题名

光致熱電子影響穿隧效率之研究:以掃描穿隧顯微術之斷裂點接合法量測穿隧衰減常數及單分子電性

并列篇名

The Effect of Photon-induced Hot-electron on Tunneling Efficiency across Nanojunctions

DOI

10.6342/NTU201601508

作者

梁晏慈

关键词

分子電子學 ; 分子導電值 ; 分子接合點 ; 掃描穿隧顯微術 ; 熱電子 ; 表面電漿共振 ; molecular electronics ; molecular conductance ; molecular junction ; scanning tunneling microscopy ; hot electron ; surface plasmon resonance

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳俊顯

内容语文

繁體中文

中文摘要

分子電子學旨在探討電極–分子–電極(electrode-molecule-electrode, EME)系統的電子傳遞,此傳遞效率和電子穿隧能障高度(barrier height)有關,而EME系統的傳遞效率與能障高度可以透過穿隧衰減常數值(tunneling decay constant)定性地評比。本論文研究電流受電磁場(光)的影響:電磁場與金屬奈米電極耦合產生的表面電漿共振(surface plasmon resonance)能量衰減,或者電磁場激發金屬電子,皆能使金屬裡的電子得到能量,產生熱電子,提升電子傳遞效率。我們以掃描穿隧顯微術破裂點接合法(scanning tunneling microscopy break junction, STM BJ)測量"沒有分子架接於電極的空間穿隧電流"以及"分子架接於電極的分子導電值",並討論入射雷射光對電流的提升效果。前者實驗得到穿隧衰減常數,釐清電極、溶劑與入射電磁場三種變因的關係。我們量測電極分別為金和銀、溶劑分別為辛基苯(octylbenzene)和碳酸丙烯酯(propylene carbonate)及不入射/入射雷射光(532 nm)之穿隧衰減常數,了解金屬電極中的電子穿隧經溶劑到另一電極的難易程度。電極方面,銀電極系統的穿隧衰減常數小於金電極;當溶劑為碳酸丙烯酯時,其穿隧衰減常數較辛基苯小;照光時,穿隧衰減常數下降,且轉換電壓能譜(transition voltage spectroscopy, TVS)的最低點對應到的偏壓較小,意味著熱電子的產生將使穿隧能障下降。以上的現象與功函數、極性以及熱電子產生有關。將熱電子的概念延伸至"分子架接於電極"的實驗中,我們量測2,7–二胺基芴及4,4'–聯吡啶兩種分子在照光時導電值變化,並討論為何前者的導電值提升量較大,而後者提升量較小。

