题名

應用於生命訊號偵測雷達之2-30-GHz接收機與寬頻鎖相迴路前端電路之設計

并列篇名

Design of a Wideband PLL Front-End and a 2-to-30-GHz Receiver for Noncontact Vital Sign Detection

DOI

10.6342/NTU201700274

作者

鄭人豪

关键词

互補金屬氧化物半導體 ; 壓控振盪器 ; 注入鎖定式除頻器 ; 生命訊號偵測雷達 ; 鎖相迴路 ; 接收機 ; CMOS ; voltage-controlled oscillator (VCO) ; injection-locked frequency divider (ILFD) ; vital sign detection radar (VSDR) ; phase-locked loops (PLL) ; receiver

期刊名称

臺灣大學電信工程學研究所學位論文

卷期/出版年月

2017年

学位类别

博士

导师

黃天偉

内容语文

英文

中文摘要

本論文呈現單晶微波積體電路(MMICs) 在互補金屬氧化物半導體 (CMOS) 的研究與實現以及應用於生命訊號偵測雷達之接收機整合。 本論文內容可分為三部分:分別為一寬頻可調之雙核壓控振盪器和一 寬頻鎖相迴路之前端電路、一鎖定頻寬為90.9%之注入鎖定除頻器和 一應用於生命訊號偵測雷達之2 至30 GHz 寬頻接收機。 首先是介紹利用切換電感和調整變容器之雙核壓控振盪器。利用90 奈米低功耗CMOS 技術,此雙核壓控振盪器已經完成設計與製造。 本文所提出之切換電感的方式,能不用直接在射頻訊號的路徑上,改 變LC 共振腔的電感值,對於諧振器的品質因數有最小的負載作用。此雙核壓控振盪器之可調頻率範圍為62.1% (從23.67 到45 GHz)。其平均輸出功率大約是−11 dBm,直流功率消耗則為16 至20 毫瓦。在操作頻率為23.67 GHz 的狀態下,所量測之相位雜訊於與1 MHz 的偏移頻率為−100.8 dBc / Hz。透過進一步整合此雙核壓控振盪器與一除4 之除頻器,我們利用相同製程實現了一寬頻鎖相迴路之前端電路。此除4 之頻率除頻器包括一基板偏壓之注入鎖定除頻器與源極注入電流模式除頻器(SICML)。該寬頻鎖相迴路前端電路之頻率操作範圍從23.6 到32 GHz(30.2 %)。此電路之晶片面積為0.91 mm2,在1.2 V 與1.5 V 的供應電壓下,直流功耗為40.8 毫瓦。接著,第二個討論的電路是以90 奈米CMOS 技術實現一超寬鎖定頻寬之除2 注入鎖定除頻器。首先利用交叉耦合對與注入混頻之尺寸比進行最佳化以取得寬頻之鎖定頻寬。搭配峰化電感,正相基板偏壓,以及諧波抑制技術,所提出之除2 注入鎖定除頻器在注入功率為0 dBm 時,達到了90.9% 的鎖定頻寬(12 到32 GHz)。此電路之晶片面積為0.45 mm2。即使在注入功率為−10 dBm 時,此除2 之注入鎖定除頻器仍能維持32.9%的鎖定頻寬。在0.6 V 供應電壓下,其核心直流功耗只有2.4 毫瓦。最後,本論文亦提出一應用於寬頻生命訊號偵測雷達之2 到30GHz 寬頻接收機,使用0.18 微米的互補金屬氧化物半導體製程。寬頻生理訊號偵測雷達主要目的,是希望在不同的偵測環境,利用頻率多樣相來維持生理訊號偵測之準確度。此2 至30 GHz 接收機包含一高增益、低雜訊之分佈式放大器和一寬頻降頻混合器,其比例頻寬為175 %,可與雙頻帶發射機作進一步的整合在2 至30 GHz 之頻率範圍與本地訊號源功率為3 dBm 時,此接收機的最大轉換增益在3 GHz 的頻率為13.1 dB,整體的平均轉換增益約為3.5 dB。此接收機直流功耗為260 毫瓦,晶片面積則為2.16 mm2。

