参考文献
|
-
[1] O. Bouaziz, H. Zurob, M.X. Huang, Driving Force and Logic of Development of Advanced High Strength Steels for Automotive Applications, Steel Res. Int. 84(10) (2013) 937-947.
連結:
-
[4] R.G. Davies, INFLUENCE OF MARTENSITE COMPOSITION AND CONTENT ON PROPERTIES OF DUAL PHASE STEELS, Metallurgical Transactions a-Physical Metallurgy and Materials Science 9(5) (1978) 671-679.
連結:
-
[5] R.G. Davies, EARLY STAGES OF YIELDING AND STRAIN AGING OF A VANADIUM-CONTAINING DUAL-PHASE STEEL, Metallurgical Transactions a-Physical Metallurgy and Materials Science 10(10) (1979) 1549-1555.
連結:
-
[6] G.R. Speich, V.A. Demarest, R.L. Miller, FORMATION OF AUSTENITE DURING INTERCRITICAL ANNEALING OF DUAL-PHASE STEELS, Metallurgical Transactions a-Physical Metallurgy and Materials Science 12(8) (1981) 1419-1428.
連結:
-
[8] A.P. Coldren, G. Tither, DEVELOPMENT OF A MN-SI-CR-MO AS-ROLLED DUAL-PHASE STEEL, Journal of Metals 30(4) (1978) 6-9.
連結:
-
[9] K. Park, M. Nishiyama, N. Nakada, T. Tsuchiyama, S. Takaki, Effect of the martensite distribution on the strain hardening and ductile fracture behaviors in dual-phase steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 604 (2014) 135-141.
連結:
-
[10] J.R. Yang, L.J. Chen, DUAL FERRITE MARTENSITE TREATMENTS OF A HIGH-STRENGTH LOW-ALLOY ASTM-A588 STEEL, J. Mater. Sci. 26(4) (1991) 889-898.
連結:
-
[11] N.J. Kim, G. Thomas, EFFECTS OF MORPHOLOGY ON THE MECHANICAL-BEHAVIOR OF A DUAL PHASE FE-2SI-0.1C STEEL, Metallurgical Transactions a-Physical Metallurgy and Materials Science 12(3) (1981) 483-489.
連結:
-
[12] X.-L. Cai, J. Feng, W.S. Owen, The dependence of some tensile and fatigue properties of a dual-phase steel on its microstructure, Metallurgical Transactions A 16(8) (1985) 1405-1415.
連結:
-
[13] L. Schemmann, S. Zaefferer, D. Raabe, F. Friedel, D. Mattissen, Alloying effects on microstructure formation of dual phase steels, Acta Mater. 95 (2015) 386-398.
連結:
-
[14] M. Calcagnotto, Y. Adachi, D. Ponge, D. Raabe, Deformation and fracture mechanisms in fine- and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging, Acta Mater. 59(2) (2011) 658-670.
連結:
-
[15] M. Mazinani, W.J. Poole, Effect of martensite plasticity on the deformation behavior of a low-carbon dual-phase steel, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 38A(2) (2007) 328-339.
連結:
-
[16] Y.L. Kang, Q.H. Han, X.M. Zhao, M.H. Cai, Influence of nanoparticle reinforcements on the strengthening mechanisms of an ultrafine-grained dual phase steel containing titanium, Mater. Des. 44 (2013) 331-339.
連結:
-
[17] M.P. Rao, V.S. Sarma, S. Sankaran, Development of high strength and ductile ultra fine grained dual phase steel with nano sized carbide precipitates in a V-Nb microalloyed steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 568 (2013) 171-175.
連結:
-
[18] Y.I. Son, Y.K. Lee, K.T. Park, C.S. Lee, D.H. Shin, Ultrafine grained ferrite-marten site dual phase steels fabricated via equal channel angular pressing: Microstructure and tensile properties, Acta Mater. 53(11) (2005) 3125-3134.
連結:
-
[19] R.D.K. Misra, H. Nathani, J.E. Hartmann, F. Siciliano, Microstructural evolution in a new 770 MPa hot rolled Nb-Ti microalloyed steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 394(1-2) (2005) 339-352.
連結:
-
[20] J. Hu, L.X. Du, J.J. Wang, C.R. Gao, T.Z. Yang, A.Y. Wang, R.D.K. Misra, Microstructures and Mechanical Properties of a New As-Hot-Rolled High-Strength DP Steel Subjected to Different Cooling Schedules, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 44A(11) (2013) 4937-4947.
連結:
-
[21] H. Niakan, A. Najafizadeh, Effect of niobium and rolling parameters on the mechanical properties and microstructure of dual phase steels, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 527(21-22) (2010) 5410-5414.
連結:
-
[22] R. Soto, W. Saikaly, X. Bano, C. Issartel, G. Rigaut, A. Charai, Statistical and theoretical analysis of precipitates in dual-phase steels microalloyed with titanium and their effect on mechanical properties, Acta Mater. 47(12) (1999) 3475-3481.
