题名

以純氧化矽沸石奈米顆粒製備低介電膜及抗腐蝕膜之研究

并列篇名

Study of Low-k Films and Anti-Corrosion Films Prepared from Pure-Silica-Zeolite Nanoparticles

DOI

10.6342/NTU.2014.02926

作者

李庭逸

关键词

孔洞型二氧化矽薄膜 ; 低介電薄膜 ; 低介電常數 ; MFI沸石 ; MFI-like非結晶氧化矽 ; 四丙基氫氧化銨 ; 水熱程序 ; 抗腐蝕薄膜 ; 有機-無機混成薄膜 ; Porous silica films ; Low-k films ; Low dielectric constant ; MFI zeolite ; MFI-like noncrtstalline silica ; Tetrapropylammonium hydroxide (TPAOH) ; Hydrothermal process ; Anti-corrosion films ; Inorganic-organic hybrid films

期刊名称

國立臺灣大學化學工程學系學位論文

卷期/出版年月

2014年

学位类别

博士

导师

萬本儒

内容语文

繁體中文

中文摘要

本研究利用水熱程序,以四丙基氫氧化銨(TPAOH)作為結構導向試劑,製備含MFI結構的純氧化矽沸石(PSZ)與MFI-like非結晶型氧化矽(NCS)奈米顆粒,並將此奈米顆粒應用於低介電膜及抗腐蝕膜的製備。 研究中討論不同厚度的水熱反應器,對於水熱程序合成奈米顆粒的影響。研究發現,水熱反應的初期升溫速率,對於合成奈米顆粒是重要的。經由熱傳模擬分析,得知當反應器的器壁厚度下降,於水熱反應初期,反應器內部的溫度上升速率較快,因此使水熱程序合成出較大粒徑的顆粒。 關於低介電膜的研究,薄膜是利用純氧化矽沸石奈米顆粒與界面活性劑組成的鍍膜溶液所製備。鍍膜液的製備,至少被三個因素(四丙基氫氧化銨濃度、水熱反應時間、與界面活性劑尾基長度)所影響。研究中利用不同濃度之四丙基氫氧化銨或不同水熱反應時間,製備奈米顆粒;以及使用不同疏水尾基鏈長度的聚山梨醇酯(Polysorbate)界面活性劑。由於純氧化矽沸石奈米顆粒表面的氫氧基數量(或表面親水性),隨著四丙基氫氧化銨濃度的上升或水熱時間的下降而上升,且界面活性劑的親水性隨著尾基長度上升而下降;若使用不同親水性的奈米顆粒與界面活性劑形成的鍍膜液製備薄膜,薄膜將具備不同的性質(例如:介電常數、漏電流密度、孔隙度、表面型態、硬度、彈性模數)。使用親水性低的奈米顆粒或界面活性劑製備薄膜,可提升薄膜的孔隙度。此外,親水性低的奈米顆粒表面含較少的氫氧基,有利於製備介電常數低的薄膜。然而,當奈米顆粒表面的親水性太低,使界面活性劑形成大的聚集物,進而造成煅燒後的鍍膜表面有大孔洞。薄膜表面的大洞,使薄膜有較高的漏電流密度與較高的介電常數。薄膜的機械強度(硬度與彈性模數),隨著奈米顆粒的表面氫氧基減少而下降。此外,機械強度較低的薄膜,其表面出現奈米尺度的裂縫。另一方面,親水性較高的界面活性劑對於奈米顆粒有較強的作用力,使製備後的薄膜於六甲二矽氮烷(HMDS)表面修飾步驟後殘留較少的氫氧基團,進而降低薄膜介電常數、降低薄膜漏電流密度、與提高薄膜崩潰電場。 MFI-like非結晶型氧化矽(NCS)奈米顆粒可經由短時間水熱程序製備而得。由於非結晶型氧化矽顆粒的粒徑約5奈米,本研究嘗試利用此奈米顆粒於鋁基材上製備緻密的氧化矽薄膜,應用於金屬防蝕塗佈。然而,隨著製備的薄膜厚度增加,薄膜表面產生裂縫;產生裂縫主要是因為氧化矽顆粒與鋁金屬間的熱膨脹係數差異所造成。為了製備較厚且表面沒有裂縫的抗腐蝕薄膜,利用有機矽烷化物與非結晶型氧化矽奈米顆粒製備有機-無機混成薄膜。由研究結果發現,添加此奈米顆粒,可提升薄膜的抗腐蝕能力。塗佈後的有機-無機混成薄膜,膜厚約4 μm且具備高的抗腐蝕性;且此薄膜具備3H的鉛筆硬度(此表面硬度與市售塗佈商品-南美特R 5200-具備相同的機械強度)。

