题名

高效能微型能量擷取器之研製與工作模態最佳化研究

并列篇名

Fabrication of High-Quality Piezoelectric Micro Energy Harvester and of 3-1, 3-3 Mode Optimization

DOI

10.6342/NTU201601519

作者

陳昭廷

关键词

鈮鎂酸鉛-鈦酸鉛 ; 工作模態 ; 壓電材料 ; 氣膠沉積法 ; 微振動發電元件 ; PMN-PT ; operation mode ; piezoelectric material ; aerosol deposition ; power harvesting

期刊名称

國立臺灣大學工程科學及海洋工程學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

吳文中

内容语文

繁體中文

中文摘要

隨著物聯網時代的來臨,越來越多的感測元件將連上網路,在人們的生活品質大幅的提升同時,也默默地造成了更多的電能量消耗,倘若能夠使得每一個感測元件皆有其發電系統,而此發電系統之能量來源完全取自於環境中,這未嘗不是件兩全其美之好事,然而從過去研究中知曉,環境中之振動能能量密度極高且取之不竭,也因此本研究將主軸鎖定於壓電能量擷取器之研製。過去幾年來,壓電能量擷取元件選用之材料近乎皆為鋯鈦酸鉛(PZT),隨著時代的演進,各國研究團隊透過不同的製程方式,所得到之能量輸出表現將逐漸的達到材料之極限,近年來本研究團隊透過改變基板材料,大幅提升懸臂樑式壓電能量擷取元件之輸出功率,且有效的增強其結構之耐用性,故本研究認為唯有引入更新穎之材料,才能夠突破目前的壓電能量輸出極限,根據文獻指出鈮鎂酸鉛-鈦酸鉛(PMN-PT)陶瓷之壓電特性及機電耦合常數皆優於PZT陶瓷材料,其極有可能成為下一世代盛行之壓電能量擷取元件材料。 本論文將首先進行PMN-PT壓電陶瓷材料之研究,同時著手理解懸臂樑式壓電能量擷取元件之理論,並將焦點放在3-1及3-3工作模態之能量輸出表現,針對壓電懸臂樑式能量擷取元件之輸出功率關係式進行合理簡化,此簡化將有利於元件設計者可於短時間內完成元件之輸出功率估算,最終也將本論文所製作之元件參數代入關係式計算,所得之結果可概略的說明本實驗之結果。 實驗操作之部分,本論文中已成功的利用氣膠噴塗技術,沉積約為2.8 um厚之PMN-PT,並且對於陶瓷粉體及壓電膜進行微觀分析,目前已經初略了解氣膠噴塗技術之適合粉末條件,藉由微機電製程技術的協助,本論文順利的製作出PMN-PT懸臂樑式壓電能量擷取元件,並完成元件之退火條件、極化溫度以及極化電場條件之測試,所製成之元件於0.5g之振動環境中,共振頻率以及最大輸出功率分別為94.8 Hz及8.423 uW,此輸出表現優於同厚度之PZT壓電元件,而單位體積能量密度也優於過去本團隊所研發之PZT厚膜元件,故本研究認為若將來能夠突破PMN-PT之膜厚沉積極限,製作出之厚膜PMN-PT壓電能量擷取元件,將有極大可能取代現有之PZT壓電能量擷取器。