連結:
-
[23] R. Bengochea, B. Lopez, I. Gutierrez, Microstructural evolution during the austenite-to-ferrite transformation from deformed austenite, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 29(2) (1998) 417-426.
連結:
-
[24] T. Inoue, S. Torizuka, K. Nagai, K. Tsuzaki, T. Ohashi, Effect of plastic strain on grain size of ferrite transformed from deformed austenite in Si-Mnsteel, Mater. Sci. Technol. 17(12) (2001) 1580-1588.
連結:
-
[25] M. Umemoto, H. Ohtsuka, I. Tamura, TRANSFORMATION TO PEARLITE FROM WORK-HARDENED AUSTENITE, Transactions of the Iron and Steel Institute of Japan 23(9) (1983) 775-784.
連結:
-
[26] M. Calcagnotto, D. Ponge, D. Raabe, On the Effect of Manganese on Grain Size Stability and Hardenability in Ultrafine-Grained Ferrite/Martensite Dual-Phase Steels, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 43A(1) (2012) 37-46.
連結:
-
[27] F.G. Caballero, A. Garcia-Junceda, C. Capdevila, C.G. de Andres, Evolution of microstructural banding during the manufacturing process of dual phase steels, Mater. Trans. 47(9) (2006) 2269-2276.
連結:
-
[28] C.C. Tasan, J.P.M. Hoefnagels, M.G.D. Geers, Microstructural banding effects clarified through micrographic digital image correlation, Scr. Mater. 62(11) (2010) 835-838.
連結:
-
[29] X.L. Cai, A.J. Garrattreed, W.S. Owen, THE DEVELOPMENT OF SOME DUAL-PHASE STEEL STRUCTURES FROM DIFFERENT STARTING MICROSTRUCTURES, Metallurgical Transactions a-Physical Metallurgy and Materials Science 16(4) (1985) 543-557.
連結:
-
[30] M.S. Rashid, DUAL PHASE STEELS, Annu. Rev. Mater. Sci. 11 (1981) 245-266.
連結:
-
[31] T. Sakaki, K. Sugimoto, T. Fukuzato, ROLE OF INTERNAL-STRESS FOR CONTINUOUS YIELDING OF DUAL-PHASE STEELS, Acta Metallurgica 31(10) (1983) 1737-1746.
連結:
-
[32] D.A. Korzekwa, D.K. Matlock, G. Krauss, DISLOCATION SUBSTRUCTURE AS A FUNCTION OF STRAIN IN A DUAL-PHASE STEEL, Metallurgical Transactions a-Physical Metallurgy and Materials Science 15(6) (1984) 1221-1228.
連結:
-
[33] A.M. Sarosiek, W.S. Owen, THE WORK-HARDENING OF DUAL-PHASE STEELS AT SMALL PLASTIC STRAINS, Materials Science and Engineering 66(1) (1984) 13-34.
連結:
-
[34] M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 527(10-11) (2010) 2738-2746.
連結:
-
[35] J. Kadkhodapour, S. Schmauder, D. Raabe, S. Ziaei-Rad, U. Weber, M. Calcagnotto, Experimental and numerical study on geometrically necessary dislocations and non-homogeneous mechanical properties of the ferrite phase in dual phase steels, Acta Mater. 59(11) (2011) 4387-4394.
連結:
-
[36] J.M. Moyer, G.S. Ansell, VOLUME EXPANSION ACCOMPANYING MARTENSITE-TRANSFORMATION IN IRON-CARBON ALLOYS, Metallurgical Transactions a-Physical Metallurgy and Materials Science 6(9) (1975) 1785-1791.
連結:
-
[37] S. Gunduz, Effect of chemical composition, martensite volume fraction and tempering on tensile behaviour of dual phase steels, Mater. Lett. 63(27) (2009) 2381-2383.
連結:
-
[39] X. Fang, Z. Fan, B. Ralph, P. Evans, R. Underhill, Effects of tempering temperature on tensile and hole expansion properties of a C-Mn steel, J. Mater. Process. Technol. 132(1-3) (2003) 215-218.
連結:
-
[40] K. Hasegawa, K. Kawamura, T. Urabe, Y. Hosoya, Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets, ISIJ Int. 44(3) (2004) 603-609.
連結:
-
[42] Z.H. Jiang, Z.Z. Guan, J.S. Lian, EFFECTS OF MICROSTRUCTURAL VARIABLES ON THE DEFORMATION-BEHAVIOR OF DUAL-PHASE STEEL, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 190(1-2) (1995) 55-64.
連結:
-
[43] K.T. Park, S.Y. Han, B.D. Ahn, D.H. Shin, Y.K. Lee, K.K. Um, Ultrafine grained dual phase steel fabricated by equal channel angular pressing and subsequent intercritical annealing, Scr. Mater. 51(9) (2004) 909-913.
連結:
-
[44] M. Calcagnotto, D. Ponge, D. Raabe, Ultrafine grained ferrite/martensite dual phase steel fabricated by large strain warm deformation and subsequent intercritical annealing, ISIJ Int. 48(8) (2008) 1096-1101.