英文摘要

This dissertation presents the research and implementations on CMOS monotonic microwave integrated circuits (MMICs) and receiver integration of vital sign detection radar. The dissertation is categories into three parts: a wide-tuning-range dual-core VCO and a wideband phase-locked loop (PLL) front-end, a 90.9% locking range injection-locked frequency divider (ILFD), and a 2-to-30-GHz broadband receiver for vital sign detection. The dual-core VCO with switched inductors and varactor banks is introduced at the beginning. This VCO has been designed and fabricated in a standard 90-nm low-power CMOS technology. The proposed switched inductor changes the inductance of LC tank indirectly on the RF signal path, bringing minimum loading effect to the quality factor of resonator. The dual-core VCO demonstrates a tuning range of 62.1% (from 23.67 to 45 GHz). The average output power is around −11 dBm with the power consumption varying from 16 to 20 mW. The measured phase noise is −100.8 dBc/Hz at 1 MHz offset frequency operating at 23.67 GHz. By further combining the dual-core VCO with a divide-by-4 frequency divider, a wideband PLL front-end is implemented in the same CMOS process. The divide-by-4 frequency divider consists of a body-biasing injection-locked freqeucny divider (ILFD) stacked with source-injected current mode logic (SICML). This PLL front-end exhibits a frequency tuning range from 23.6 to 32 GHz (30.2%) with a chip size of 0.91 mm2. The dc power consumption is 40.8 mW at a supply voltages of 1.2 V and 1.5 V. Then, an ultra-wide-locking-range divide-by-2 ILFD in a standard 90-nm low-power CMOS technology is presented. The sizes of cross-coupled pair and injection mixer are optimized based on the device ratio to obtain a wide locking range at first. With the aid of inductive peaking, forward-body-bias, and harmonic suppression techniques, the proposed ILFD achieves a locking range of 90.9% (from 12 to 32 GHz) at injection power (Pinj ) = 0 dBm. The chip occupies an area of 0.45 mm2. Even with Pinj as low as −10 dBm, this ILFD maintains a locking range of 32.9%. The core dc power consumption is only 2.4 mW with a supply voltage of 0.6 V. Finally, a 2-to-30-GHz broadband receiver of the wideband vital sign detection radar is designed and fabricated in a 0.18-μm CMOS process. The aim of the wideband vital sign detection radar is using frequency diversity to maintain the detection accuracy under various detection environments. This 2-to-30-GHz receiver is composed of a high-gain low-noise distributed amplifier (DA) and a broadband down-conversion mixer, which is developed to cooperate with a dual-band transmitter. The proposed receiver achieves a fractional bandwidth of 175 %. The maximum conversion gain of the receiver is 13.1 dB at 3 GHz within a frequency range from 2 to 30 GHz at LO power of 3 dBm. The measured average conversion gain is around 3.5 dB. This receiver consumes a dc power of 260 mW and occupies a chip area of 2.16 mm2.

