题名

六種蕨類葉片的氣孔對藍光與二氧化碳濃度之反應

并列篇名

Leaf stomatal response to blue light and CO2 concentration in six fern species

DOI

10.6342/NTU.2015.02521

作者

黃怡清

关键词

蕨類、氣孔反應、藍光、二氧化碳濃度、氣體交換 ; Fern ; stomatal response ; blue-light specific response ; CO2 concentration ; gas exchange

期刊名称

臺灣大學生態學與演化生物學研究所學位論文

卷期/出版年月

2015年

学位类别

碩士

导师

高文媛

内容语文

繁體中文

中文摘要

葉片氣孔由成對的保衛細胞圍繞而成,是氣體進出植物體的主要通道,其形成被認為是植物適應陸生環境的一項重要演化特徵。已知被子植物葉片氣孔的開啟與關閉會受到環境因子 (例如:光與CO2濃度等) 變化影響;相較於被子植物,蕨類是較早出現於陸地的維管束植物,近來有些研究指出蕨類氣孔對藍光與CO2濃度變化的反應較不敏感。然而本實驗室先前測量發現田字草 (一種蕨類植物) 其氣孔反應類似被子植物,因此為瞭解不同蕨類間氣孔反應的差異,本研究選擇臺灣野外常見、分屬於不同演化時期以及分布在不同光環境棲地的六種蕨類 (臺灣金狗毛蕨、筆筒樹、鐵線蕨、姬書帶蕨、東方狗脊蕨、南洋山蘇),探討他們的葉片特徵、氣孔分布與氣孔反應。 採集野外植株種植於溫室,首先測量其氣孔形態、葉片特徵與穩定性同位素分析,以及葉片在光源有無添加50 μmol m-2 s-1藍光與不同CO2濃度 (100、400、600 ppm) 時氣孔導度 (gs) 的變化,另外也比較相同物種在不同光環境生長後其葉片氣孔反應是否有差異。 測量發現這些蕨類只有下表皮有氣孔,其密度 (11.7 ~ 259.9 mm-2) 為筆筒樹 = 臺灣金狗毛蕨 > 東方狗脊蕨 > 鐵線蕨 = 姬書帶蕨 = 南洋山蘇。穩定性同位素比值顯示這六種蕨類均為C3光合作用型植物,其中南洋山蘇的長期水分使用效率最好,姬書帶蕨的效率則最差。六種蕨類葉片氣孔在飽和紅光照射之下,添加藍光不會影響其開閉 (不具有blue-light specific response);若置於不同光環境下生長,其氣孔仍然不受藍光影響。六種蕨類葉片氣孔對於環境CO2濃度變化的反應程度可以分成三種,顯示不同物種間差異大;而同種但不同光度下生長的植株其gs在低CO2濃度 (100 ppm) 時的差異較明顯。本研究結果顯示,六種蕨類氣孔對環境CO2濃度改變的反應程度不相同,其程度大小並非依據演化的先後,物種生長棲地的差異 (例如:環境光度不同) 對該反應也有某種程度上的影響。

英文摘要

Stomata, pores for gas exchange between leaves and atmosphere, are surrounded by a pair of guard cells. The evolution of stomata is an important adaptation for plants to live on land. It is well known that environmental factors, such as light and CO2 concentration ([CO2]), can affect stomatal openness in angiosperms. Recently, stomata of ferns were found less sensitive to the environmental factors. However, previous studies showed that stomatal response in Marsilea crenata (a fern species) is similar to that in angiosperms. To know whether stomata of other ferns also react the same or not, I measured some leaf characteristics, stomatal distribution and stomatal response of Cibotium taiwanense, Cyathea lepifera, Adiantum capillus-veneris, Vittaria anguste-elongata, Woodwardia prolifera, Asplenium australasicum, six fern species belonging to different clades and distributed in habitats with diffent light regimes. I transplanted field growing plants and grew them in a greenhouse. After they have established, I measured stomatal morphology and leaf characteristics of these plants and stomatal conductance (gs, a measurement of stomatal openness) when leaves were under the condition of 50 μmol m-2 s-1 blue light superimposed onto the red light and under different [CO2] (100, 400, 600 ppm). I also compared gs of the same species grown under different light intensity. The six ferns have stomata only on abaxial surface. Stomatal density (11.7 ~ 259.9 mm-2) of leaves follows: C. lepifera = C. taiwanense > W. prolifera > A. capillus-veneris = V. anguste-elongata = A. australasicum. Stable carbon isotope analysis revealed that these six ferns are C3 plants, and A. australasicum has the highest water use efficiency while V. anguste-elongata the lowest among the six ferns. Stomata of these six ferns didn’t response further under the condition of superimposed blue light onto the red light indicating no blue-light specific response. In comparison to gs at 400 ppm of [CO2], gs of the six species showed three different degrees of change in response, which indicates that their stomata have different sensitity to changes in [CO2]. Stomatal conductance of same species grown under two light intensity have greater difference in low [CO2] (100 ppm). In conclusion, the stomata of the six fern species showed different degree of response in three [CO2] which did not follow their evolutionary order. The light intensity of their habitats may have an effect on their stomatal response.