英文摘要

With the advent of the Internet of Things (IoT) era, more and more sensing units will be connected to the internet. While this improves quality of life, the extra sensors will, however, cost more electrical energy consumption. If each sensing unit has a self-powered generation system, whose power source is entirely from the environment, high cost batteries or cord connections will not be needed. According to past studies, the energy density of vibration sources is the highest available in our society and is practically inexhaustible. For this reason, this study is focused on the development of piezoelectric energy harvesters (EH) reaping energy from vibrations. Over the past few years, the majority of selected materials used to make EH are a type of lead zirconate titanate (PZT). As time progresses, research teams improve the output performance of EH through changing fabrication processes. Until now, the performance of EH energy output had gradually reached the limit of the chosen materials. In our previous research, a significant power output increase and durability improvements were caused by altering the EH substrate material. Therefore, this study suggests that only the introduction of innovative materials will allow a breakthrough in the limit of EH energy output. According to recently published literature, attention has been given to lead magnesium niobate–lead titanate (PMN-PT) material because of its high piezoelectric constant and electromechanical coupling factor. It has become highly desirable as the next-generation piezoelectric material. In this study, an introduction of piezoelectric ceramic material will be presented first. Theory regarding cantilever piezoelectric EH is elucidated with a focus on the 3-1 and 3-3 operation modes. The reasonable simplification of EH analysis is presented for the benefit of EH designers estimating the output performance in a practical amount of time. Next, measured parameters are used for EH analysis to show the theory corresponds to experimental results. To demonstrate EH performance by experiment, 2.8 um of PMN-PT film was successfully deposited on a stainless steel substrate by aerosol deposition. The microstructure of the ceramic powder and piezo-film were analyzed, assisting in the understanding of suitable powder conditions for aerosol deposition. With the help of micro electro-mechanical systems (MEMS) technology processes, this study produced PMN-PT based EHs and optimized the annealing temperature and poling condition of EH devices. The experimental results show that the device has a maximum output power of 8.423 uW with a resonant frequency at 94.8 Hz under 0.5 g acceleration. The output performance is better than the PZT-based EH with the same thickness. When given a comparison with previous work, the volumetric power density in this study is also better than those previously found.

