steels for Suspension and Chassis Parts “NANOHITEN” and “BHT® Steel”, JFE Technical Report, 2007, pp. 19-25.
  147. [3] Y. Funakawa, T. Fujita, K. Yamada, Metallurgical Features of NANOHITEN and Application to Warm Stamping, JFE Technical Report, 2013, pp. 74-79.
  148. [7] J.Y. Koo, M.J. Young, G. Thomas, ON THE LAW OF MIXTURES IN DUAL-PHASE STEELS, Metallurgical Transactions a-Physical Metallurgy and Materials Science 11(5) (1980) 852-854.
  149. [38] X. Fang, Z. Fan, B. Ralph, P. Evans, R. Underhill, The relationships between tensile properties and hole expansion property of C-Mn steels, J. Mater. Sci. 38(18) (2003) 3877-3882.
  150. [41] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, in: D.R. Clarke (Ed.), Annual Review of Materials Research, Vol 45, Annual Reviews, Palo Alto, 2015, pp. 391-431.
  151. [66] W.B. Morrison, INFLUENCE OF SMALL NIOBIUM ADDITIONS ON PROPERTIES OF CARBON-MANGANESE STEELS, Journal of the Iron and Steel Institute 201(4) (1963) 317-&.
  152. [72] A.D. Batte, R.W.K. Honeycombe, PRECIPITATION OF VANADIUM CARBIDE IN FERRITE, J Iron Steel Inst (London) 211(Part 4) (1973) 284-289.
  153. [75] D.V. Edmonds, R.W.K. Honeycombe, STRUCTURE AND PROPERTIES OF AN ISOTHERMALLY TRANSFORMED Fe-4Mo-0. 2C ALLOY, J Iron Steel Inst (London) 211(Part 3) (1973) 209-216.
  154. [76] D.V. Edmonds, OCCURRENCE OF FIBROUS VANADIUM CARBIDE DURING TRANSFORMATION OF AN FE-V-C STEEL, Journal of the Iron and Steel Institute 210(5) (1972) 363-&.
  155. [97] Photoshop. http://www.adobe.com/products/photoshop.html).
  156. [103] P. Phillips, M. De Graef, L. Kovarik, A. Agrawal, W. Windl, M. Mills, Low angle ADF STEM defect imaging, Microscopy and Microanalysis 18(S2) (2012) 676-677.
  157. [104] J.R. Yang, H. Bhadeshia, THE DISLOCATION DENSITY OF ACICULAR FERRITE IN STEEL WELDS, Weld. J. 69(8) (1990) S305-S307.
  158. [117] Y.T. Tsai, H.W. Yen, J.R. Yang, (unpublished work).
  159. [118] M.L. Bowers, P.J. Phillips, J. Kwon, M.C. Brandes, M.J. Mills, M. De Graef, Zone Axis STEM Defect Imaging Based on Electron Kossel Patterns, Microscopy and Microanalysis 20(S3) (2014) 114-115.
  160. [123] R.E. Smallman, A.H.W. Ngan, Chapter 6 - Mechanical properties I, Physical Metallurgy and Advanced Materials Engineering (Seventh Edition), Butterworth-Heinemann, Oxford, 2007, pp. 289-383.
  161. [133] H.K.D.H. Bhadeshia, S.R. Honeycombe, 3 - The Iron-Carbon Equilibrium Diagram and Plain Carbon Steels, in: H.K.D.H.B.R. Honeycombe (Ed.), Steels (Third Edition), Butterworth-Heinemann, Oxford, 2006, pp. 39-70.
  162. [134] H.K.D.H. Bhadeshia, S.R. Honeycombe, 4 - The Effects of Alloying Elements on Iron-Carbon Alloys, in: H.K.D.H.B.R. Honeycombe (Ed.), Steels (Third Edition), Butterworth-Heinemann, Oxford, 2006, pp. 71-93.
  163. [144] B.M. Huang, J.R. Yang, H.W. Yen, C.H. Hsu, C.Y. Huang, H. Mohrbacher, Secondary hardened bainite, Mater. Sci. Technol. 30(9) (2014) 1014-1023.