主题分类 生命科學院 > 生態學與演化生物學研究所
生物農學 > 生物科學
参考文献
  1. Assmann, S. M. 1988. Enhancement of the stomatal response to blue light by red light, reduced intercellular concentrations of CO2, and low vapor pressure differences. Plant Physiology 87: 226-231.
    連結:
  2. Assmann, S. M., Simoncini, L., Schroeder, J. I. 1985. Blue light activates electrogenic ion pumping in guard cell protoplasts of Vicia faba. Nature 318: 285-287.
    連結:
  3. Bannister, P., Wildish, K. L. 1982. Light compensation points and specific leaf areas in some New Zealand ferns. New Zealand Journal of Botany 20: 421-424.
    連結:
  4. Bedard-Haughn, A., Van Groenigen, J. W., Van Kessel, C. 2003. Tracing 15N through landscapes: potential uses and precautions. Journal of Hydrology 272: 175-190.
    連結:
  5. Berner, R. A. 1990. Atmospheric carbon dioxide levels over Phanerozoic time. Science 249: 1382-1386.
    連結:
  6. Boyce, C. K., Brodribb, T. J., Feild, T. S., Zwieniecki, M. A. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the royal botany society 276: 1771-1776.
    連結:
  7. Brearley, J., Venis, M. A., Blatt, M. R. 1997. The effect of elevated CO2 concentrations on K+ and anion channels of Vicia faba L. guard cells. Planta 203: 145-154.
    連結:
  8. Briggs, W. R., Christie, J. M. 2002. Phototropins 1 and 2: versatile plant blue-light receptors. Trends in Plant Science 7: 204-210.
    連結:
  9. Brodribb, T. J., Feild, T. S., Sack, L. 2010. Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology 37: 488-498.
    連結:
  10. Brodribb, T. J., Mcadam, S. a. M., Jordan, G. J., Feild, T. S. 2009. Evolution of stomatal responsiveness to CO2 and optimization of water-use efficiency among land plants. New Phytologist 183: 839-847.
    連結:
  11. Brugnoli, E., Hubick, K. T., Von Caemmerer, S., Wong, S. C., Farquhar, G. D. 1988. Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiology 88: 1418-1424.
    連結:
  12. Chater, C., Kamisugi, Y., Movahedi, M., Fleming, A., Cuming, Andrew c., Gray, Julie e., Beerling, David j. 2011. Regulatory mechanism controlling stomatal behavior conserved across 400 million years of land plant evolution. Current Biology 21: 1025-1029.
    連結:
  13. Choy-Sin, H., Suan, W. Y. 1974. Photosynthesis and respiration of ferns in relation to their habitat. American Fern Journal 64: 40-48.
    連結:
  14. Christenhusz, M. J. M., Chase, M. W. 2014. Trends and concepts in fern classification. Annals of Botany 113: 571-594.
    連結:
  15. Christie, J. M. 2007. Phototropin blue-light receptors. Annual Review of Plant Biology 58: 21-45.
    連結:
  16. Corré, W. J. 1983. Growth and morphogenesis of sun and shade plants I. The influence of light intensity. Acta Botanica Neerlandica 32: 49-62.
    連結:
  17. Cox, G., Hawes, C. R., Van Der Lubbe, L., Juniper, B. E. 1987. High-voltage electron microscopy of whole, critical-point dried plant cells. Protoplasma 140: 173-186.
    連結:
  18. Creese, C., Oberbauer, S., Rundel, P., Sack, L. 2014. Are fern stomatal responses to different stimuli coordinated? Testing responses to light, vapor pressure deficit, and CO2 for diverse species grown under contrasting irradiances. New Phytologist 204: 92-104.
    連結:
  19. Dietrich, P., Sanders, D., Hedrich, R. 2001. The role of ion channels in light-dependent stomatal opening. Journal of Experimental Botany 52: 1959-1967.
    連結:
  20. Doi, M., Wada, M., Shimazaki, K.-I. 2006. The fern Adiantum capillus-veneris lacks stomatal responses to blue light. Plant and Cell Physiology 47: 748-755.
    連結:
