英文摘要
|
Large capacity and a high transmission speed are required in wireless communication devices in recent years. The frequency of electrical signals has reached the GHz bands for next generation communication systems. For such high frequency applications, materials with low dielectric constants (Dk) and dissipation factors (Df) are indispensable. Moreover, as a basic electronic device, flexible printed circuit (FPC) possesses better lightness, flexibility, high wiring density, and space utilization than rigid printed circuit board (PCB). As the demand for miniaturization of electronic devices increases, the FPC has a great potential to be developed. Poly (phenylene ether) (PPE) is one of the most widely used industrial materials due to its good mechanical and thermal properties. It also shows excellent electric properties for use in high frequency applications. However, PPE exhibits a poor adhesion to the copper foil and their thermal and mechanical properties need to be improved for industrial applications.
In the first part of this thesis, we modify the commercial oligo (phenylene ether)-styrene end-functionalized materials OPE-2st with hydroxyl or carboxyl groups to improve the adhesion. On the other hand, the commercial biphenyl aralkyl resin (GPH) with allyl groups is used to improve the crosslink reaction. By blending these materials with rubber, epoxy, hardener, flame retardant, and filler, an adhesive film is prepared. After hot pressing it with copper foil, a flexible laminate with the adhesive is well fabricated. The optimum OPE based adhesive possesses a peel strength of 1.21 N/mm, Dk of 2.67 and Df of 0.0132 at 10 GHz. Meanwhile, the optimum GPH based adhesive possesses a peel strength of 1.31 N/mm, Dk of 2.83 and Df of 0.0153 at 10 GHz.
In the second part of the thesis, we synthesize poly(2-allyl-6-methylphenol-co-2,6-dimethyl-phenol) (Allyl-PPE) through oxidative coupling polymerization. Next, we modify parts of the allyl groups with polar groups to improve the adhesion. A flexible adhesive laminate is also successfully prepared based on Allyl-PPE (and its derivatives) composites. The optimum Allyl-PPE based adhesive possesses a peel strength of 1.11 N/mm, Dk of 2.21 and Df of 0.0101 at 10 GHz.
In the third part of the thesis, we introduce commercial 1,2-bis(vinylphenyl) ethane (BVPE) into the formulation of Allyl-PPE adhesives to improve electrical properties. In the basis of Allyl-PPE / BVPE blend, a flexible adhesive laminate is successfully prepared. The optimum Allyl-PPE / BVPE based adhesive possesses a peel strength of 1.33 N/mm, Dk of 2.44 and Df of 0.0108 at 10 GHz.
The above results suggest that the structural modification and optimized formation could develop the adhesives with low Dk and Df for high frequency PCB application.
|
参考文献
|
-
[3] M. T. Bohr, Solid State Technol. 1996, 39, 105.
連結:
-
[7] C. K. Cheng, J. Lillis, S. Lin, N. Chang, “Interconnect Analysis and Synthesis”, Wiley, 1999.
連結:
-
[8] Z. Ahmad, “Dielectric Material” 2012, 3.
連結:
-
[10] J. Nunoshige, “Development of Copper Clad Laminate with Low Dielectric Loss Materials for High Frequency Devices” Hitachi Ltd., 2009.
連結:
-
[12] N. H. Hendricks, Solid State Technol. 1995, 38, 117.
連結:
-
[14] J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, “Chemical Mechanical Planarization of Microelectronic Materials”, Wiley, 2007.
連結:
-
[16] M. K. Madhra, A. K. Salunke, S. Banerjee, S. Prabha, Macromol. Chem. Phys. 2002, 203, 1238.
連結:
-
[17] V. Kute, S. Banerjee, Macromol. Chem. Phys. 2003, 204, 2105.
連結:
-
[18] S. Banerjee, M. K. Madhra, V. Kute, J. Appl. Polym. Sci 2004, 93, 821.
連結:
-
[19] P. E. Cassidy, T. M. Aminabhavi, J. M. Farley, J. Macromol. Sci. R. M. C. 1989, 29, 365.
連結:
-
[23] S. Banerjee, G. Maier, M. Burger, Macromolecules 1999, 32, 4279.
連結:
-
[24] S. Banerjee, G. Maier, Chem. Mater. 1999, 11, 2179.
連結:
-
[25] S. Banerjee, G. Maier, A. Salunke, M. Madhra, J. Appl. Polym. Sci. 2001, 82, 3149.
連結:
-
[26] A. K. Salunke, A. Ghosh, S. Banerjee, J. Appl. Polym. Sci. 2007, 106, 664.
連結:
-
[28] A. K. Mohanty, S. K. Sen, A. Ghosh, S. Maji, S. Banerjee, Polym. Advan. Technol. 2010, 21, 767.
連結:
-
[31] A. F. Yee, Polym. Eng. Sci 1977, 17, 213.
連結:
-
[32] J. Stoelting, F. E. Karasz, W. J. Macknight, Polym. Eng. Sci. 1970, 10, 133.
連結:
-
[33] J. Jachowicz, M. Kryszewski, M. Mucha, Macromolecules 1984, 17, 1315.
連結:
-
[1] S. Kiya, K. Morizane, Y. Uchita, M. Kouchi, SEI Tech. Rev. 2015, 80, 12.
-
[2] T. Sakurai, IEEE Trans. Adv. Pack. 1993, 40, 118.
-
[4] S. J. Martin, J. P. Godschalx, M. E. Mills, E. O. Shaffer II, P. H. Townsend, Adv. Mater. 2000, 12, 1769.
-
[5] Analog Devices Inc., H. Zumbahlen, “Linear Circuit Design Handbook”, Elsevier Science, 2011.
-
[6] G. Brist, G. Long, “Materials for Advanced Packaging” 2009, 273.
-
[9] G. Oliver, “The PCB Magazine” 2014, 90.
-
[11] G. Oliver, J. Coonrod, in DesignCon 2014.
-
[13] K. Mukai, A. Saiki, K. Yamanaka, S. Harada, S. Shoji, IEEE J. Solid-St. Circ. 1978, 13, 462.
-
[15] S. Banerjee, M. K. Madhra, A. K. Salunke, D. K. Jaiswal, Polymer 2003, 44, 613.
-
[20] F. W. Mercer, T. D. Goodman, A. N. K. Lau, L. P. Vo, R. C. Sovish, U.S. Patent, 5,114,780, 1992.
-
[21] F. W. Mercer, R. C. Sovish, 5,115,082, 1992.
-
[22] J. A. Irvin, C. J. Neef, K. M. Kane, P. E. Cassidy, G. Tullos, A. K. St Clair, J. Polym. Sci. A1 1992, 30, 1675.
-
[27] M. Aggarwal, S. Maji, S. Kumar Sen, B. Dasgupta, S. Chatterjee, A. Ghosh, S. Banerjee, J. Appl. Polym. Sci. 2009, 112, 1226.
-
[29] A. S. Hay, H. S. Blanchard, G. F. Endres, J. W. Eustance, J. Am. Chem. Soc. 1959, 81, 6335.
-
[30] A. S. Hay, U.S. Patent, 3,306,875, 1967.
|