英文摘要

The fundamental of molecular electronics involves electron-transport through electrode-molecule-electrode junctions. The transporting efficiency can be correlated to barrier height by tunneling decay constant. The interaction of molecular electronics with plasmons, collective oscillations of free electrons coupling to electromagnetic fields, has drawn lots of attentions. The formation of hot electrons from surface plasmon decay results in photocurrent. In addition, hot electron can also be generated from photoexcitation. We measure the tunneling phenomenon without molecules bridging between electrodes and the responses of gold and silver electrodes, solvent including octylbenzene and propylene carbonate, and electromagnetic field to tunneling decay constant by scanning tunneling microscopy break junction (STM BJ). The tunneling decay constant is reduced for silver electrodes in propylene carbonate when irradiated, that would be realized by comparing the work function of metal, polarity of solvent and by the presence of hot electrons. Following the concept of hot electrons, we investigate the increased conductance of molecules that binding to Au electrodes via head group under illumination and explain the differences in the conductance enhancement of 2,7-diaminofluorene and 4,4′-bipyridine.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. (1) Moore, G. E. Cramming More Components Onto Integrated Circuits. Proc. IEEE 1998, 86, 82-85.
    連結:
  2. (2) Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277-283.
    連結:
  3. (3) Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301-303.
    連結:
  4. (4) Strigl, F.; Espy, C.; Bückle, M.; Scheer, E.; Pietsch, T. Emerging magnetic order in platinum atomic contacts and chains. Nat. Commun. 2015, 6.
    連結:
  5. (5) Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a Molecular Junction. Science 1997, 278, 252-254.
    連結:
  6. (6) Xu, B.; Xiao, X.; Tao, N. J. Measurements of Single-Molecule Electromechanical Properties. J. Am. Chem. Soc. 2003, 125, 16164-16165.
    連結:
  7. (7) Rubio-Bollinger, G.; Bahn, S. R.; Agraït, N.; Jacobsen, K. W.; Vieira, S. Mechanical Properties and Formation Mechanisms of a Wire of Single Gold Atoms. Phys. Rev. Lett. 2001, 87, 026101.
    連結:
  8. (8) Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 1982, 40, 178-180.
    連結:
  9. (9) Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Surface Studies by Scanning Tunneling Microscopy. Phys. Rev. Lett. 1982, 49, 57-61.
    連結:
  10. (10) Binnig, G.; Rohrer, H. Scanning tunneling microscopy. Surf. Sci. 1983, 126, 236-244.
    連結:
  11. (11) Jia, J. F.; Inoue, K.; Hasegawa, Y.; Yang, W. S.; Sakurai, T. Local work function for Cu(111)–Au surface studied by scanning tunneling microscopy. J. Vac. Sci. Technol. B 1997, 15, 1861-1864.
    連結:
  12. (12) Bartels, L.; Hla, S. W.; Kühnle, A.; Meyer, G.; Rieder, K. H.; Manson, J. R. STM observations of a one-dimensional electronic edge state at steps on Cu(111). Phys. Rev. B 2003, 67, 205416.
    連結:
  13. (13) Jia, J. F.; Hasegawa, Y.; Inoue, K.; Yang, W. S.; Sakurai, T. Steps on the Au/Cu(111) surface studied by local work function measurement with STM. Appl. Phys. A 1998, 66, 1125-1128.
    連結:
  14. (14) Xu, B.; Tao, N. J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003, 301, 1221-1223.
    連結:
  15. (15) Shih, K.-N.; Huang, M.-J.; Lu, H.-C.; Fu, M.-D.; Kuo, C.-K.; Huang, G.-C.; Lee, G.-H.; Chen, C.-h.; Peng, S.-M. On the tuning of electric conductance of extended metal atom chains via axial ligands for [Ru3([small mu ]3-dpa)4(X)2]0/+ (X = NCS-, CN-). Chem. Commun. 2010, 46, 1338-1340.
    連結:
  16. (17) Chen, I. W. P.; Fu, M.-D.; Tseng, W.-H.; Yu, J.-Y.; Wu, S.-H.; Ku, C.-J.; Chen, C.-h.; Peng, S.-M. Conductance and Stochastic Switching of Ligand-Supported Linear Chains of Metal Atoms. Angew. Chem., Int. Ed. 2006, 45, 5814-5818.
    連結:
  17. (18) Ting, T.-C.; Hsu, L.-Y.; Huang, M.-J.; Horng, E.-C.; Lu, H.-C.; Hsu, C.-H.; Jiang, C.-H.; Jin, B.-Y.; Peng, S.-M.; Chen, C.-h. Energy-Level Alignment for Single-Molecule Conductance of Extended Metal-Atom Chains. Angew. Chem., Int. Ed. 2015, 54, 15734-15738.
    連結:
  18. (19) Simmons, J. G. Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film. J. Appl. Phys. 1963, 34, 1793-1803.
    連結:
  19. (20) Huisman, E. H.; Guédon, C. M.; van Wees, B. J.; van der Molen, S. J. Interpretation of Transition Voltage Spectroscopy. Nano Lett. 2009, 9, 3909-3913.
    連結:
  20. (21) Beebe, J. M.; Kim, B.; Frisbie, C. D.; Kushmerick, J. G. Measuring Relative Barrier Heights in Molecular Electronic Junctions with Transition Voltage Spectroscopy. ACS Nano 2008, 2, 827-832.
    連結:
  21. (22) Xie, Z.; Bâldea, I.; Smith, C. E.; Wu, Y.; Frisbie, C. D. Experimental and Theoretical Analysis of Nanotransport in Oligophenylene Dithiol Junctions as a Function of Molecular Length and Contact Work Function. ACS Nano 2015, 9, 8022-8036.
    連結:
  22. (23) Bâldea, I. Ambipolar transition voltage spectroscopy: Analytical results and experimental agreement. Phys. Rev. B 2012, 85, 035442.
    連結:
  23. (24) Noy, G.; Ophir, A.; Selzer, Y. Response of Molecular Junctions to Surface Plasmon Polaritons. Angew. Chem., Int. Ed. 2010, 49, 5734-5736.
    連結:
  24. (25) Araidai, M.; Tsukada, M. Theoretical calculations of electron transport in molecular junctions: Inflection behavior in Fowler-Nordheim plot and its origin. Phys. Rev. B 2010, 81, 235114.
    連結:
  25. (26) Beebe, J. M.; Kim, B.; Gadzuk, J. W.; Daniel Frisbie, C.; Kushmerick, J. G. Transition from Direct Tunneling to Field Emission in Metal-Molecule-Metal Junctions. Phys. Rev. Lett. 2006, 97, 026801.
    連結:
  26. (27) Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Dependence of single-molecule junction conductance on molecular conformation. Nature 2006, 442, 904-907.
    連結:
  27. (28) Wold, D. J.; Haag, R.; Rampi, M. A.; Frisbie, C. D. Distance Dependence of Electron Tunneling through Self-Assembled Monolayers Measured by Conducting Probe Atomic Force Microscopy:  Unsaturated versus Saturated Molecular Junctions. J. Phys. Chem. B 2002, 106, 2813-2816.
    連結:
  28. (29) Engelkes, V. B.; Beebe, J. M.; Frisbie, C. D. Length-Dependent Transport in Molecular Junctions Based on SAMs of Alkanethiols and Alkanedithiols:  Effect of Metal Work Function and Applied Bias on Tunneling Efficiency and Contact Resistance. J. Am. Chem. Soc. 2004, 126, 14287-14296.
    連結:
  29. (30) Wenyong, W.; Takhee, L.; Mark, A. R. Electron tunnelling in self-assembled monolayers. Rep. Prog. Phys. 2005, 68, 523.