  21. Drake, P. L., Froend, R. H., Franks, P. J. 2012. Smaller, faster stomata: scaling of stomatal size, rate of response, and stomatal conductance. Journal of Experimental Botany 64(2): 495-505.
    連結:
  22. Edwards, D., Kerp, H., Hass, H. 1998. Stomata in early land plants: an anatomical and ecophysiological approach. Journal of Experimental Botany 49: 255-278.
    連結:
  23. Farquhar, G., O'leary, M., Berry, J. 1982. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology 9: 121-137.
    連結:
  24. Farquhar, G. D., Ehleringer, J. R., Hubick, K. T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503-537.
    連結:
  25. Franks, P. J., Beerling, D. J. 2009. Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences of the United States of America 106: 10343-10347.
    連結:
  26. Franks, P. J., Farquhar, G. D. 2007. The mechanical diversity of stomata and its significance in gas-exchange control. Plant Physiology 143: 78-87.
    連結:
  27. Frechilla, S., Talbott, L. D., Zeiger, E. 2004. The blue light-specific response of Vicia faba stomata acclimates to growth environment. Plant and Cell Physiology 45: 1709-1714.
    連結:
  28. Goyal, A., Szarzynska, B., Fankhauser, C. 2013. Phototropism: at the crossroads of light-signaling pathways. Trends in Plant Science 18: 393-401.
    連結:
  29. Hashimoto, M., Negi, J., Young, J., Israelsson, M., Schroeder, J. I., Iba, K. 2006. Arabidopsis HT1 kinase controls stomatal movements in response to CO2. Nature Cell Biology 8: 391-397.
    連結:
  30. Haworth, M., Elliott-Kingston, C., Mcelwain, J. C. 2011. Stomatal control as a driver of plant evolution. Journal of Experimental Botany 62: 2419-2423.
    連結:
  31. Hedrich, R., Marten, I., Lohse, G., Dietrich, P., Winter, H., Lohaus, G., Heldt, H.-W. 1994. Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. The Plant Journal 6: 741-748.
    連結:
  32. Hopkins, W. G., Hüner, N. P. A. 2009. Introduction to Plant Physiology. Wiley.
    連結:
  33. Hughes, J. E., Morgan, D. C., Lambton, P. A., Black, C. R., Smith, H. 1984. Photoperiodic time signals during twilight. Plant, Cell and Environment 7: 269-277.
    連結:
  34. Iino, M., Ogawa, T., Zeiger, E. 1985. Kinetic properties of the blue-light response of stomata. Proceedings of the National Academy of Sciences 82: 8019-8023.
    連結:
  35. Inoue, S.-I., Kinoshita, T., Shimazaki, K.-I. 2005. Possible involvement of phototropins in leaf movement of kidney bean in response to blue light. Plant Physiology 138: 1994-2004.
    連結:
  36. Jarvis, A. J., Davies, W. J. 1998. The coupled response of stomatal conductance to photosynthesis and transpiration. Journal of Experimental Botany 49: 399-406.
    連結:
  37. Jones, H. G. 1973. Limiting factors in photosynthesis. New Phytologist 72: 1089-1094.
    連結:
  38. Jones, H. G., Sutherland, R. A. 1991. Stomatal control of xylem embolism. Plant, Cell and Environment 14: 607-612.
    連結:
  39. Karlsson, P. E. 1986. Blue light regulation of stomata in wheat seedlings. I. Influence of red background illumination and initial conductance level. Physiologia Plantarum 66: 202-206.
    連結:
  40. Kasting, J. 1993. Earth's early atmosphere. Science 259: 920-926.
    連結:
  41. Kinoshita, T., Shimazaki, K.-I. 2001. Analysis of the phosphorylation level in guard-cell plasma membrane H+-ATPase in response to fusicoccin. Plant and Cell Physiology 42: 424-432.
    連結:
  42. Kirschbaum, M. U. F., Gross, L. J., Pearcy, R. W. 1988. Observed and modelled stomatal responses to dynamic light environments in the shade plant Alocasia macrorrhiza. Plant, Cell and Environment 11: 111-121.
    連結:
  43. Lake, J. A., Quick, W. P., Beerling, D. J., Woodward, F. I. 2001. Plant development: signals from mature to new leaves. Nature 411: 154-154.
    連結:
  44. Lascève, G., Gautier, H., Jappé, J., Vavasseur, A. 1993. Modulation of the blue light response of stomata of Commelina communis by CO2. Physiologia Plantarum 88: 453-459.
    連結:
  45. Lee, D. M., Assmann, S. M. 1992. Stomatal responses to light in the facultative Crassulacean acid metabolism species, Portulacaria afra. Physiologia Plantarum 85: 35-42.
    連結:
  46. Melis, A., Zeiger, E. 1982. Chlorophyll a fluorescence transients in mesophyll and guard cells : modulation of guard cell photophosphorylation by CO2. Plant Physiology 69: 642-647.
    連結:
  47. Mott, K. A., Gibson, A. C., O'leary, J. W. 1982. The adaptive significance of amphistomatic leaves. Plant, Cell and Environment 5: 455-460.
    連結:
  48. Mott, K. A., O'leary, J. W. 1984. Stomatal behavior and CO2 exchange characteristics in amphistomatous leaves. Plant Physiology 74: 47-51.
    連結:
  49. Mott, K. A., Sibbernsen, E. D., Shope, J. C. 2008. The role of the mesophyll in stomatal responses to light and CO2. Plant, Cell and Environment 31: 1299-1306.
    連結:
  50. Ogawa, T., Ishikawa, H., Shimada, K., Shibata, K. 1978. Synergistic action of red and blue light and action spectra for malate formation in guard cells of Vicia faba L. Planta 142: 61-65.
    連結:
  51. Outlaw, J. W. H. 2003. Integration of cellular and physiological functions of guard cells. Critical Reviews in Plant Sciences 22: 503-529.
    連結:
  52. Pearcy, R. W. 1990. Sunflecks and photosynthesis in plant canopies. Annual Review of Plant Physiology and Plant Molecular Biology 41: 421-453.
    連結:
  53. Peterson, K. M., Rychel, A. L., Torii, K. U. 2010. Out of the mouths of plants: the molecular basis of the evolution and diversity of stomatal development. The Plant Cell 22: 296-306.
    連結:
  54. Raven, J. A., Handley, L. L. 1987. Transport processes and water relations. New Phytologist 106: 217-233.
    連結:
  55. Reich, P. B., Walters, M. B., Ellsworth, D. S. 1997. From tropics to tundra: global convergence in plant functioning. Proceedings of the National Academy of Sciences 94: 13730-13734.
    連結:
  56. Roelfsema, M. R. G., Hedrich, R. 2005. In the light of stomatal opening: new insights into ‘the Watergate’. New Phytologist 167: 665-691.
    連結:
  57. Ruszala, E. M., Beerling, D. J., Franks, P. J., Chater, C., Casson, S. A., Gray, J. E., Hetherington, A. M. 2011. Land plants acquired active stomatal control early in their evolutionary history. Current Biology 21: 1030-1035.
    連結:
  58. Sack, L., Frole, K. 2006. Leaf structural diversity is related to hydraulic capacity in tropical rain forest trees. Ecology 87: 483-491.
    連結:
  59. Sack, L., Scoffoni, C., Mckown, A. D., Frole, K., Rawls, M., Havran, J. C., Tran, H., Tran, T. 2012. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications 3: 837.
    連結:
  60. Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallón, S., Lupia, R. 2004. Ferns diversified in the shadow of angiosperms. Nature 428: 553-557.
    連結:
  61. Schroeder, J. I., Keller, B. U. 1992. Two types of anion channel currents in guard cells with distinct voltage regulation. Proceedings of the National Academy of Sciences 89: 5025-5029.
    連結:
  62. Schuettpelz, E., Pryer, K. M. 2007. Fern phylogeny inferred from 400 leptosporangiate species and three plastid genes. Taxon 56: 1037-1050.
    連結:
  63. Shieh, W. C. 1994. Pteridaceae. In: T. C. Huang and Editorial committee of the Flora of Taiwan (Eds.), Flora of Taiwan, Vol. 1, 2nd edition. Editorial committee of the Flora of Taiwan, Department of Botany, National Taiwan University, Taipei, Taiwan.
