题名

低介電常數與低消散因子聚苯醚接著劑之製備與鑑定

并列篇名

Synthesis and Characterization of PPE Based Adhesive Materials with Low Dielectric Constant and Dissipation Factor

DOI

10.6342/NTU201702189

作者

張晉榮

关键词

高頻應用 ; 可撓性 ; 低介電常數 ; 低消散因子 ; 接著劑 ; 聚苯醚高分子 ; 氧化聚合 ; high frequency ; flexible ; low dielectric constant ; low dissipation factor ; adhesive materials ; poly (phenylene ether) ; oxidative polymerization

期刊名称

國立臺灣大學化學工程學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

陳文章

内容语文

英文

中文摘要

近年來,在無線通訊設備的使用上,對於數據傳輸能力和速度的要求越來越高,在下一代的訊息傳輸系統,電子訊號的頻率已經增長到了GHz。由於高頻應用的需求,我們需要低介電常數和低消散因子的材料。同時,作為電子產品的基礎,軟性印刷電路板相較於一般硬板有可撓、配線密度高、重量輕、能妥善利用空間等優點,隨著對精密電子設備輕量化的要求提高,軟性印刷電路板的發展潛力極大。聚苯醚系列材料是一種被廣泛使用的工程塑膠,因其具有良好的機械性質、熱性質以及電氣性質。然而,聚苯醚對基材的黏著力不佳,並且其在工業應用上的熱性質及機械性質還需提高。 在論文的第一部份中,我們改質商品化的聚苯醚寡聚物OPE-2st,引入羥基或羧基來提高其接著力。另一方面,我們改質商品化的聯苯芳烷基樹酯GPH,引入雙鍵使其能行交聯反應。在此基礎下,我們混參工業界常用的材料如橡膠、環氧樹脂、硬化劑、阻燃劑、添加劑等等以製備適合的接著薄膜,經壓合銅箔後得到軟性層壓板。OPE系列的一最佳接著劑配方其抗撕強度可達1.21 N/mm,在10GHz下介電常數為2.67,消散因子為0.0132。 在論文的第二部份中,我們透過2,6-二甲基苯酚與2-烯丙基-6-甲基苯酚共聚得到聚苯醚Allyl-PPE,再引入羥基、羧基或環氧基來提高其接著力。藉著混參橡膠、環氧樹脂、阻燃劑、添加劑等材料並壓合,Allyl-PPE系列的一最佳接著劑配方其抗撕強度可達1.01 N/mm,在10GHz下介電常數為2.21,消散因子為0.0101。 在論文的第三部份中,我們在配方中添加1,2-雙(乙烯基苯基)乙烷BVPE藉以提升聚苯醚的交聯密度以改善其電氣性質。Allyl-PPE / BVPE系列的一最佳接著劑配方其抗撕強度可達1.33 N/mm, 在10GHz下介電常數為2.44,消散因子為0.0108。 上述研究結果顯示經由結構設計及配方最適化可發展高頻印刷電路板所需之低借電常數及低消散因子之接著劑。