連結:
-
[45] N. Saeidi, F. Ashrafizadeh, B. Niroumand, Development of a new ultrafine grained dual phase steel and examination of the effect of grain size on tensile deformation behavior, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 599 (2014) 145-149.
連結:
-
[46] K. Mukherjee, S.S. Hazra, M. Militzer, Grain Refinement in Dual-Phase Steels, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 40A(9) (2009) 2145-2159.
連結:
-
[47] K.T. Park, Y.S. Kim, J.G. Lee, D.H. Shin, Thermal stability and mechanical properties of ultrafine grained low carbon steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 293(1-2) (2000) 165-172.
連結:
-
[48] Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma, High tensile ductility in a nanostructured metal, Nature 419(6910) (2002) 912-915.
連結:
-
[49] N. Tsuji, N. Kamikawa, R. Ueji, N. Takata, H. Koyama, D. Terada, Managing both strength and ductility in ultrafine grained steels, ISIJ Int. 48(8) (2008) 1114-1121.
連結:
-
[50] M. Calcagnotto, D. Ponge, D. Raabe, Effect of grain refinement to 1 mu m on strength and toughness of dual-phase steels, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 527(29-30) (2010) 7832-7840.
連結:
-
[51] P.H. Chang, A.G. Preban, THE EFFECT OF FERRITE GRAIN-SIZE AND MARTENSITE VOLUME FRACTION ON THE TENSILE PROPERTIES OF DUAL PHASE STEEL, Acta Metallurgica 33(5) (1985) 897-903.
連結:
-
[52] Q.Q. Lai, L. Brassart, O. Bouaziz, M. Goune, M. Verdier, G. Parry, A. Perlade, Y. Brechet, T. Pardoen, Influence of martensite volume fraction and hardness on the plastic behavior of dual-phase steels: Experiments and micromechanical modeling, Int. J. Plast. 80 (2016) 187-203.
連結:
-
[53] A.R. Marder, Deformation characteristics of dual-phase steels, Metallurgical Transactions A 13(1) (1982) 85-92.
連結:
-
[54] A. Bag, K.K. Ray, E.S. Dwarakadasa, Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 30(5) (1999) 1193-1202.
連結:
-
[55] Y. Mazaheri, A. Kermanpur, A. Najafizadeh, Nanoindentation study of ferrite–martensite dual phase steels developed by a new thermomechanical processing, Materials Science and Engineering: A 639 (2015) 8-14.
連結:
-
[56] L.M. Brown, D.R. Clarke, WORK-HARDENING DUE TO INTERNAL STRESSES IN COMPOSITE-MATERIALS, Acta Metallurgica 23(7) (1975) 821-830.
連結:
-
[57] A. Kumar, S.B. Singh, K.K. Ray, Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels, Materials Science and Engineering: A 474(1–2) (2008) 270-282.
連結:
-
[58] M. Delince, Y. Brechet, J.D. Embury, M.G.D. Geers, P.J. Jacques, T. Pardoen, Structure-property optimization of ultrafine-grained dual-phase steels using a micro structure-based strain hardening model, Acta Mater. 55(7) (2007) 2337-2350.
連結:
-
[59] A.P. Pierman, O. Bouaziz, T. Pardoen, P.J. Jacques, L. Brassart, The influence of microstructure and composition on the plastic behaviour of dual-phase steels, Acta Mater. 73 (2014) 298-311.
連結:
-
[60] D. Das, P.P. Chattopadhyay, Influence of martensite morphology on the work-hardening behavior of high strength ferrite-martensite dual-phase steel, J. Mater. Sci. 44(11) (2009) 2957-2965.
連結:
-
[61] A. Karmakar, S. Sivaprasad, S. Kundu, D. Chakrabarti, Tensile Behavior of Ferrite-Carbide and Ferrite-Martensite Steels with Different Ferrite Grain Structures, Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 45A(4) (2014) 1659-1664.
連結:
-
[62] J. Zhang, H. Di, Y. Deng, R.D.K. Misra, Effect of martensite morphology and volume fraction on strain hardening and fracture behavior of martensite–ferrite dual phase steel, Materials Science and Engineering: A 627 (2015) 230-240.
連結:
-
[63] H.K.D.H. Bhadeshia, A rationalisation of shear transformations in steels, Acta Metallurgica 29(6) (1981) 1117-1130.
連結:
-
[64] B.-M. Huang, H.-W. Yen, D. Ho, H. Ho, J.-R. Yang, The influence of Widmanstätten ferrite on yielding behavior of Nb-containing reinforcing steel bars, Scr. Mater. 67(5) (2012) 431-434.
連結:
-
[65] X.L. Cai, J. Feng, W.S. Owen, THE DEPENDENCE OF SOME TENSILE AND FATIGUE PROPERTIES OF A DUAL-PHASE STEEL ON ITS MICROSTRUCTURE, Metallurgical Transactions a-Physical Metallurgy and Materials Science 16(8) (1985) 1405-1415.