    連結:
  64. Shimazaki, K.-I., Doi, M., Assmann, S. M., Kinoshita, T. 2007. Light regulation of stomatal movement. Annual Review of Plant Biology 58: 219-247.
    連結:
  65. Srivastava, A., Lu, Z., Zeiger, E. 1995. Modification of guard cell properties in advanced lines of Pima cotton bred for higher yields and heat resistance. Plant Science 108: 125-131.
    連結:
  66. Ticha, I. 1982. Photosynthetic during ontogenesis of leaves. 7. Stomatal density and sizes. Photosynthetica 16: 375-471.
    連結:
  67. Tominaga, M., Kinoshita, T., Shimazaki, K.-I. 2001. Guard-cell chloroplasts provide ATP required for H+ pumping in the plasma membrane and stomatal opening. Plant and Cell Physiology 42: 795-802.
    連結:
  68. Tsionsky, M., Cardon, Z. G., Bard, A. J., Jackson, R. B. 1997. Photosynthetic electron transport in single guard cells as measured by scanning electrochemical microscopy. Plant Physiology 113: 895-901.
    連結:
  69. Tyree, M. T., Sperry, J. S. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology 40: 19-36.
    連結:
  70. Van Vuuren, M. M. I., Robinson, D., Fitters, A. H., Chasalow, S. D., Williamsons, L., Raven, J. A. 1997. Effects of elevated atmospheric CO2 and soil water availability on root biomass, root length, and N, P and K uptake by wheat. New Phytologist 135: 455-465.
    連結:
  71. Vavasseur, A., Raghavendra, A. S. 2005. Guard cell metabolism and CO2 sensing. New Phytologist 165: 665-682.
    連結:
  72. Zeiger, E. 1983. The Biology of stomatal guard cells. Annual Review of Plant Physiology 34: 441-474.
    連結:
  73. Zhu, J., Talbott, L. D., Jin, X., Zeiger, E. 1998. The stomatal response to CO2 is linked to changes in guard cell zeaxanthin. Plant, Cell and Environment 21: 813-820.
    連結:
  74. 郭城孟。2001。蕨類圖鑑 : 台灣三百多種蕨類生態圖鑑。台北市: 遠流出版事業股份有限公司。
  75. Cowan, I. R., Farquhar, G. D. 1977. Stomatal function in relation to leaf metabolism and environment. Symposia of the Society for Experimental Biology 31: 471-505.
  76. Dawson, T. E., Mambelli, S., Plamboeck, A. H., Templer, P. H., Tu, K. P. 2002. Stable isotopes in plant ecology. Annual Review of Ecology and Systematics 33: 507-559.
  77. Duan, B., L , Y., Yin, C., Li, C. 2005. Morphological and physiological of woody plant in response to high light and low light. Chinese Journal of Applied Environmental Biology 11: 238-245.
  78. Gago, J., Coopman, R. E., Cabrera, H. M., Hermida, C., Molins, A., Conesa, M., Galmés, J., Ribas-Carbó, M., Flexas, J. 2013. Photosynthesis limitations in three fern species. Physiologia Plantarum 149: 599-611.
  79. Jarvis, P., Morison, J. 1981. The control of transpiration and photosynthesis by the stomata. In: P. Jarvis, T. Mansfield (Eds.), Stomatal Physiology (pp. 247-279): Cambridge University Press.
  80. Macrobbie. 1983. Ionic relations of guard cells. In: E. Zeiger, G. D. Farquhar, I. R. Cohen (Eds.), Stomatal Function (pp. 125-162): Stanford University Press, Stanford.
  81. Nobel, P. S. 1991. Physicochemical and Environmental Plant Physiology. Academic Press.
  82. Schuettpelz, E., Pryer, K. M. 2008. Fern phylogeny. In: T. A. Ranker, C. H. Haufler (Eds.), Biology and Evolution of Ferns and Lycophytes (pp. 395-416): Cambridge University Press, Cambridge.
  83. Smith, H., Society, B. P. 1981. Plants and the Daylight Spectrum: Academic Press, London.
  84. Willmer, C., Fricker, M. 1996. The distribution of stomata. In: M. Black, M. Charlwood (Eds.), Stomata (pp. 12-35): Springer Netherlands.