英文摘要

Pure-silica-zeolite (PSZ) Mobil-Five (MFI) and MFI-like noncrystalline silica (NCS) nanoparticles synthesized using tetrapropylammonium hydroxide (TPAOH) as a structure directing agent were produced via hydrothermal processes, and those nanoparticles were applied to fabricate porous silica low dielectric constant (low-k) films and anti-corrosion films in this dissertation. When hydrothermally producing the PSZ MFI nanoparticle suspensions, effect of wall thickness of autoclave reactor is studied. Heat transfer simulation indicates that decreasing the wall thickness increases temperature rising rate in the reactor at initial stage of hydrothermal synthesis. An increased initial temperature rising rate produces the suspensions with large particle size. That is, initial temperature rising rate in the reactor affects significantly on sizes of the PSZ MFI nanoparticles at the final stage of hydrothermal synthesis. Porous silica low-k films are prepared from coating solutions containing the nanoparticles and surfactants. Effects of TPAOH concentration, hydrophobic tail length of polysorbate surfactants, and hydrothermal time on coating solutions to produce low-k films are studied. Because increasing the TPAOH concentration or decreasing the hydrothermal time increases the number of silanol groups (or hydrophilic property) on the particles and because increasing the tail length decreases hydrophilic property of the surfactants, coated films from coating solutions containing these particles and surfactants with various hydrophilic properties are substantially different. Thus, their effects on low-k film properties (i.e., k value, leakage current density, porosity, surface morphology, hardness, and elastic modulus) are investigated. Using nanoparticles or surfactants with a low hydrophilic property produces films with high porosity. Additionally, particles with few silanol groups are preferable to prepare films with ultra-low-k values. However, when the hydrophilic property of particles is too low, large micelle aggregates that form in coating solutions result in large holes on film surfaces after the calcination. These large holes can cause extremely high leakage current densities and high k values >2. Further, mechanical strength of films decreases as the number of silanol groups on particles decreases. Additionally, surfaces of the resulting films with poor mechanical strength have some nano-sized cracks. Conversely, increasing hydrophilicity of surfactants increases their interaction with silica particles, resulting in a decreased number of remaining silanol groups in films after hexamethyldisilazane (HMDS) surface treatment. The small number of remaining of silanol groups can cause films to have low k values, low leakage current densities, and high breakdown fields. When using a short hydrothermal time to synthesize the nanoparticle suspensions, only MFI-like NCS nanoparticle suspensions are produced. The MFI-like NCS particles with small size of about 5 nm are attempted to prepare dense silica coatings for protection of aluminum from corrosion. However, as coating thickness increases, the number and size of cracks increase. Cracks on films are a result of thermal expansion mismatch between silica particles and aluminum substrate. To produce thick and crack-free films as anti-corrosion coatings, MFI-like NCS suspensions were mixed with an organosilane solution to develop hybrid coating solutions. Anti-corrosion ability increases as the suspension loading increases. Hybrid films with smooth surface and thickness of about 4 μm have good anti-corrosion ability. Additionally, the films have pencil hardness of 3H, which is comparable with that of a commercial product of NanoMateR 5200.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. 1. T. Maesen, Studies in Surface Science and Catalysis, 168, (2007) 1–12.