連結:
-
[67] A.T. Davenport, R.W. Honeycombe, PRECIPITATION OF CARBIDES AT GAMMA-ALPHA BOUNDARIES IN ALLOY STEELS, Proc. R. Soc. Lond. A-Math. Phys. Sci. 322(1549) (1971) 191-+.
連結:
-
[68] R.W.K. Honeycombe, R.F. Mehl, Transformation from austenite in alloy steels, Metallurgical Transactions A 7(7) (1976) 915-936.
連結:
-
[69] H.W. Yen, P.Y. Chen, C.Y. Huang, J.R. Yang, Interphase precipitation of nanometer-sized carbides in a titanium-molybdenum-bearing low-carbon steel, Acta Mater. 59(16) (2011) 6264-6274.
連結:
-
[70] R.A. Ricks, P.R. Howell, BOWING MECHANISM FOR INTERPHASE BOUNDARY MIGRATION IN ALLOY-STEELS, Metal Science 16(6) (1982) 317-321.
連結:
-
[71] R.A. Ricks, P.R. Howell, The formation of discrete precipitate dispersions on mobile interphase boundaries in iron-base alloys, Acta Metallurgica 31(6) (1983) 853-861.
連結:
-
[73] A.D. Batte, R.W.K. Honeycombe, Strengthening of Ferrite by Vanadium Carbide Precipitation, Metal Science Journal 7(1) (1973) 160-168.
連結:
-
[74] R. Okamoto, A. Borgenstam, J. Ågren, Interphase precipitation in niobium-microalloyed steels, Acta Mater. 58(14) (2010) 4783-4790.
連結:
-
[77] M.-Y. Chen, H.-W. Yen, J.-R. Yang, The transition from interphase-precipitated carbides to fibrous carbides in a vanadium-containing medium-carbon steel, Scr. Mater. 68(11) (2013) 829-832.
連結:
-
[78] G.R. Purdy, DYNAMICS OF TRANSFORMATION INTERFACES IN STEELS .2. TRANSFORMATIONS IN FE-C-MO ALLOYS AT INTERMEDIATE TEMPERATURES, Acta Metallurgica 26(3) (1978) 487-498.
連結:
-
[79] Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, Quantitative measurements of phase equilibria at migrating α/γ interface and dispersion of VC interphase precipitates: Evaluation of driving force for interphase precipitation, Acta Mater. 128 (2017) 166-175.
連結:
-
[80] U.F. Kocks, ON SPACING OF DISPERSED OBSTACLES, Acta Metallurgica 14(11) (1966) 1629-&.
連結:
-
[81] T. Gladman, The physical metallurgy of microalloyed steels, Institute of Materials1997.
連結:
-
[82] S. Mukherjee, I.B. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson, Three-dimensional atom probe microscopy study of interphase precipitation and nanoclusters in thermomechanically treated titanium–molybdenum steels, Acta Mater. 61(7) (2013) 2521-2530.
連結:
-
[83] H.W. Yen, C.Y. Huang, J.R. Yang, Characterization of interphase-precipitated nanometer-sized carbides in a Ti-Mo-bearing steel, Scr. Mater. 61(6) (2009) 616-619.
連結:
-
[84] N. Kamikawa, K. Sato, G. Miyamoto, M. Murayama, N. Sekido, K. Tsuzaki, T. Furuhara, Stress strain behavior of ferrite and bainite with nano-precipitation in low carbon steels, Acta Mater. 83 (2015) 383-396.
連結:
-
[85] G. Miyamoto, R. Hori, B. Poorganji, T. Furuhara, Crystallographic Analysis of Proeutectoid Ferrite/Austenite Interface and Interphase Precipitation of Vanadium Carbide in Medium-Carbon Steel, Metallurgical and Materials Transactions A 44(8) (2013) 3436-3443.
連結:
-
[86] Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, Effects of α/γ orientation relationship on VC interphase precipitation in low-carbon steels, Scr. Mater. 69(1) (2013) 17-20.
連結:
-
[87] Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, T. Ohmura, T. Suzuki, K. Tsuzaki, Effects of transformation temperature on VC interphase precipitation and resultant hardness in low-carbon steels, Acta Mater. 84 (2015) 375-384.
連結:
-
[88] S. Mukherjee, I. Timokhina, C. Zhu, S.P. Ringer, P.D. Hodgson, Clustering and precipitation processes in a ferritic titanium-molybdenum microalloyed steel, J. Alloy. Compd. 690 (2017) 621-632.
連結:
-
[89] I. Timokhina, M.K. Miller, J.T. Wang, H. Beladi, P. Cizek, P.D. Hodgson, On the Ti-Mo-Fe-C atomic clustering during interphase precipitation in the Ti-Mo steel studied by advanced microscopic techniques, Mater. Des. 111 (2016) 222-229.
連結:
-
[90] J.B. Seol, S.H. Na, B. Gault, J.E. Kim, J.C. Han, C.G. Park, D. Raabe, Core-shell nanoparticle arrays double the strength of steel, Sci Rep 7 (2017) 9.