    連結:
  30. (31) Peng, G.; Strange, M.; Thygesen, K. S.; Mavrikakis, M. Conductance of Conjugated Molecular Wires: Length Dependence, Anchoring Groups, and Band Alignment. J. Phys. Chem. C 2009, 113, 20967-20973.
    連結:
  31. (32) Fatemi, V.; Kamenetska, M.; Neaton, J. B.; Venkataraman, L. Environmental Control of Single-Molecule Junction Transport. Nano Lett. 2011, 11, 1988-1992.
    連結:
  32. (34) Huang, M.-J.; Hsu, L.-Y.; Fu, M.-D.; Chuang, S.-T.; Tien, F.-W.; Chen, C.-h. Conductance of Tailored Molecular Segments: A Rudimentary Assessment by Landauer Formulation. J. Am. Chem. Soc. 2014, 136, 1832-1841.
    連結:
  33. (35) Kim, T.; Vázquez, H.; Hybertsen, M. S.; Venkataraman, L. Conductance of Molecular Junctions Formed with Silver Electrodes. Nano Lett. 2013, 13, 3358-3364.
    連結:
  34. (36) Thon, A.; Merschdorf, M.; Pfeiffer, W.; Klamroth, T.; Saalfrank, P.; Diesing, D. Photon-assisted tunneling versus tunneling of excited electrons in metal–insulator–metal junctions. Appl. Phys. A 2004, 78, 189-199.
    連結:
  35. (37) Conklin, D.; Nanayakkara, S.; Park, T.-H.; Lagadec, M. F.; Stecher, J. T.; Chen, X.; Therien, M. J.; Bonnell, D. A. Exploiting Plasmon-Induced Hot Electrons in Molecular Electronic Devices. ACS Nano 2013, 7, 4479-4486.
    連結:
  36. (38) Banerjee, P.; Conklin, D.; Nanayakkara, S.; Park, T.-H.; Therien, M. J.; Bonnell, D. A. Plasmon-Induced Electrical Conduction in Molecular Devices. ACS Nano 2010, 4, 1019-1025.
    連結:
  37. (39) Fereiro, J. A.; McCreery, R. L.; Bergren, A. J. Direct Optical Determination of Interfacial Transport Barriers in Molecular Tunnel Junctions. J. Am. Chem. Soc. 2013, 135, 9584-9587.
    連結:
  38. (40) Galperin, M.; Nitzan, A. Molecular optoelectronics: the interaction of molecular conduction junctions with light. PCCP 2012, 14, 9421-9438.
    連結:
  39. (41) Vadai, M.; Nachman, N.; Ben-Zion, M.; Bürkle, M.; Pauly, F.; Cuevas, J. C.; Selzer, Y. Plasmon-Induced Conductance Enhancement in Single-Molecule Junctions. J. Phys. Chem. Lett. 2013, 4, 2811-2816.
    連結:
  40. (42) Fereiro, J. A.; Kondratenko, M.; Bergren, A. J.; McCreery, R. L. Internal Photoemission in Molecular Junctions: Parameters for Interfacial Barrier Determinations. J. Am. Chem. Soc. 2015, 137, 1296-1304.
    連結:
  41. (43) Wang, F.; Melosh, N. A. Plasmonic Energy Collection through Hot Carrier Extraction. Nano Lett. 2011, 11, 5426-5430.
    連結:
  42. (44) Willets, K. A.; Duyne, R. P. V. Localized Surface Plasmon Resonance Spectroscopy and Sensing. Annu. Rev. Phys. Chem. 2007, 58, 267-297.
    連結:
  43. (45) Tang, Y.; Zeng, X.; Liang, J. Surface Plasmon Resonance: An Introduction to a Surface Spectroscopy Technique. J. Chem. Educ. 2010, 87, 742-746.
    連結:
  44. (46) Stenberg, E.; Persson, B.; Roos, H.; Urbaniczky, C. Quantitative determination of surface concentration of protein with surface plasmon resonance using radiolabeled proteins. J. Colloid Interface Sci. 1991, 143, 513-526.
    連結:
  45. (47) Homola, J. Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species. Chem. Rev. 2008, 108, 462-493.
    連結:
  46. (48) Lis, D.; Cecchet, F. Localized surface plasmon resonances in nanostructures to enhance nonlinear vibrational spectroscopies: towards an astonishing molecular sensitivity. Beilstein J. Nanotechnol. 2014, 5, 2275-2292.