英文摘要

Large capacity and a high transmission speed are required in wireless communication devices in recent years. The frequency of electrical signals has reached the GHz bands for next generation communication systems. For such high frequency applications, materials with low dielectric constants (Dk) and dissipation factors (Df) are indispensable. Moreover, as a basic electronic device, flexible printed circuit (FPC) possesses better lightness, flexibility, high wiring density, and space utilization than rigid printed circuit board (PCB). As the demand for miniaturization of electronic devices increases, the FPC has a great potential to be developed. Poly (phenylene ether) (PPE) is one of the most widely used industrial materials due to its good mechanical and thermal properties. It also shows excellent electric properties for use in high frequency applications. However, PPE exhibits a poor adhesion to the copper foil and their thermal and mechanical properties need to be improved for industrial applications. In the first part of this thesis, we modify the commercial oligo (phenylene ether)-styrene end-functionalized materials OPE-2st with hydroxyl or carboxyl groups to improve the adhesion. On the other hand, the commercial biphenyl aralkyl resin (GPH) with allyl groups is used to improve the crosslink reaction. By blending these materials with rubber, epoxy, hardener, flame retardant, and filler, an adhesive film is prepared. After hot pressing it with copper foil, a flexible laminate with the adhesive is well fabricated. The optimum OPE based adhesive possesses a peel strength of 1.21 N/mm, Dk of 2.67 and Df of 0.0132 at 10 GHz. Meanwhile, the optimum GPH based adhesive possesses a peel strength of 1.31 N/mm, Dk of 2.83 and Df of 0.0153 at 10 GHz. In the second part of the thesis, we synthesize poly(2-allyl-6-methylphenol-co-2,6-dimethyl-phenol) (Allyl-PPE) through oxidative coupling polymerization. Next, we modify parts of the allyl groups with polar groups to improve the adhesion. A flexible adhesive laminate is also successfully prepared based on Allyl-PPE (and its derivatives) composites. The optimum Allyl-PPE based adhesive possesses a peel strength of 1.11 N/mm, Dk of 2.21 and Df of 0.0101 at 10 GHz. In the third part of the thesis, we introduce commercial 1,2-bis(vinylphenyl) ethane (BVPE) into the formulation of Allyl-PPE adhesives to improve electrical properties. In the basis of Allyl-PPE / BVPE blend, a flexible adhesive laminate is successfully prepared. The optimum Allyl-PPE / BVPE based adhesive possesses a peel strength of 1.33 N/mm, Dk of 2.44 and Df of 0.0108 at 10 GHz. The above results suggest that the structural modification and optimized formation could develop the adhesives with low Dk and Df for high frequency PCB application.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. [3] M. T. Bohr, Solid State Technol. 1996, 39, 105.
    連結:
  2. [7] C. K. Cheng, J. Lillis, S. Lin, N. Chang, “Interconnect Analysis and Synthesis”, Wiley, 1999.
    連結:
  3. [8] Z. Ahmad, “Dielectric Material” 2012, 3.
    連結:
  4. [10] J. Nunoshige, “Development of Copper Clad Laminate with Low Dielectric Loss Materials for High Frequency Devices” Hitachi Ltd., 2009.
    連結:
  5. [12] N. H. Hendricks, Solid State Technol. 1995, 38, 117.
    連結:
  6. [14] J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, “Chemical Mechanical Planarization of Microelectronic Materials”, Wiley, 2007.
    連結:
  7. [16] M. K. Madhra, A. K. Salunke, S. Banerjee, S. Prabha, Macromol. Chem. Phys. 2002, 203, 1238.
    連結:
  8. [17] V. Kute, S. Banerjee, Macromol. Chem. Phys. 2003, 204, 2105.
    連結:
  9. [18] S. Banerjee, M. K. Madhra, V. Kute, J. Appl. Polym. Sci 2004, 93, 821.
    連結:
  10. [19] P. E. Cassidy, T. M. Aminabhavi, J. M. Farley, J. Macromol. Sci. R. M. C. 1989, 29, 365.
    連結:
  11. [23] S. Banerjee, G. Maier, M. Burger, Macromolecules 1999, 32, 4279.
    連結:
  12. [24] S. Banerjee, G. Maier, Chem. Mater. 1999, 11, 2179.
    連結:
  13. [25] S. Banerjee, G. Maier, A. Salunke, M. Madhra, J. Appl. Polym. Sci. 2001, 82, 3149.
    連結:
  14. [26] A. K. Salunke, A. Ghosh, S. Banerjee, J. Appl. Polym. Sci. 2007, 106, 664.
    連結:
  15. [28] A. K. Mohanty, S. K. Sen, A. Ghosh, S. Maji, S. Banerjee, Polym. Advan. Technol. 2010, 21, 767.
    連結:
  16. [31] A. F. Yee, Polym. Eng. Sci 1977, 17, 213.
    連結:
  17. [32] J. Stoelting, F. E. Karasz, W. J. Macknight, Polym. Eng. Sci. 1970, 10, 133.
    連結:
  18. [33] J. Jachowicz, M. Kryszewski, M. Mucha, Macromolecules 1984, 17, 1315.
    連結:
  19. [1] S. Kiya, K. Morizane, Y. Uchita, M. Kouchi, SEI Tech. Rev. 2015, 80, 12.
  20. [2] T. Sakurai, IEEE Trans. Adv. Pack. 1993, 40, 118.
  21. [4] S. J. Martin, J. P. Godschalx, M. E. Mills, E. O. Shaffer II, P. H. Townsend, Adv. Mater. 2000, 12, 1769.
  22. [5] Analog Devices Inc., H. Zumbahlen, “Linear Circuit Design Handbook”, Elsevier Science, 2011.
  23. [6] G. Brist, G. Long, “Materials for Advanced Packaging” 2009, 273.
  24. [9] G. Oliver, “The PCB Magazine” 2014, 90.
  25. [11] G. Oliver, J. Coonrod, in DesignCon 2014.
  26. [13] K. Mukai, A. Saiki, K. Yamanaka, S. Harada, S. Shoji, IEEE J. Solid-St. Circ. 1978, 13, 462.
  27. [15] S. Banerjee, M. K. Madhra, A. K. Salunke, D. K. Jaiswal, Polymer 2003, 44, 613.
  28. [20] F. W. Mercer, T. D. Goodman, A. N. K. Lau, L. P. Vo, R. C. Sovish, U.S. Patent, 5,114,780, 1992.
  29. [21] F. W. Mercer, R. C. Sovish, 5,115,082, 1992.
  30. [22] J. A. Irvin, C. J. Neef, K. M. Kane, P. E. Cassidy, G. Tullos, A. K. St Clair, J. Polym. Sci. A1 1992, 30, 1675.
  31. [27] M. Aggarwal, S. Maji, S. Kumar Sen, B. Dasgupta, S. Chatterjee, A. Ghosh, S. Banerjee, J. Appl. Polym. Sci. 2009, 112, 1226.
  32. [29] A. S. Hay, H. S. Blanchard, G. F. Endres, J. W. Eustance, J. Am. Chem. Soc. 1959, 81, 6335.
  33. [30] A. S. Hay, U.S. Patent, 3,306,875, 1967.