連結:
-
[91] I.B. Timokhina, P.D. Hodgson, S.P. Ringer, R.K. Zheng, E.V. Pereloma, Precipitate characterisation of an advanced high-strength low-alloy (HSLA) steel using atom probe tomography, Scr. Mater. 56(7) (2007) 601-604.
連結:
-
[92] F.A. Khalid, D.V. Edmonds, INTERPHASE PRECIPITATION IN MICROALLOYED ENGINEERING STEELS AND MODEL ALLOY, Mater. Sci. Technol. 9(5) (1993) 384-396.
連結:
-
[93] R.M. Smith, D.P. Dunne, Structural aspects of alloy carbonitride precipitation in microalloyed steels, Materials Forum 11 (1988) 166-181.
連結:
-
[94] G. Miyamoto, R. Hori, B. Poorganji, T. Furuhara, Interphase Precipitation of VC and Resultant Hardening in V-added Medium Carbon Steels, ISIJ Int. 51(10) (2011) 1733-1739.
連結:
-
[95] N. Kamikawa, Y. Abe, G. Miyamoto, Y. Funakawa, T. Furuhara, Tensile Behavior of Ti,Mo-added Low Carbon Steels with lnterphase Precipitation, ISIJ Int. 54(1) (2014) 212-221.
連結:
-
[96] ASTM E112-10, Standard Test Methods for Determining Average Grain Size, ASTM International, 2010.
連結:
-
[98] ASTM E8 / E8M-16a, Standard Test Methods for Tension Testing of Metallic Materials, ASTM International, 2016.
連結:
-
[99] D.L. Steinbrunner, D.K. Matlock, G. Krauss, Void formation during tensile testing of dual phase steels, Metallurgical Transactions A 19(3) (1988) 579-589.
連結:
-
[100] P.J. Phillips, M.C. Brandes, M.J. Mills, M. De Graef, Diffraction contrast STEM of dislocations: Imaging and simulations, Ultramicroscopy 111(9–10) (2011) 1483-1487.
連結:
-
[101] P.J. Phillips, M.J. Mills, M. De Graef, Systematic row and zone axis STEM defect image simulations, Philosophical Magazine 91(16) (2011) 2081-2101.
連結:
-
[102] P.J. Phillips, M. De Graef, M.J. Mills, A Practical Guide to Bright/Dark Field Scanning Transmission Electron Microscopy, Microscopy and Microanalysis 18(S2) (2012) 1964-1965.
連結:
-
[105] H.W. Yen, TEM Investigation on the Interphase Precipitation of Nanometer-sized Carbides in Advanced Ultra High-Strength Steels Department of Materials and Engineering, National Taiwan University, 2011.
連結:
-
[106] D.B. Williams, C.B. Carter, Low-Loss and No-Loss Spectra and Images, Transmission Electron Microscopy: A Textbook for Materials Science, Springer US, Boston, MA, 2009, pp. 699-713.
連結:
-
[107] R.G. Davies, DEFORMATION-BEHAVIOR OF A VANADIUM-STRENGTHENED DUAL PHASE STEEL, Metallurgical Transactions a-Physical Metallurgy and Materials Science 9(1) (1978) 41-52.
連結:
-
[108] M. Sudo, S.-i. Hashimoto, S. Kambe, Niobium Bearing Ferrite-Bainite High Strength Hot-rolled Sheet Steel with Improved Formability, Transactions of the Iron and Steel Institute of Japan 23(4) (1983) 303-311.
連結:
-
[109] S.G. M. Azuma, N. Hansen, G. Winther & X. Huang, Effect of hardness of martensite and ferrite on void formation in dual phase steel, Mater. Sci. Technol. 28(9-10) (2012) 1092-1100.
連結:
-
[110] Y. Funakawa, T. Shiozaki, K. Tomita, T. Yamamoto, E. Maeda, Development of High Strength Hot-rolled Sheet Steel Consisting of Ferrite and Nanometer-sized Carbides, ISIJ Int. 44(11) (2004) 1945-1951.
連結:
-
[111] J.H. Jang, C.H. Lee, Y.U. Heo, D.W. Suh, Stability of (Ti, M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations, Acta Mater. 60(1) (2012) 208-217.
連結:
-
[112] C.Y. Chen, C.C. Chen, J.R. Yang, Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti-Nb and Ti-Nb-Mo steel, Materials Characterization 88 (2014) 69-79.
連結:
-
[113] F.Z. Bu, X.M. Wang, S.W. Yang, C.J. Shang, R.D.K. Misra, Contribution of interphase precipitation on yield strength in thermomechanically simulated Ti-Nb and Ti-Nb-Mo microalloyed steels, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 620 (2015) 22-29.
連結:
-
[114] S. Clark, V. Janik, A. Rijkenberg, S. Sridhar, Analysis of the extent of interphase precipitation in V-HSLA steels through in-situ characterization of the gamma/alpha transformation, Materials Characterization 115 (2016) 83-89.