主题分类 電機資訊學院 > 電信工程學研究所
工程學 > 電機工程
参考文献
  1. [1] J. G. Andrews et al., “What will 5G be?,” IEEE J. Sel. Areas Commun., vol. 32, no. 6, pp. 1065−1082, Jun. 2014.
    連結:
  2. [2] W. Roh et al., “Millimeter-wave beamforming as an enabling technology for 5G cellular communications: theoretical feasibility and prototype results,” in IEEE Commun. Mag., vol. 52, no. 2, pp. 106−113, Feb. 2014.
    連結:
  3. [3] T. S. Rappaport, G. R. MacCartney, Jr., M. K. Samimi, and S. Sun, “Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design,” IEEE Trans. Commun., vol. 63, no. 9, pp. 3029−3056, Sep. 2015.
    連結:
  4. [4] C. Li, V. M. Lubecke, O. Boric-Lubecke, and J. Lin, “A review on advances in Doppler radar sensors for noncontact healthcare monitoring,” IEEE Trans. Microw. Theory and Techn., vol. 61, no. 5, pp. 2046−2060, May 2013.
    連結:
  5. [5] C. Li and J. Lin, “Random body movement cancellation in Doppler radar vital sign detection,” IEEE Trans. Microw. Theory and Techn., vol. 56, no. 12, pp. 3143−3152, Dec. 2008.
    連結:
  6. [6] H.-C, Kuo, C.-C. Lin, C.-H. Yu, P.-H. Lo, J.-Y. Lyu, C.-C. Chou, and H.-R. Chuang, “A fully integrated 60-GHz CMOS direct-conversion doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection,” IEEE Trans. Microw. Theory and Techn., vol. 64, no. 4, pp. 1018−1028, Apr. 2016.
    連結:
  7. [7] C.-C. Chen, C.-C. Li, B.-J. Huang, K.-Y Lin, H.-W Tsao and H. Wang, “Ringbased triple-push VCOs with wide continuous tuning range,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 9, pp. 2173−2183, Sep. 2009.
    連結:
  8. [9] Y. Takigawa, H. Ohta, Q. Liu, S. Kurachi, N. Itoh, and T. Yoshimasu,“A 92.6 % tuning range VCO utilizing simultaneously controlling of transformers and MOS varactors in 0.13-μm CMOS Technology,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Boston, MA, Jun. 2009, pp. 83−86.
    連結:
  9. [10] M. Demirkan, S. P. Bruss, and R. R. Spencer, “Design of wide tuning range CMOS VCOs using switched coupled-inductors,” IEEE J. Solid-State Circuits, vol. 43, no. 5, pp. 1156−1163, May 2008.
    連結:
  10. [11] S. Saberi, J. Paramesh, “A 11.5-22 GHz dual-resonance transformer-coupled quadrature VCO,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Baltimore, MD, Jun. 2011.
    連結:
  11. [12] J. Lu, N.-Y. Wang and M.-C.F. Chang, “14.6−22.2 GHz LC-VCO in 65 nm CMOS technology for wideband applications,” IEEE Electron. Lett., pp. 385−386, Mar. 2011.
    連結:
  12. [13] D. Ham and A. Hajimiri, “Concept and methods integrated LC VCOs,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 896−909, Jun. 2001.
    連結:
  13. [14] K. Kwok and H. Luong, “Ultra-low-voltage high-performance CMOS VCOs using transformer feedback,” IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 652−660, Mar. 2005.
    連結:
  14. [15] S.-J. Yun, H. D. Lee, K.-D. Kim, S.-G. Lee, and J.-K. Kwon, “A wide-tuning dual-band transformer-based complementary VCO,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 6, pp. 340–342, Jun. 2010.
    連結:
  15. [16] S.-L. Liu, K.-H. Chen, and A. Chin, “A dual-resonant mode 10/22-GHz VCO with a novel inductive switching approach,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 7, pp. 2165−2177, Jul. 2012.
    連結:
  16. [17] A.Tababe, K, Hijioka, H. Nagase, and Y. Hayashi, “A novel variable inductor using a bridge circuit and its application to a 5-20 GHz tunable LC-VCO,” IEEE J. Solid- State Circuits, vol. 46, no 5, pp. 883−893, Apr. 2011.
    連結:
  17. [18] J.-C. Chien and L.-H. Lu, “Design of wide-tuning-range millimeter-wave CMOS VCO with a standing-wave structure,” IEEE J. Solid-State Circuits, vol. 42, no 9, pp. 1942−1952, Sep. 2007.
    連結:
  18. [19] K.-C. Lu, F.-K. Wang, and T.-S. Horng, “Ultralow phase noise and wide band CMOS VCO using symmetrical body-bias PMOS varactors,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 2, pp. 90−92, Feb. 2013.
    連結:
  19. [20] W.-T. Li, J.-H. Cheg, M.-Y. Wu, and T.-W. Huang, “A 23.67-to-45-GHz wide tuning range dual VCO with phase noise enhancement in 90-nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, Jun. 2013.
    連結:
  20. [22] S. Saberi and J. Paramesh, “A 21-to-54.5GHz transformer-coupled varactorless 45nm CMOS VCO,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2014.