    連結:
  2. 2. E. M. Flanigen, Studies in Surface Science and Catalysis, 137, (2001) 11–35.
    連結:
  3. 3. J.W. McBain, The Sorption of Gases and Vapors by Solids, Rutledge and Sons, London (1932).
    連結:
  4. 5. R. D. Noble and J. L. Falconer, Catalysis Today, 25 (1995) 209–212.
    連結:
  5. 7. G-.F. Anne, J. Peureux, H. Mozzanega, and J.-A. Dalmon, Studies in Surface Science and Catalysis, 101 (1996) 127–136.
    連結:
  6. 8. J. N. Armor, Journal of Membrane Science, 147 (1998) 217–233.
    連結:
  7. 10. J. Coronas and J. Santamaria, Catalysis Today, 51 (1999) 377–389.
    連結:
  8. 12. J. Coronas and J. Santamaria, Separation and Purification Methods, 28 (1999) 127–177.
    連結:
  9. 13. F. Mizukami, Studies in Surface Science and Catalysis, 125 (1999) 1–12.
    連結:
  10. 16. The International Zeolite Association (IZA), http://www.iza-online.org/
    連結:
  11. 17. S. M. Auerbach, K. A. Corrado, and P. K. Dutta, Handbook of Zeolite Science and Technology, Marcel Dekker, New York (2003).
    連結:
  12. 22. C. Liu, W. Gu, D. Kong, and H. Guo, Microporous and Mesoporous Materials, 183 (2014) 30–36.
    連結:
  13. 24. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, 2nd ed., John Wiley & Sons, USA, (2002).
    連結:
  14. 25. W. D. Callister, Jr., Materials Science and Engineering: An Introduction, John Wiley & Sons, USA, (2003).
    連結:
  15. 27. The International Technology Roadmap for Semiconductors,
    連結:
  16. 28. H. Deligianni, Meeting Abstracts, MA 2005–02 (2005) 1303 (208th Meeting of The Electrochemical Society - Meeting Abstracts).
    連結:
  17. 32. X. Cheng, Z. Wang and Y. Yan, Electrochemical and Solid-State Letters, 4 (2001) B23–B26.
    連結:
  18. 33. A. Mitra, Z. Wang, T. Cao, H. Wang, L. Huang and Y. Yan, Journal of The Electrochemical Society, 149 (2002) B472–B478.
    連結:
  19. 35. R. Cai and Y. Yan, Corrosion, 64 (2008) 271–278.
    連結:
  20. 40. O. de la Iglesia, V. Sebastian, R. Mallada, G. Nikolaidis, J. Coronas, G. Kolb, R. Zapf, V. Hessel, and J. Santamaria, Catalysis Today, 125 (2007) 2–10.
    連結:
  21. 42. V. Sebastian, S. Irusta, R. Mallada, and J. Santamaria, Catalysis Today, 147S (2009) S10–S16.
    連結:
  22. 44. M.R. Othman, S.C. Tan, and S. Bhatia, Microporous and Mesoporous Materials, 121 (2009) 138–144.
    連結:
  23. 53. M. Kazemimoghadam, Desalination, 251 (2010) 176–180.
    連結:
  24. 54. P. S. Barcia, A. Ferreira, J. Gascon, S. Aguado, J. A.C. Silva, A. E. Rodrigues, and F. Kapteijn, Microporous and Mesoporous Materials, 128 (2010) 194–202.
    連結:
  25. 56. S. Mintova and T. Bein, Microporous and Mesoporous Materials, 50 (2001) 159–166.
    連結:
  26. 58. A. Zampieri, A. Dubbe, W. Schwieger, A. Avhale, and R. Moos, Microporous and Mesoporous Materials, 111 (2008) 530–535.
    連結:
  27. 59. A. Satsuma, D. Yang, and K. Shimizu, Microporous and Mesoporous Materials, 141 (2011) 20–25.
    連結:
  28. 61. Z. Wang, H. Wang, A. Hitra, and Y. Yan, Advanced Materials, 13 (2001) 746–749.
    連結:
  29. 66. M. Johnson, Z. Li, J. Wang, and Y. Yan, Thin Solid film, 515 (2007) 3164–3170.
    連結:
  30. 67. H.-Y. Lu, C.-L. Teng, C.-W. Yu, Y.-C. Liu, and B.-Z.Wan, Journal of Industrial & Engineering Chemistry Research, 49 (2010) 6279–6286.
    連結:
  31. 70. W.-C. Changjean, A. S. T. Chiang, and T.-C. Tsai, Thin Solid Films, 529 (2013) 327–332.
    連結:
  32. 72. S.A.S. Dias, S.V. Lamaka, C.A. Nogueira, T.C. Diamantino, and M.G.S. Ferreira, Corrosion Science, 62 (2012) 153–162.
    連結:
  33. 75. Y.-T. Hsu, W.-L. Chen, and C.-M. Yang, Journal of Physical Chemistry C, 113 (2009) 2777–2783.