連結:
-
[115] S. Freeman, R.W.K. Honeycombe, Strengthening of titanium steels by carbide precipitation, Metal Science 11(2) (1977) 59-64.
連結:
-
[116] G. Krauss, Martensite in steel: strength and structure, Materials Science and Engineering: A 273–275(0) (1999) 40-57.
連結:
-
[119] N. Kamikawa, M. Hirohashi, Y. Sato, E. Chandiran, G. Miyamot, T. Furuhara, Tensile Behavior of Ferrite-martensite Dual Phase Steels with Nano-precipitation of Vanadium Carbides, ISIJ Int. 55(8) (2015) 1781-1790.
連結:
-
[120] B. Karlsson, B.O. Sundström, Inhomogeneity in plastic deformation of two-phase steels, Materials Science and Engineering 16(1-2) (1974) 161-168.
連結:
-
[121] Q. Han, Y. Kang, P.D. Hodgson, N. Stanford, Quantitative measurement of strain partitioning and slip systems in a dual-phase steel, Scr. Mater. 69(1) (2013) 13-16.
連結:
-
[122] J. Kang, Y. Ososkov, J.D. Embury, D.S. Wilkinson, Digital image correlation studies for microscopic strain distribution and damage in dual phase steels, Scr. Mater. 56(11) (2007) 999-1002.
連結:
-
[124] S.-P. Tsai, C.-H. Jen, H.-W. Yen, C.-Y. Chen, M.-C. Tsai, C.-Y. Huang, Y.-T. Wang, J.-R. Yang, Effects of interphase TiC precipitates on tensile properties and dislocation structures in a dual phase steel, Materials Characterization 123 (2017) 153-158.
連結:
-
[125] C.N. Li, X.L. Li, G. Yuan, R.D.K. Misra, J. Kang, G.D. Wang, Precipitation behavior and mechanical properties of a hot rolled Ti-bearing dual phase steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 673 (2016) 213-221.
連結:
-
[126] L.F. Ramos, D.K. Matlock, G. Krauss, On the deformation behavior of dual-phase steels, Metallurgical Transactions A 10(2) (1979) 259-261.
連結:
-
[127] A.F. Szewczyk, J. Gurland, STUDY OF THE DEFORMATION AND FRACTURE OF A DUAL-PHASE STEEL, METALL TRANS A V 13A(N 10) (1982) 1821-1826.
連結:
-
[128] H. Bhadeshia, BAINITE - OVERALL TRANSFORMATION KINETICS, Journal De Physique 43(NC-4) (1982) 443-448.
連結:
-
[129] M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, S. van der Zwaag, J.H. Root, N.B. Konyer, The lattice parameters of austenite and ferrite in FeC alloys as functions of carbon concentration and temperature, Scripta Metallurgica et Materiala 29(8) (1993) 1011-1016.
連結:
-
[130] F.B. Pickering, Physical metallurgy and the design of steels, Applied Science Publishers1978.
連結:
-
[131] W.C. Leslie, The physical metallurgy of steels, Hempisphere Pub. Corp.1981.
連結:
-
[132] W.C. Leslie, IRON AND ITS DILUTE SUBSTITUTIONAL SOLID-SOLUTIONS, Metallurgical Transactions 3(1) (1972) 5-&.
連結:
-
[135] H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, J.R. Yang, Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel, Mater. Sci. Technol. 26(4) (2010) 421-430.
連結:
-
[136] H. Bhadeshia, DIFFUSIONAL TRANSFORMATIONS - A THEORY FOR THE FORMATION OF SUPERLEDGES, Phys. Status Solidi A-Appl. Res. 69(2) (1982) 745-750.
連結:
-
[137] T. Sakuma, R.W.K. Honeycombe, Microstructures of isothermally transformed Fe-Nb-C alloys, Metal Science 18(9) (1984) 449-454.
連結:
-
[138] E. Fereiduni, S.S.G. Banadkouki, Reliability/unreliability of mixture rule in a low alloy ferrite-martensite dual phase steel, J. Alloy. Compd. 577 (2013) 351-359.
連結:
-
[139] C.-Y. Chen, J.-R. Yang, C.-C. Chen, S.-F. Chen, Microstructural characterization and strengthening behavior of nanometer sized carbides in Ti–Mo microalloyed steels during continuous cooling process, Materials Characterization 114 (2016) 18-29.
連結:
-
[140] C. Chih-Yuan, C. Chien-Chon, Y. Jer-Ren, Dualism of precipitation morphology in high strength low alloy steel, Materials Science and Engineering: A 626 (2015) 74-79.
連結:
-
[141] C. Chih-Yuan, C. Shih-Fan, C. Chien-Chon, Y. Jer-Ren, Control of precipitation morphology in the novel HSLA steel, Materials Science and Engineering: A 634 (2015) 123-133.
連結:
-
[142] Z. Peng, L. Li, J. Gao, X. Huo, Precipitation strengthening of titanium microalloyed high-strength steel plates with isothermal treatment, Materials Science and Engineering: A 657 (2016) 413-421.