    連結:
  47. (49) Cooper, M. A. Optical biosensors in drug discovery. Nat. Rev. Drug Discov. 2002, 1, 515-528.
    連結:
  48. (50) Dieringer, J. A.; McFarland, A. D.; Shah, N. C.; Stuart, D. A.; Whitney, A. V.; Yonzon, C. R.; Young, M. A.; Zhang, X.; Van Duyne, R. P. Introductory Lecture Surface enhanced Raman spectroscopy: new materials, concepts, characterization tools, and applications. Faraday Discuss. 2006, 132, 9-26.
    連結:
  49. (51) Zhang, R.; Zhang, Y.; Dong, Z. C.; Jiang, S.; Zhang, C.; Chen, L. G.; Zhang, L.; Liao, Y.; Aizpurua, J.; Luo, Y.; Yang, J. L.; Hou, J. G. Chemical mapping of a single molecule by plasmon-enhanced Raman scattering. Nature 2013, 498, 82-86.
    連結:
  50. (52) Haynes, C. L.; Van Duyne, R. P. Nanosphere Lithography:  A Versatile Nanofabrication Tool for Studies of Size-Dependent Nanoparticle Optics. J. Phys. Chem. B 2001, 105, 5599-5611.
    連結:
  51. (53) Liu, Z.; Ding, S.-Y.; Chen, Z.-B.; Wang, X.; Tian, J.-H.; Anema, J. R.; Zhou, X.-S.; Wu, D.-Y.; Mao, B.-W.; Xu, X.; Ren, B.; Tian, Z.-Q. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.
    連結:
  52. (54) Lehmann, J.; Merschdorf, M.; Pfeiffer, W.; Thon, A.; Voll, S.; Gerber, G. Surface Plasmon Dynamics in Silver Nanoparticles Studied by Femtosecond Time-Resolved Photoemission. Phys. Rev. Lett. 2000, 85, 2921-2924.
    連結:
  53. (55) Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nature Photon. 2014, 8, 95-103.
    連結:
  54. (56) Sundararaman, R.; Narang, P.; Jermyn, A. S.; Goddard Iii, W. A.; Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 2014, 5.
    連結:
  55. (57) Moskovits, M. The case for plasmon-derived hot carrier devices. Nat. Nanotechnol. 2015, 10, 6-8.
    連結:
  56. (58) Zheng, B. Y.; Zhao, H.; Manjavacas, A.; McClain, M.; Nordlander, P.; Halas, N. J. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 2015, 6.
    連結:
  57. (59) Knight, M. W.; Sobhani, H.; Nordlander, P.; Halas, N. J. Photodetection with Active Optical Antennas. Science 2011, 332, 702-704.
    連結:
  58. (60) Chalabi, H.; Schoen, D.; Brongersma, M. L. Hot-Electron Photodetection with a Plasmonic Nanostripe Antenna. Nano Lett. 2014, 14, 1374-1380.
    連結:
  59. (61) Knight, M. W.; Wang, Y.; Urban, A. S.; Sobhani, A.; Zheng, B. Y.; Nordlander, P.; Halas, N. J. Embedding Plasmonic Nanostructure Diodes Enhances Hot Electron Emission. Nano Lett. 2013, 13, 1687-1692.
    連結:
  60. (62) Changhwan, L.; Ievgen, I. N.; Young Keun, L.; Changui, A.; Hyosun, L.; Seokwoo, J.; Jeong Young, P. Amplification of hot electron flow by the surface plasmon effect on metal–insulator–metal nanodiodes. Nanotechnology 2015, 26, 445201.
    連結:
  61. (63) Lee, H.; Lee, Y. K.; Hwang, E.; Park, J. Y. Enhanced Surface Plasmon Effect of Ag/TiO2 Nanodiodes on Internal Photoemission. J. Phys. Chem. C 2014, 118, 5650-5656.
    連結:
  62. (64) Kovacs, D. A.; Winter, J.; Meyer, S.; Wucher, A.; Diesing, D. Photo and particle induced transport of excited carriers in thin film tunnel junctions. Phys. Rev. B 2007, 76, 235408.
    連結:
  63. (65) Brongersma, M. L.; Halas, N. J.; Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 2015, 10, 25-34.
    連結:
  64. (66) Yang, J.; Sordes, D.; Kolmer, M.; Martrou, D.; Joachim, C. Imaging, single atom contact and single atom manipulations at low temperature using the new ScientaOmicron LT-UHV-4 STM. Eur. Phys. J. Appl. Phys. 2016, 73, 10702.
    連結:
  65. (67) Sass, J. K.; Gimzewski, J. K. Solvent dynamical effects in scanning tunneling microscopy with a polar liquid in the gap. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1991, 308, 333-337.
    連結:
  66. (68) Schmickler, W.; Henderson, D. A model for the scanning tunneling microscope operating in an electrolyte solution. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1990, 290, 283-291.
    連結:
  67. (69) McCreery, R. L. Molecular Electronic Junctions. Chem. Mater. 2004, 16, 4477-4496.
    連結:
  68. (70) García de Arquer, F. P.; Mihi, A.; Kufer, D.; Konstantatos, G. Photoelectric Energy Conversion of Plasmon-Generated Hot Carriers in Metal–Insulator–Semiconductor Structures. ACS Nano 2013, 7, 3581-3588.
    連結:
  69. (71) Brown, A. M.; Sundararaman, R.; Narang, P.; Goddard, W. A.; Atwater, H. A. Nonradiative Plasmon Decay and Hot Carrier Dynamics: Effects of Phonons, Surfaces, and Geometry. ACS Nano 2016, 10, 957-966.
    連結:
  70. (72) Brooke, R. J.; Jin, C.; Szumski, D. S.; Nichols, R. J.; Mao, B.-W.; Thygesen, K. S.; Schwarzacher, W. Single-Molecule Electrochemical Transistor Utilizing a Nickel-Pyridyl Spinterface. Nano Lett. 2015, 15, 275-280.
    連結:
  71. (73) Kim, T.; Darancet, P.; Widawsky, J. R.; Kotiuga, M.; Quek, S. Y.; Neaton, J. B.; Venkataraman, L. Determination of Energy Level Alignment and Coupling Strength in 4,4′-Bipyridine Single-Molecule Junctions. Nano Lett. 2014, 14, 794-798.
    連結:
  72. (74) Rauba, J. M. C.; Strange, M.; Thygesen, K. S. Quantum conductance of 4,4-bipyridine molecular junctions: Role of electrode work function and local $d$ band. Phys. Rev. B 2008, 78, 165116.
    連結:
  73. (75) Shimin, H.; Jiaxing, Z.; Rui, L.; Jing, N.; Rushan, H.; Ziyong, S.; Xingyu, Z.; Zenquan, X.; Quande, W. First-principles calculation of the conductance of a single 4,4 bipyridine molecule. Nanotechnology 2005, 16, 239.
    連結:
  74. (76) Downes, A.; Salter, D.; Elfick, A. Heating effects in tip-enhanced optical microscopy. Opt. Express 2006, 14, 5216-5222.
    連結:
  75. (16) Huang, M.-J.; Hua, S.-A.; Fu, M.-D.; Huang, G.-C.; Yin, C.; Ko, C.-H.; Kuo, C.-K.; Hsu, C.-H.; Lee, G.-H.; Ho, K.-Y.; Wang, C.-H.; Yang, Y.-W.; Chen, I. C.; Peng, S.-M.; Chen, C.-h. The first heteropentanuclear extended metal-atom chain: [Ni⁺-Ru₂⁵⁺-Ni²⁺-Ni²⁺ (tripyridyldiamido)₄(NCS)₂]. Chemistry 2014, 20, 4526-4531.
  76. (33) Choi, B.; Capozzi, B.; Ahn, S.; Turkiewicz, A.; Lovat, G.; Nuckolls, C.; Steigerwald, M. L.; Venkataraman, L.; Roy, X. Solvent-dependent conductance decay constants in single cluster junctions. Chem. Sci. 2016, 7, 2701-2705.
  77. (77) Cesar Andrade; Maria Danielly Oliveira; Tanize Faulin, Vitor Hering; Dulcineia Saes Parra Abdall In Biosensors for Health, Environment and Biosecurity; Pier Andrea Serra, Ed.; InTechOpen: Open Access, 2011.
  78. (78) K. Kneipp; M. Moskovits; H. Kneipp Surface-Enhanced Raman Scattering: Physics and Applications; Springer Science & Business Media: Germany, 2006.
  79. (79) Handbook of Chemistry & Physics Online. http://www.hbcpnetbase.com/ (accessed June 10, 2015)