    連結:
  21. [23] H. Yoon, Y. Lee, J. J. Kim, and J. Choi, “A wideband dual-mode LC-VCO with a switchable gate-biased active core,” IEEE Trans. Circuits Syst. II: Exp. Briefs, vol. 61, no. 5, pp. 289–293, May 2014.
    連結:
  22. [24] J. Zhang, N. Sharma, and K. K. O. , “21.5-to-33.4 GHz voltage-controlled oscillator using NMOS switched inductors in CMOS,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 7, pp. 478−480, Jul. 2014.
    連結:
  23. [25] Z.-Y. Yang and R. Y. Chen, “High-performance low-cost dual 15GHz/30GHz CMOS LC voltage-controlled oscillator,” IEEE Microw. Wireless Compon. Lett., vol. 26, no. 9, pp. 714−716, Sep. 2016.
    連結:
  24. [26] Y. Chao and H. C. Luong, “Analysis and design of wide-band millimeter-wave transformer-based VCO and ILFD,” IEEE Trans. Circuits Syst. I: Reg. Papers, vol. 63, no. 9, pp. 1416−1425, Sep. 2016.
    連結:
  25. [27] J. F. Osorio, C. S. Vaucher, B. Huff, E. V. D. Heijden, and A. D. Graauw, “A 21.7-to-27.8GHz 2.6-degrees-rms 40Mw frequency synthesizer in 45nm CMOS for mmwave communication applications,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Paper (ISSCC), Feb. 2011. pp. 278−280.
    連結:
  26. [28] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS frequency source with a quadrature VCO using transformers,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Jun. 2004, pp. 269−272.
    連結:
  27. [30] P. Andreani, X. Wang, L. Vandi, and A. Fard, “A study of phase noise in Colpitts and LC-tank CMOS oscillators,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1107−1118, May 2005.
    連結:
  28. [31] C.-K. Hsieh, K.-Y. Kao, J. R. Tseng, and K.-Y. Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, Jun. 2009, pp. 1293−1296.
    連結:
  29. [32] Y.-H. Kuo, J.-H. Tsai, T.-W. Huang, and H. Wang, “Design and analysis of digital assisted bandwidth-enhanced Miller divider in 0.18-μm CMOS process,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 12, pp. 3769−3777, Dec. 2012.
    連結:
  30. [33] J. Lee and B. Razavi, “A 40-GHz frequency divider in 0.18-μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, no. 4, pp. 594−601, Apr. 2004.
    連結:
  31. [35] Huang, M., Yu, C. H., Tsai, J. H., and Huang, T. W, “A low-power 24 GHz phase lock loop with gain-boosted charge pump embedded in 0.18 μm COMS technology,” in IEEE Asia-Pacific Microw. Conf. (APMC), Kaohsiung, Dec. 2012.
    連結:
  32. [36] U. Singh and M. M. Green, “High-frequency CML clock dividers in 0.13-μm CMOS operating up to 38 GHz,” IEEE J. Solid-State Circuits, vol. 40, no. 8, pp. 1658−1661, Aug. 2005.
    連結:
  33. [38] H. R. Rategh and T. H. Lee, “Superharmonic injection-locked frequency divider,” IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813−821, Jun. 1999.
    連結:
  34. [39] C.-C. Chen, H.-W. Taso, and H. Wang, “Design and analysis of CMOS frequency dividers with wide input locking range,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 12, pp. 3060−3069, Dec. 2009.
    連結:
  35. [41] C.-Y. Wu and C.-Y. Yu, “Design and analysis of a millimeter-wave direct injection locked frequency divider with large frequency locking range,” IEEE Trans. Microw. Theory Techn., vol. 55, no. 8, pp. 1649−1658, Aug. 2007.
    連結:
  36. [42] N. Mahalingam, X. Ma, K. S. Yeo and W. M. Lim, “Couple dual LC tanks based ILFD with low injection power and compact size,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105−107, Feb. 2014.
    連結:
  37. [43] K.-H. Chien, J.-Y. Chen, H.-K. Chiou, “Designs of k-band divide-by-2 and divideby-3 injection-locked frequency divider with Darlington topology,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 9, pp. 2877−2888, Sep. 2015.
    連結:
  38. [44] J.-C. Chien and L.-H. Lu, “40GHz wide-locking-range regenerative frequency divider and low-phase-noise balanced VCO in 0.18μm CMOS,” in IEEE Int. Solid- State Circuits Conf. Dig. Tech. Paper (ISSCC), Feb. 2007, pp. 544−545.
    連結:
  39. [45] K.-H. Tsai, J.-H. Wu, and S.-I. Liu, “Frequency dividers with enhanced locking range,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Atlanta, GA, Jun. 2008, pp. 661−664.
    連結:
  40. [46] Y.-H. Wong, W.-H. Lin, J.-H. Tsai, and T.-W. Huang, “A 50-to-62 GHz widelocking-range CMOS injection-locked frequency divider with transformer feedback,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Atlanta, GA, Jun. 2008, pp. 435−438.
    連結:
  41. [47] Z.-D. Huang, C.-Y. Wu, and B.-C. Huang, “Design of 24-GHz 0.8-V 1.51-mW coupling current-mode injection-locked frequency divider with wide locking range,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 8, pp. 1948−1958, Aug. 2009.
    連結:
  42. [48] Y.-T. Chen, M.-W. Li, T.-H. Huang and H.-R. Chuang, “A V-band CMOS direct injection-locked frequency divider using forward body bias technology,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 7, pp. 396−398, Jul. 2010.
    連結:
  43. [49] T.-N. Luo, Y.-J. E. Chen, “A 0.8-mW 55-GHz dual-injection locked CMOS frequency divider,” IEEE Trans. Microw. Theory Techn., vol. 56, no. 3, pp. 620−625, Mar. 2008.
    連結:
  44. [50] Y.-H. Kuo, J.-H. Tsai, H.-Y. Chang, and T.-W. Huang, “Design and analysis of a 77.3% locking-range divide-by-4 frequency divider,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 10, pp. 2477−2485, Oct. 2011.
    連結:
  45. [51] T. Shibasaki, H. Tamura, K. Kanda, H. Yamaguchi, J. Ogawa and T. Kuroda, “20-GHz quadrature injection-locked LC dividers with enhanced locking range,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 610−618, Mar. 2008.
    連結:
  46. [52] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency and low-power frequency divider,” IEEE J. Solid-State Circuits, vol. 39, no. 7, pp. 1170−1174, Jun. 2004.
    連結:
  47. [53] Y. Chao and H. C. Luong, “Analysis and design of a 2.9-mW 53.4−79.4-GHz frequency-tracking injection-locked frequency divider in 65 nm-CMOS,” IEEE J. Solid-State Circuits, vol. 48, no. 10, pp. 2403−2418, Oct. 2013.
    連結:
  48. [54] W.-L Chen, Y.-S. J. Shiao, H.-D. Yeh, G.-W. Huang, H.-H. Hseih, C.-P. Jou and F.-L. Hsueh, “A 53.6 GHz direct injection-locked frequency divider with a 72% locking range in 65 nm CMOS technology,” in IEEE MTT-S Int. Microw. Symp. Dig., Seattle, WA, Jun. 2013.
    連結:
  49. [56] Y.-L. Yeh and H.-Y. Chang, “Design and analysis of a W-band divide-by-three injection-locked frequency divider using second harmonic enhancement technique,” IEEE Trans. Microw. Theory Techn., vol. 60, no. 6, pp. 1617−1625, Jun. 2012.
    連結:
  50. [57] B.-Y. Lin and S.-I. Liu, “Analysis and design of D-band injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 46, no. 6, pp. 1250−1264, Jun. 2011.
    連結:
  51. [58] S.-L. Jang and C.-W. Chang, “A 90 nm CMOS LC-tank divide-by-3 injection locked frequency divider with record locking range,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 229−231, Apr. 2010.
    連結:
  52. [59] B. Razavi, “A study of injection locking and pulling in oscillator,” IEEE J. Solid- State Circuits, vol. 39, no. 9, pp. 1415−1424, Sep. 2004.
    連結:
  53. [60] H. Zheng and H. C. Luong, “Ultra-low-voltage 20-GHz frequency dividers using transformer feedback in 0.18-μm CMOS process,” IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 2293−2302, Sep. 2008.
    連結:
  54. [61] H. Wu and A. Hajimiri, “A 19GHz 0.5mW 0.35μm CMOS frequency divider with shunt-peaking locking-range enhancement,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Paper (ISSCC), Feb. 2001, pp. 412−413.
    連結:
  55. [62] H.-H. Hsieh, H.-S. Chen , and L.-H. Lu, “A V-band divide-by-4 direct injection locked frequency divider in 0.18-μm CMOS,” IEEE Trans. Microw. Theory Techn., vol. 59, no. 2, pp. 393−405, Feb. 2011.
    連結:
  56. [63] J.-W. Wu, C.-C. Chen, H.-W. K, J.-K. Chen, and M.-C. Tu, “Divide-by-three injection-locked frequency divider combined with divide-by-two locking,” IEEE Microw. Wireless Compon. Lett., vol. 23, no. 11, pp. 590−592, Nov. 2013.
    連結:
  57. [65] K. Yamamoto T. Norimatsu and M. Fujishima, “1V 2GHz CMOS frequency divider,” IEEE Electron. Lett., vol. 39, no. 17, pp. 1227−1228, Aug. 2003.
    連結:
  58. [66] J.-H. Cheng, J.-H., Tsai, and T.-W. Huang, “Design of a 90.9% locking range injection-locked frequency divider with device ratio optimization in 90-nm CMOS,” to appear in IEEE Trans. Mircow. Theory Techn., 2016.
    連結:
  59. [67] J. C. Lin, “Noninvasive microwave measurement of respiration,” in IEEE Proc., pp. 1530−1530, 1975.
    連結:
  60. [68] J. C. Lin, “Microwave sensing of physiological movement and volume change: A review,” Bioelectromagnetics, vol. 13, pp. 557−565, 1992.
    連結:
  61. [69] K. M. Chen, D. Misra, H. Wang, H. R. Chuang, and E. Postow, “An X-Band microwave life-detection system,” IEEE Trans. on Biomed. Eng., vol. 33, no. 7, pp. 697−701, Jul. 1986.
    連結:
  62. [70] K. M. Chen, Y. Huang, J. Zhang, and A. Norman, “Microwave life-detection systems for searching human subjects under earthquake rubble and behind barrier,” IEEE Trans. Biomed. Eng., vol. 27, pp. 105−114, Jan. 2000.
    連結:
  63. [72] R. Moraes and D. H. Evans, “Compensation for phase and amplitude imbalance in quadrature Doppler signals,” Ultrasound Med. Biol., vol. 22, pp. 129−137, 1996.
    連結:
  64. [74] D. M. Pozar, Microwave Engineering, 3rd ed. New York: Wiley, 1998.
    連結:
  65. [75] M. C. Budge, Jr. and M.P. Burt, “Range correlation effects on phase and amplitude noise,” in Proc. IEEE Southeastcon, Charlotte, NC, Apr. 1993.
    連結:
  66. [76] A. D. Droitcour, O. Boric-Lubecke, V. M. Lubecke, J. Lin, and G. T. A. Kovac, “Range correlation and I/Q performance benefits in single-chip silicon Doppler radars for noncontact cardiopulmonary monitoring,” IEEE Trans. Microw. Theory Techn., vol. 52, no. 3, pp. 838−848, Mar. 2004.
    連結:
  67. [77] Y. Xiao, J. Lin, O. Boric-Lubecke, and V. M. Lubecke, “Frequency tuning technique for remote detection of heartbeat and respiration using low-power double-sideband transmission in Ka-band,” IEEE Trans. Microw. Theory and Techn., vol. 54, no. 5,
    連結:
  68. [78] C. Li, Y. Xiao, and J. Lin, “Experiment and spectral analysis of a low-power Ka-band heartbeat detector measuring from four sides of a human body,” IEEE Trans. Microw. Theory and Techn., vol. 54, no. 12, pp. 4464−4471, Dec, 2006.
    連結:
  69. [80] Y. Xiao, C. Li, and J. Lin, “A portable non-contact heartbeat and respiration monitoring system using 5-GHz radar,” IEEE Sensors J., vol. 7, no. 7, pp. 1042−1043, Jul. 2007.
    連結:
  70. [81] B. Park, O. Boric-Lubecke, and V. M. Lubecke, “Arctangent demodulation with DC offset compensation in quadrature Doppler radar receiver systems,” IEEE Trans. Microw. Theory and Techn., vol. 55, no. 5, pp. 1073−1079, May 2007.
    連結:
  71. [82] C. Li, Y. Xiao, and J. Lin, “A 5GHz double-sideband radar sensor chip in 0.18 μm CMOS for non-contact vital sign detection,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 494−496, Jul. 2008.
    連結:
  72. [83] C. Li and J. Lin, “Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Atlanta, GA, Jun. 2008, pp. 567−570.
    連結:
  73. [84] R. Fletcher and J. Han, “Low-cost differential front-end for Doppler radar vital sign sensing,” in IEEE MTT-S Int. Microw. Symp. Dig., Boston, MA, Jun. 2009, pp. 1325−1328.
    連結:
  74. [85] C.-L. Li, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A novel RF sensing circuit using injection locking ans frequency demodulation for cognitive radio applications,” IEEE Trans. Microw. Theory and Techn., vol. 57, no. 12, pp. 3143−3152, Nov. 2009.
    連結:
  75. [86] C. Li, X. Yu, D. Li, C.-M. Lee, L. Ran, and J. Lin, “High-sensitivity software configurable 5.8 GHz radar sensor receiver chip in 0.13 μm CMOS for non-contact vital sign detection,” IEEE Trans. Microw. Theory and Techn., vol. 58, no. 5, pp. 1410−1419, May 2010.
    連結:
  76. [88] C. Li and J. Lin, “Recent advances in Doppler radar sensors for pervasive healthcare monitoring,” in IEEE Asia-Pacific Microw. Conf. (APMC), Yokohama, Dec. 2010,
    連結:
  77. [90] T.-Y. Chin, K.-Y. Lin, S.-F. Chang, and C.-C. Chang, “A fast clutter cancellation method in quadrature Doppler radar for noncontact vital signal detection,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, May 2010, pp. 764−767.
    連結:
  78. [91] C. Li, X. Yu, C.-M. Lee, D. Li, L. Ran, and J. Lin, “High-sensitivity software configurable 5.8-GHz radar sensor receiver chip in 0.13-μm CMOS for noncontact vital sign detection,” IEEE Trans. Microw. Theory and Techn., vol. 58, No. 5, pp. 1410−1419, May 2010.
    連結:
  79. [92] Y. Yan, L. Cattafesta, C. Li, and J. Lin, “Analysis of detection methods of RF vibrometer for complex motion measurement,” IEEE Trans. Microw. Theory and Techn., vol. 59, no. 12, pp. 3556−3566, Dec. 2011.
    連結:
  80. [94] X. Yu, C. Li, and J. Lin, “Two-dimensional noncontact vital sign detection using Doppler radar array approach,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, Jun. 2011.
    連結:
  81. [95] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Single antenna Doppler radars using self and mutual injection locking for vital sign detection with random body movement cancellation,” IEEE Trans. Microw. Theory and Techn., vol. 59, no. 12, pp. 3577−3587, Dec. 2011.
    連結:
  82. [96] J.-H. Cheng, J.-F. Yeh, H.-Y. Yang, J.-H. Tsai, J. Lin, and T-W. Huang, “40-GHz vital sign detection of heartbeat using synchronized motion technique for respiration signal suppression,” in Proc. IEEE European Microw. Conf. (EuMC), Amsterdam,
    連結:
  83. [97] T. Y. J. Kao, A. Y. K. Chen, Y. Yan, T.-M. Shen, and J. Lin, “A flip-chip-packaged and fully integrated 60 GHz CMOS micro-radar sensor for heartbeat and mechanical vibration detections,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC), Montreal, QC, Jun. 2012, pp. 443−446.
    連結:
  84. [98] T. Y. J. Kao, Y. Yan, T.-M. Shen, A. Y. K. Chen, and J. Lin, “Design and analysis of 60-GHz CMOS Doppler micro-radar system-in-package for vital-sign and vibration detection,” IEEE Trans. Microw. Theory and Techn., vol. 61, no. 4, pp. 1649−1659, Apr. 2013.
    連結:
  85. [99] F.-K. Wang, T.-S. Horng, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “Detection of concealed individuals based on their vital signs by using a see-through-wall imaging system with a self-injection-locked radar,” IEEE Trans. Microw. Theory and Techn., vol. 61, no. 1, pp. 696−704, Jan. 2013.
    連結:
  86. [100] P.-H. Wu, J.-K. Jau, C.-J. Li, T.-S. Horng, and P. Hsu, “Phase- and self-injection locked radar for detecting vital signs with efficient elimination of DC offsets and null points,” IEEE Trans. Microw. Theory and Techn., vol. 61, no. 1, pp. 685−695, Jan. 2013.
    連結:
  87. [101] H. Wang, J.-H. Cheng, J.-C. Kao, and T.-W. Huang, “Review on microwave/millimeter-wave systems for vital sign detection,” in IEEE Wireless Sensors and Sensor Networks Symp. (WiSNet), New Port Beach, CA, Jan. 2014.
    連結:
  88. [102] L. Chioukh, H. Boutayeb, D. Deslandes, and K. Wu, “Noise and sensitivity of harmonic radar architecture for remote sensing and detection of vital signs,” IEEE Trans. Microw. Theory and Techn., vol. 62, no. 9, pp. 1847−1855, Aug. 2014.
    連結:
  89. [103] Y.-S. Hong, S.-G. Kim, B.-H. Kim, S.-J. Ha , H.-J. Lee, G.-H. Yun, and J.-G. Yook, “Noncontact proximity vital sign sensor based on PLL for sensitivity enhancement,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 4, pp. 584−593, Aug. 2014.
    連結:
  90. [104] C.-M. Nieh, C. Wei, and J. Lin, “Concurrent detection of vibration and distance using unmodulated CW Doppler vibration radar with an adaptive beam-steering antenna,” IEEE Trans. Microw. Theory and Techn., vol. 63, no. 6, pp. 2069−2078, Jun. 2015.
    連結:
  91. [105] T.-Y. Huang, Y.-S. Lin, J.-H. Cheng, J.-C. Kao, T.-W. Huang, and H. Wang, “A high-gain low-noise distributed amplifier with low dc power in 0.18-μm CMOS for vital sign detection radar, ” in IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, May 2015.
    連結:
  92. [106] H.-C. Kuo, C.-C. Chou, C.-C. Lin, C.-H. Yu, T.-H. Huang, and H.-R. Chuang, “A 60-GHz CMOS direct-conversion doppler radar RF sensor with clutter canceller for single-antenna noncontact human vital-signs detection,” in Proc. IEEE Radio Freq. Integr. Circuits Symp. (RFIC)., Phoenix, AZ, May. 2015.
    連結:
  93. [107] H.-W. Wang, J.-H. Cheng, J.-Y. Zhong, J.-H. Tsai, and T.-W. Huang, “A 2-30 GHz ring mixer with active baluns in 0.18-μm CMOS technology for vital sign application,” in Proc. IEEE European Microw. Conf. (EuMC), Paris, Sep. 2015, pp. 901−904.
    連結:
  94. [108] J. Tu, T. Hwang, and J. Lin, “Respiration rate measurement under 1-D body motion using single continuous-wave Doppler Radar vital sign detection system,” IEEE Trans. Microw. Theory and Techn., vol. 64, no. 6, pp. 1937−1946, May 2016.