連結:
-
[143] J. Chen, M.Y. Lv, S. Tang, Z.Y. Liu, G.D. Wang, Influence of cooling paths on microstructural characteristics and precipitation behaviors in a low carbon V-Ti microalloyed steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 594 (2014) 389-393.
連結:
-
[145] L.J. Cuddy, Microstructures developed during thermomechanical treatment of HSLA steels, Metallurgical Transactions A 12(7) (1981) 1313-1320.
連結:
-
[146] C. Ouchi, T. Sampei, I. Kozasu, THE EFFECT OF HOT-ROLLING CONDITION AND CHEMICAL-COMPOSITION ON THE ONSET TEMPERATURE OF GAMMA-ALPHA-TRANSFORMATION AFTER HOT-ROLLING, Transactions of the Iron and Steel Institute of Japan 22(3) (1982) 214-222.
連結:
-
[147] B. Dutta, C.M. Sellars, Effect of composition and process variables on Nb(C, N) precipitation in niobium microalloyed austenite, Mater. Sci. Technol. 3(3) (1987) 197-206.
連結:
-
[148] I. Weiss, J.J. Jonas, Interaction between recrystallization and precipitation during the high temperature deformation of HSLA steels, Metallurgical Transactions A 10(7) (1979) 831-840.
連結:
-
[149] C.-Y. Chen, C.-C. Chen, J.-R. Yang, Synergistic effect of austenitizing temperature and hot plastic deformation strain on the precipitation behavior in novel HSLA steel, Materials Science and Engineering: A 639 (2015) 145-154.
連結:
-
[150] E.V. Pereloma, A.G. Kostryzhev, A. AlShahrani, C. Zhu, J.M. Cairney, C.R. Killmore, S.P. Ringer, Effect of austenite deformation temperature on Nb clustering and precipitation in microalloyed steel, Scr. Mater. 75 (2014) 74-77.
連結:
-
[151] Y.W. Kim, J.H. Kim, S.G. Hong, C.S. Lee, Effects of rolling temperature on the microstructure and mechanical properties of Ti-Mo microalloyed hot-rolled high strength steel, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 605 (2014) 244-252.
連結:
-
[152] H.-W. Park, K. Shimojima, S. Sugiyama, H. Komine, J. Yanagimoto, Microstructural evolution and formation mechanism of bimodal structure of 0.2% carbon steel subjected to the heavy-reduction controlled rolling process, Materials Science and Engineering: A 624 (2015) 203-212.
連結:
-
[153] S.Y. Ok, J.K. Park, Dynamic austenite-to-ferrite transformation behavior of plain low carbon steel within (γ + α) 2-phase field at low strain rate, Scr. Mater. 52(11) (2005) 1111-1116.
連結:
-
[154] N. Park, S. Khamsuk, A. Shibata, N. Tsuji, Effect of austenite grain size on kinetics of dynamic ferrite transformation in low carbon steel, Scr. Mater. 68(8) (2013) 611-614.
連結:
-
[155] N. Park, S. Khamsuk, A. Shibata, N. Tsuji, Occurrence of dynamic ferrite transformation in low-carbon steel above Ae(3), Scr. Mater. 68(7) (2013) 538-541.
連結:
-
[156] L. Sun, K. Muszka, B.P. Wynne, E.J. Palmiere, Effect of strain path on dynamic strain-induced transformation in a microalloyed steel, Acta Mater. 66 (2014) 132-149.
連結:
-
[157] H. Azizi-Alizamini, M. Militzer, W.J. Poole, A novel technique for developing bimodal grain size distributions in low carbon steels, Scr. Mater. 57(12) (2007) 1065-1068.
連結:
-
[158] M. Papa Rao, V. Subramanya Sarma, S. Sankaran, Processing of Bimodal Grain-Sized Ultrafine-Grained Dual Phase Microalloyed V-Nb Steel with 1370 MPa Strength and 16 pct Uniform Elongation Through Warm Rolling and Intercritical Annealing, Metallurgical and Materials Transactions A 45(12) (2014) 5313-5317.
連結:
-
[159] S.-P. Tsai, T.-C. Su, J.-R. Yang, C.-Y. Chen, Y.-T. Wang, C.-Y. Huang, Effect of Cr and Al additions on the development of interphase-precipitated carbides strengthened dual-phase Ti-bearing steels, Mater. Des. 119 (2017) 319-325.
連結:
-
[160] Y. Xu, W. Zhang, M. Sun, H. Yi, Z. Liu, The blocking effects of interphase precipitation on dislocations’ movement in Ti-bearing micro-alloyed steels, Mater. Lett. 139(0) (2015) 177-181.
連結:
-
[161] W.C. Oliver, G.M. Pharr, AN IMPROVED TECHNIQUE FOR DETERMINING HARDNESS AND ELASTIC-MODULUS USING LOAD AND DISPLACEMENT SENSING INDENTATION EXPERIMENTS, J. Mater. Res. 7(6) (1992) 1564-1583.