主题分类 基礎與應用科學 > 海洋科學
工學院 > 工程科學及海洋工程學系
工程學 > 工程學總論
参考文献
  1. [2] S. Roundy, P. K. Wright, and J. Rabaey, "A study of low level vibrations as a power source for wireless sensor nodes," Computer communications, vol. 26, pp. 1131-1144, 2003.
    連結:
  2. [3] S. Roundy, E. S. Leland, J. Baker, E. Carleton, E. Reilly, E. Lai, et al., "Improving power output for vibration-based energy scavengers," IEEE Pervasive computing, vol. 4, pp. 28-36, 2005.
    連結:
  3. [5] S.-C. Lin and W.-J. Wu, "Piezoelectric micro energy harvesters based on stainless-steel substrates," Smart Materials and Structures, vol. 22, p. 045016, 2013.
    連結:
  4. [10] G. Lippmann, "On the principle of the conservation of electricity," An. Chim. Phys. Ser. 5, vol. 24, p. 145, 1881.
    連結:
  5. [11] A. Erturk and D. J. Inman, Piezoelectric energy harvesting: John Wiley & Sons, 2011.
    連結:
  6. [13] R. Zhang, B. Jiang, and W. Cao, "Elastic, piezoelectric, and dielectric properties of multidomain 0.67Pb(Mg1/3Nb2/3)O3-0.33 PbTiO3 single crystals," Journal of Applied Physics, vol. 90, pp. 3471-3475, 2001.
    連結:
  7. [14] S. Sun, X. Pan, P. Wang, L. Zhu, Q. Huang, D. Li, et al., "Fabrication and electrical properties of grain-oriented 0.7 Pb (Mg1/3Nb2/3)O3-0.3PbTiO3 ceramics," Applied physics letters, vol. 84, 2004.
    連結:
  8. [16] H. Uršič, M. Hrovat, J. Holc, M. Santo Zarnik, S. Drnovšek, S. Maček, et al., "A large-displacement 65Pb(Mg1/3Nb2/3)O3–35PbTiO3/Pt bimorph actuator prepared by screen printing," Sensors and Actuators B: Chemical, vol. 133, pp. 699-704, 2008.
    連結:
  9. [17] K. Kim, Y. Kim, H. Kim, and S. Kim, "Finite element analysis of piezoelectric actuator with PMN–PT single crystals for nanopositioning," Current Applied Physics, vol. 6, pp. 1064-1067, 2006.
    連結:
  10. [20] M. Thiercelin, H. Dammak, and M. P. Thi, "Electromechanical properties of PMN-PT and PZT ceramics at cryogenic temperatures," in 2010 IEEE International Symposium on the Applications of Ferroelectrics (ISAF), 2010, pp. 1-4.
    連結:
  11. [21] J. Kelly, M. Leonard, C. Tantigate, and A. Safari, "Effect of Composition on the Electromechanical Properties of (1‐x) Pb (Mg1/3Nb2/3) O3− XPbTiO3 Ceramics," Journal of the American Ceramic Society, vol. 80, pp. 957-964, 1997.
    連結:
  12. [22] M. Alguero, C. Alemany, L. Pardo, and M. Pham‐Thi, "Piezoelectric resonances, linear coefficients and losses of morphotropic phase boundary Pb (Mg1/3Nb2/3) O3–PbTiO3 ceramics," Journal of the American Ceramic Society, vol. 88, pp. 2780-2787, 2005.
    連結:
  13. [25] D. Berlincourt, H. Krueger, and C. Near, "Properties of Morgan electro ceramic ceramics," Technical Publication TP-226, Morgan Electro Ceramics, 2000.
    連結:
  14. [26] S. Baek, J. Park, D. Kim, V. A. Aksyuk, R. Das, S. Bu, et al., "Giant piezoelectricity on Si for hyperactive MEMS," Science, vol. 334, pp. 958-961, 2011.
    連結:
  15. [27] M. Spreitzer, R. Egoavil, J. Verbeeck, D. H. Blank, and G. Rijnders, "Pulsed laser deposition of SrTiO 3 on a H-terminated Si substrate," Journal of materials chemistry C, vol. 1, pp. 5216-5222, 2013.
    連結:
  16. [28] J. Kymissis, C. Kendall, J. Paradiso, and N. Gershenfeld, "Parasitic power harvesting in shoes," in Wearable Computers, 1998. Digest of Papers. Second International Symposium on, 1998, pp. 132-139.
    連結:
  17. [29] K. Ishida, T.-C. Huang, K. Honda, Y. Shinozuka, H. Fuketa, T. Yokota, et al., "Insole pedometer with piezoelectric energy harvester and 2 V organic circuits," IEEE Journal of Solid-State Circuits, vol. 48, pp. 255-264, 2013.
    連結:
  18. [30] J. Granstrom, J. Feenstra, H. A. Sodano, and K. Farinholt, "Energy harvesting from a backpack instrumented with piezoelectric shoulder straps," Smart Materials and Structures, vol. 16, p. 1810, 2007.
    連結:
  19. [31] J. Feenstra, J. Granstrom, and H. Sodano, "Energy harvesting through a backpack employing a mechanically amplified piezoelectric stack," Mechanical Systems and Signal Processing, vol. 22, pp. 721-734, 2008.
    連結:
  20. [32] L. Swallow, J. Luo, E. Siores, I. Patel, and D. Dodds, "A piezoelectric fibre composite based energy harvesting device for potential wearable applications," Smart Materials and Structures, vol. 17, p. 025017, 2008.
    連結:
  21. [33] H. Wu, L. Tang, Y. Yang, and C. K. Soh, "A compact 2 degree-of-freedom energy harvester with cut-out cantilever beam," Japanese Journal of Applied Physics, vol. 51, p. 040211, 2012.
    連結:
  22. [34] A. Erturk, J. Hoffmann, and D. Inman, "A piezomagnetoelastic structure for broadband vibration energy harvesting," Applied Physics Letters, vol. 94, p. 254102, 2009.
    連結:
  23. [35] W. Choi, Y. Jeon, J.-H. Jeong, R. Sood, and S.-G. Kim, "Energy harvesting MEMS device based on thin film piezoelectric cantilevers," Journal of Electroceramics, vol. 17, pp. 543-548, 2006.
    連結:
  24. [36] K. Shibata, S. Ishikawa, K. Tanaka, S. Nagasawa, Z. Cao, H. Oguchi, et al., "Micro fabrication development of a vibration-based sputtered PZT thin film micro energy harvester," in Sensors, 2012 IEEE, 2012, pp. 1-4.
    連結:
  25. [38] G. Tang, J.-q. Liu, B. Yang, J.-b. Luo, H.-s. Liu, Y.-g. Li, et al., "Fabrication and analysis of high-performance piezoelectric MEMS generators," Journal of Micromechanics and Microengineering, vol. 22, p. 065017, 2012.
    連結:
  26. [39] K. Morimoto, I. Kanno, K. Wasa, and H. Kotera, "High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers," Sensors and Actuators A: Physical, vol. 163, pp. 428-432, 2010.
    連結:
  27. [40] E. E. Aktakka, R. L. Peterson, and K. Najafi, "Thinned-PZT on SOI process and design optimization for piezoelectric inertial energy harvesting," in 2011 16th International Solid-State Sensors, Actuators and Microsystems Conference, 2011, pp. 1649-1652.
    連結:
  28. [41] G. Tang, B. Yang, J.-q. Liu, B. Xu, H.-y. Zhu, and C.-s. Yang, "Development of high performance piezoelectric d 33 mode MEMS vibration energy harvester based on PMN-PT single crystal thick film," Sensors and Actuators A: Physical, vol. 205, pp. 150-155, 2014.
    連結:
  29. [42] H. Song, Y. Choi, G. Wang, and N. Wereley, "Energy harvesting utilizing single crystal PMN-PT material and application to a self-powered accelerometer," Journal of Mechanical Design, vol. 131, p. 091008, 2009.
    連結:
  30. [43] S. Moon, S.-K. Lee, Y.-G. Lee, K. Kim, Y.-S. Yang, W. Yang, et al., "Characterization of a high-power piezoelectric energy-scavenging device based on PMN-PT piezoelectric single crystals," Journal of the Korean Physical Society, vol. 60, pp. 230-234, 2012.
    連結:
  31. [44] J. Akedo and M. Lebedev, "Microstructure and electrical properties of lead zirconate titanate (Pb(Zr52/Ti48)O3) thick films deposited by aerosol deposition method," Japanese journal of applied physics, vol. 38, p. 5397, 1999.
    連結:
  32. [45] J. P. Guha, D. J. Hong, and H. U. Anderson, "Effect of Excess PbO on the Sintering Characteristics and Dielectric Properties of Pb (Mg1/3Nb2/3)O3–PbTiO3‐Based Ceramics," Journal of the American Ceramic Society, vol. 71, 1988.
    連結:
  33. [46] K. Kusumoto and T. Sekiya, "Processing and properties of (1− x)Pb (Mg1/3Nb2/3)O3· xPbTiO3 solid solutions from PbO-and MgO-excess compositions," Materials research bulletin, vol. 33, pp. 1367-1375, 1998.
    連結:
  34. [47] J. G. Baek, T. Isobe, and M. Senna, "Synthesis of Pyrochlore‐Free 0.9Pb(Mg1/3Nb2/3)O3‐0.1 PbTiO3 Ceramics via a Soft Mechanochemical Route," Journal of the American Ceramic Society, vol. 80, pp. 973-981, 1997.
    連結:
  35. [48] S. Kwon, E. M. Sabolsky, and G. L. Messing, "Low‐Temperature Reactive Sintering of 0.65 PMN· 0.35 PT," Journal of the American Ceramic Society, vol. 84, pp. 648-650, 2001.
    連結:
  36. [49] L. Kong, J. Ma, W. Zhu, and O. Tan, "Preparation of PMN–PT ceramics via a high-energy ball milling process," Journal of Alloys and Compounds, vol. 336, pp. 242-246, 2002.
    連結:
  37. [50] S. Singh and S. Krupanidhi, "Perovskite phase transformation in 0.65 Pb(Mg1/3Nb2/3)O3-0.35 PbTiO3 nanoparticles derived by sol-gel," Journal of Applied Physics, vol. 111, p. 024314, 2012.
    連結:
  38. [51] Z. Jiwei, S. Bo, Z. Liangying, and Y. Xi, "Preparation and dielectric properties by sol–gel derived PMN-PT powder and ceramic," Materials chemistry and physics, vol. 64, pp. 1-4, 2000.