    連結:
  95. [109] J.-H. Cheng, Y.-H. Lin, W.-J. Lin, J.-H. Tsai, T.-W. Huang, and H. Wang, “An integrated dual-band transmitter for vital sign detection radar applications in 0.18- μm CMOS,” in Proc. IEEE European Microw. Integr. Circuit (EuMIC), London, Oct. 2016.
    連結:
  96. [8] M. Tormanen and H. Sjoland, “A 25-GHz differential LC-VCO in 90 nm CMOS,” in Proc. IEEE Asia-Pacific Circuit Syst. Conf., Macao, China, Dec. 2008, pp. 554−557.
  97. [21] O. Richard, A. Siligaris, F. Badets, C. Dehos, C. Dufis, P. Busson,P. Vincent, D. Belot, and P. Urard, “A 17.5 GHz-to-20.94 GHz and 35-to-41.88 GHz PLL in 65 nm CMOS for wireless HD application,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Paper (ISSCC), Feb. 2010, pp. 252−253.
  98. [29] P.-H. Chiang, J.-H. Cheng, Y.-C. Wu, C.-C. Chiong, W.-D. Liu, G.-W. Huang, T.-W. Huang and H. Wang, “A 206 220 GHz CMOS VCO using body-bias technique for frequency tuning,” in IEEE MTT-S Int. Microw. Symp. Dig., Phoenix, AZ, May 2015.
  99. [34] C. IEEE Int. Conf. Solid-State and Integrated Circuit Tech. Zhou, L. Zhang, D. Yang, Y. Wang, Z. Yu, H. Qian, “A 24-GHz fully integrated phase-locked loop for 60-GHz beamforming,” in (ICSICT), Xi’an, Nov. 2012.
  100. [37] M. K. Ali, V. Subramanian, T. Zhang, and G. Boeck, “Design of Ka-band Miller divider in 130 nm CMOS,” in IEEE Int. RF Integr. Technol. Symp., Beijing, Nov. 2011, pp. 205−208.
  101. [40] K. Yamamoto and M. Fujishima, “70 GHz CMOS harmonic injection-locked divider,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Paper (ISSCC), Feb. 2006, pp. 600−601.
  102. [55] Y.-H. Kuo, J.-H. Tsai, T.-W. Huang, “A 1.5-mW, 23.6% frequency locking range, 24-GHz injection-locked frequency divider,” in Proc. IEEE European Microw. Conf. (EuMC), Paris, Sep. 2010, pp. 73−76.
  103. [64] B. Razavi, “RF microeletronics,” 2nd ed. NJ: Prentice-Hall, 2011.
  104. [71] I. Immoreev and T.-H. Tao, “UWB radar for patient monitoring,” IEEE Aerospace and Electronic Systems Magazine, vol. 23, no. 11, pp. 11−18, Nov. 2008.
  105. [73] C. Li, J. Cummings, J. Lam, E. Graves, and W. Wu, “Radar remote monitoring of vital signs,” IEEE Microwave Magazine, vol. 10, no 1, pp. 47−56, Feb. 2009.
  106. pp. 2023−2032, Mar. 2006.
  107. [79] C. Li, Y. Xiao, and J. Lin, “Optimal carrier frequency of noncontact vital sign detectors,” in Proc. IEEE Radio and Wireless Symp. (RWS), Long Beach, CA, Jan. 2007, pp. 281−284.
  108. [87] F.-K. Wang, C.-J. Li, C.-H. Hsiao, T.-S. Horng, J. Lin, K.-C. Peng, J.-K. Jau, J.-Y. Li, and C.-C. Chen, “An injection-locked detector for concurrent spectrum and vital sign sensing,” in IEEE MTT-S Int. Microw. Symp. Dig., Anaheim, CA, May 2010, pp. 768−771.
  109. pp. 283−290.
  110. [89] L. Chioukh, H. Boutayeb, D. Deslandes, and K. Wu, “Multi-frequency radar systems for monitoring vital signal,” in Proc. IEEE Asia-Pacific Microw. Conf. (APMC).,Yokohama, Dec. 2010, pp. 1669−1672.
  111. [93] Y. Yan, C. Li, J. A. Rice, J. Lin, “Wavelength division sensing RF vibrometer,” in IEEE MTT-S Int. Microw. Symp. Dig., Baltimore, MD, Jun. 2011.
  112. Oct. 2012.
  113. [110] Y.-H. Kuo, “Design and analysis of wide bandwidth frequency divider and digital calibrated RF circuit,” Ph.D. dissertation, Grad. Inst. of Commun. Eng. (GICE), National Taiwan Univ., Taipei, Taiwan, 2012.
  114. [111] W.-T. Li, “Research of millimeter-wave linearized LNAs and key components of phased-arrays,” Ph.D. dissertation, Grad. Inst. of Commun. Eng. (GICE), National Taiwan Univ., Taipei, Taiwan, 2012.
  115. [112] K.-Y. Kao, “RF circuit techniques for wireless transmitter with high spectral purity,” Ph.D. dissertation, Grad. Inst. of Commun. Eng. (GICE), National Taiwan Univ., Taipei, Taiwan, 2015.
  116. [113] Z.-Y. Huang, “Design and research of key components for microwave and millimeter-wave systems,” M.S. thesis, Grad. Inst. of Commun. Eng. (GICE), National Taiwan Univ., Taipei, Taiwan, 2015.
  117. [114] H.-W. Wang, “Design of broadband down-converted mixer and switch type phase shifter for vital sign detector applications,” M.S. thesis, Grad. Inst. of Commun. Eng. (GICE), National Taiwan Univ., Taipei, Taiwan, 2015.