連結:
-
[162] A. Bodin, J. Sietsma, S. van der Zwaag, On the nature of the bimodal grain size distribution after intercritical deformation of a carbon–manganese steel, Materials Characterization 47(3–4) (2001) 187-193.
連結:
-
[163] A. Karmakar, A. Karani, S. Patra, D. Chakrabarti, Development of Bimodal Ferrite-Grain Structures in Low-Carbon Steel Using Rapid Intercritical Annealing, Metallurgical and Materials Transactions A 44(5) (2013) 2041-2052.
連結:
-
[2] K. Seto, Y. Funakawa, S. Kaneko, Hot Rolled High Strength Steels for Suspension and Chassis Parts “NANOHITEN” and “BHT® Steel”, JFE Technical Report, 2007, pp. 19-25.
-
[3] Y. Funakawa, T. Fujita, K. Yamada, Metallurgical Features of NANOHITEN and Application to Warm Stamping, JFE Technical Report, 2013, pp. 74-79.
-
[7] J.Y. Koo, M.J. Young, G. Thomas, ON THE LAW OF MIXTURES IN DUAL-PHASE STEELS, Metallurgical Transactions a-Physical Metallurgy and Materials Science 11(5) (1980) 852-854.
-
[38] X. Fang, Z. Fan, B. Ralph, P. Evans, R. Underhill, The relationships between tensile properties and hole expansion property of C-Mn steels, J. Mater. Sci. 38(18) (2003) 3877-3882.
-
[41] C.C. Tasan, M. Diehl, D. Yan, M. Bechtold, F. Roters, L. Schemmann, C. Zheng, N. Peranio, D. Ponge, M. Koyama, K. Tsuzaki, D. Raabe, An Overview of Dual-Phase Steels: Advances in Microstructure-Oriented Processing and Micromechanically Guided Design, in: D.R. Clarke (Ed.), Annual Review of Materials Research, Vol 45, Annual Reviews, Palo Alto, 2015, pp. 391-431.
-
[66] W.B. Morrison, INFLUENCE OF SMALL NIOBIUM ADDITIONS ON PROPERTIES OF CARBON-MANGANESE STEELS, Journal of the Iron and Steel Institute 201(4) (1963) 317-&.
-
[72] A.D. Batte, R.W.K. Honeycombe, PRECIPITATION OF VANADIUM CARBIDE IN FERRITE, J Iron Steel Inst (London) 211(Part 4) (1973) 284-289.
-
[75] D.V. Edmonds, R.W.K. Honeycombe, STRUCTURE AND PROPERTIES OF AN ISOTHERMALLY TRANSFORMED Fe-4Mo-0. 2C ALLOY, J Iron Steel Inst (London) 211(Part 3) (1973) 209-216.
-
[76] D.V. Edmonds, OCCURRENCE OF FIBROUS VANADIUM CARBIDE DURING TRANSFORMATION OF AN FE-V-C STEEL, Journal of the Iron and Steel Institute 210(5) (1972) 363-&.
-
[97] Photoshop. http://www.adobe.com/products/photoshop.html).
-
[103] P. Phillips, M. De Graef, L. Kovarik, A. Agrawal, W. Windl, M. Mills, Low angle ADF STEM defect imaging, Microscopy and Microanalysis 18(S2) (2012) 676-677.
-
[104] J.R. Yang, H. Bhadeshia, THE DISLOCATION DENSITY OF ACICULAR FERRITE IN STEEL WELDS, Weld. J. 69(8) (1990) S305-S307.
-
[117] Y.T. Tsai, H.W. Yen, J.R. Yang, (unpublished work).
-
[118] M.L. Bowers, P.J. Phillips, J. Kwon, M.C. Brandes, M.J. Mills, M. De Graef, Zone Axis STEM Defect Imaging Based on Electron Kossel Patterns, Microscopy and Microanalysis 20(S3) (2014) 114-115.
-
[123] R.E. Smallman, A.H.W. Ngan, Chapter 6 - Mechanical properties I, Physical Metallurgy and Advanced Materials Engineering (Seventh Edition), Butterworth-Heinemann, Oxford, 2007, pp. 289-383.
-
[133] H.K.D.H. Bhadeshia, S.R. Honeycombe, 3 - The Iron-Carbon Equilibrium Diagram and Plain Carbon Steels, in: H.K.D.H.B.R. Honeycombe (Ed.), Steels (Third Edition), Butterworth-Heinemann, Oxford, 2006, pp. 39-70.
-
[134] H.K.D.H. Bhadeshia, S.R. Honeycombe, 4 - The Effects of Alloying Elements on Iron-Carbon Alloys, in: H.K.D.H.B.R. Honeycombe (Ed.), Steels (Third Edition), Butterworth-Heinemann, Oxford, 2006, pp. 71-93.
-
[144] B.M. Huang, J.R. Yang, H.W. Yen, C.H. Hsu, C.Y. Huang, H. Mohrbacher, Secondary hardened bainite, Mater. Sci. Technol. 30(9) (2014) 1014-1023.
|