    連結:
  39. [52] D. Saranya, A. R. Chaudhuri, J. Parui, and S. Krupanidhi, "Electrocaloric effect of PMN-PT thin films near morphotropic phase boundary," Bulletin of Materials Science, vol. 32, pp. 259-262, 2009.
    連結:
  40. [53] C. Tantigate, J. Lee, and A. Safari, "Processing and properties of Pb (Mg1/3Nb2/3) O3–PbTiO3 thin films by pulsed laser deposition," Applied physics letters, vol. 66, pp. 1611-1613, 1995.
    連結:
  41. [54] R. Igreja and C. Dias, "Analytical evaluation of the interdigital electrodes capacitance for a multi-layered structure," Sensors and Actuators A: Physical, vol. 112, pp. 291-301, 2004.
    連結:
  42. [55] D. Kim, N. N. Hewa-Kasakarage, and N. A. Hall, "A theoretical and experimental comparison of 3-3 and 3-1 mode piezoelectric microelectromechanical systems (MEMS)," Sensors and Actuators A: Physical, vol. 219, pp. 112-122, 2014.
    連結:
  43. [56] S.-B. Kim, H. Park, S.-H. Kim, H. C. Wikle, J.-H. Park, and D.-J. Kim, "Comparison of MEMS PZT cantilevers based on and modes for vibration energy harvesting," Journal of Microelectromechanical Systems, vol. 22, pp. 26-33, 2013.
    連結:
  44. [57] S.-B. Kim, H. Park, S.-H. Kim, H. C. Wikle, J.-H. Park, and D.-J. Kim, "Comparison of MEMS PZT cantilevers based on and modes for vibration energy harvesting," Journal of Microelectromechanical Systems, vol. 22, pp. 26-33, 2013.
    連結:
  45. [58] J. Akedo, "Room temperature impact consolidation (RTIC) of fine ceramic powder by aerosol deposition method and applications to microdevices," Journal of Thermal Spray Technology, vol. 17, pp. 181-198, 2008.
    連結:
  46. [59] M. Ghasemifard, S. Hosseini, M. Bagheri-Mohagheghi, and N. Shahtahmasbi, "Structure comparison of PMN–PT and PMN–PZT nanocrystals prepared by gel-combustion method at optimized temperatures," Physica E: Low-dimensional Systems and Nanostructures, vol. 41, pp. 1701-1706, 2009.
    連結:
  47. [60] M. Ozenbaş and A. Yıldırım, "Pb (Zr0. 52Ti0. 48)O3 Films on Stainless Steel by Chemical Solution Deposition," in Key Engineering Materials, 2004, pp. 1217-1220.
    連結:
  48. [1] R. Amirtharajah, "Design of a low power VLSI systems powered by ambient mechanical vibration," Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1999.
  49. [4] R. Allan. (2012). Energy Harvesting Efforts Are Picking Up Steam. Available: http://goo.gl/YK819X
  50. [6] S. J. Roundy, "Energy scavenging for wireless sensor nodes with a focus on vibration to electricity conversion," University of California, Berkeley, 2003.
  51. [7] J. Curie and P. Curie, "Development by pressure of polar electricity in hemihedral crystals with inclined faces," Bull. soc. min. de France, vol. 3, p. 90, 1880.
  52. [8] A. S. W.G.Hankel, "Piezoelectric," Applied Sciences, vol. 12, 1881.
  53. [9] W. G. Hankel, Ber. Sachs, vol. 33, 1881.
  54. [12] K. T. Zawilski. Piezoelectric Crystals. Available: http://goo.gl/T2qcBd
  55. [15] T. Technologies, "High Performance PMN-PT Piezoelectric Single Crystal," ed.
  56. [18] K. Cheng, H. L. Chan, C. Choy, Q. Yin, H. Lu, and Z. Yin, "Piezoelectric coefficients of PMN-0.33 PT single crystals," in Applications of Ferroelectrics, 2000. ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on, 2000, pp. 533-536.
  57. [19] X. Jiang, K. Snook, W. S. Hackenberger, and X. Geng, "Single crystal piezoelectric composites for advanced NDT ultrasound," in The 14th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, 2007, pp. 65310F-65310F-8.
  58. [23] C. H. Sherman and J. L. Butler, Transducers and arrays for underwater sound vol. 4: Springer, 2007.
  59. [24] L. APC International. Physical and Piezoelectric Properties of APC Materials [Online]. Available: https://goo.gl/OESPwX
  60. [37] A. Lei, R. Xu, A. Thyssen, A. C. Stoot, T. L. Christiansen, K. Hansen, et al., "MEMS-based thick film PZT vibrational energy harvester," in Micro Electro Mechanical Systems (MEMS), 2011 IEEE 24th International Conference on, 2011, pp. 125-128.
被引用次数
  1. 林莛凱(2017)。提升氣膠沉積法製作之鋯鈦酸鉛(PZT)微型壓電能量擷取器元件效能之研究與實作。國立臺灣大學工程科學及海洋工程學系學位論文。2017。1-104。