    連結:
  34. 81. P.-T. Liu, T.-C. Chang, H. Su, Y.-S. Mor, Y.-L.Yang, H. Chung, J. Hou, and S.-M. Sze, Journal of Electrochemical Society, 148 (2001) F30–F34.
    連結:
  35. 85. A. A. Kumbhar, S. K. Singh, and R. O. Dusane, Thin Solid Films, 501 (2006) 329–331.
    連結:
  36. 86. A. Patist, S. S. Bhagwat, K. W. Penfield, P. Aikens, and D. O. Shah, Journal of Surfactants and Detergents, 3 (2000) 53–58.
    連結:
  37. 87. S. K. Hait and S. P. Moulik, Journal of Surfactants and Detergents, 4 (2001) 303–309.
    連結:
  38. 88. L. S. C. Wanx and P. F. S. Lee, Journal of Pharmaceutical Sciences, 63 (1974) 136–137.
    連結:
  39. 90. J. M. Thomas and W. J. Thomas, Principles and Practice of Heterogeneous Catalysis, p. 282, Wiley-VCH: Weinheim, Germany (1997).
    連結:
  40. 91. D. Myers, Surfactant Science and Technology, 3rd ed., p. 253, John Wiley & Sons, New Jersey (2006).
    連結:
  41. 95. J. Michelon and R. J. O. M. Hoofman, IEEE Transactions on Device and Materials Reliability, 6 (2006) 169–174.
    連結:
  42. 101. A. Anderson and W. R. Ashurst, Langmuir, 24 (2008) 7947–7954.
    連結:
  43. 103. R. K. Pandey, L. S. Patil, J. P. Bange, D. R. Patil, A. M. Mahajan, D. S. Patil, and D. K. Gautam, Optical Materials, 25 (2004) 1–7.
    連結:
  44. 106. T. D. Anthopoulos and T. S. Shafai, Journal of Physics and Chemistry of Solids, 64 (2003) 1217–1223.
    連結:
  45. 108. E. M. Vogel, K. Z. Ahmed, B. Hornung,W. K. Henson, P. K.McLarty, G. Lucovsky, J. R. Hauser, and J. J. Wortman, IEEE Trans. Electron Devices, 45 (1998) 1350–1355.
    連結:
  46. 112. P. Innocenzi, J. Non-Crystalline Solids, 316 (2003) 309–319.
    連結:
  47. 117. S. Sakka, Handbook of Sol-Gel Science and Technology: Processing, Characterization and Applications, Kluwer Academic Publishers, New York (2005).
    連結:
  48. 120. M.L. Zheludkevich, R. Serra, M.F. Montemor, I.M. Miranda Salvado, and M.G.S. Ferreira, Surface & Coatings Technology, 200 (2006) 3084–3094.
    連結:
  49. 122. D. V. Andreeva and D. G. Shchukin, Materials Today, 11 (2008) 24–30.
    連結:
  50. 124. G. Bhargava and F. Allen, Metal Finishing, 110 (2012) 32-38.
    連結:
  51. 127. S. K. Ghosh, Self-healing materials: fundamentals, design strategies, and applications, Wiley WCH, (2009).
    連結:
  52. 130. E. Bardal, Corrosion and Protection, Springer, London, New York (2004).
    連結:
  53. 135. R. V. Grieken, J.L. Sotelo, J.M. Menendez, and J.A. Melero, Microporous and Mesoporous Materials, 39 (2000) 135–147.
    連結:
  54. 139. S. M. Auerbach, K. A. Carrado, and P. K. Dutta, Handbook of Zeolite Science and Technology, Marcel Dekker, New York (2003).
    連結:
  55. 4. E. R. Geus, M. J. den Exter, and H. van Bekkum, Journal of the Chemical Society Faraday Transactions, 88 (1992) 3101–3109.
  56. 6. F. Kapteijn, W. J. W. Bakker, J. van de Graaf, G. Zheng, J. Poppe, and J. A. Moulijn, Catalysis Today, 25 (1995) 213–218.
  57. 9. E. Piera, A. Giroir-Fendler, J. A. Dalmon, H. Moueddeb, J. Coronas, M. Menendez, and J. Santamaria, Journal of Membrane Science, 142 (1998) 97–109.
  58. 11. J. M. van de Graaf, M. Zwiep, F. Kapteijn, and J. A. Moulijn, Applied Catalysis A: General, 178 (1999) 225–241
  59. 14. A. Tavolaro and E. Drioli, Advanced Materials, 11 (1999) 975–996.
  60. 15. C. M. Lew, R. Cai, and Y. Yan, Accounts of Chemical Research, 43 (2010) 210–219.
  61. 18. S. T. Oyama and S. M. Stagg-Williams, Inorganic Polymeric and Composite Membranes: Structure, Function and Other Correlations, Elsevier, The Netherlands (2011).
  62. 19. C. S. Cundy and P. A. Cox, Chemical Reviews, 103 (2003) 663-701.
  63. 20. M. Zaarour, B. Dong, I. Naydenova, R. Retoux, and S. Mintova, Microporous and Mesoporous Materials, 189 (2014) 11-21.
  64. 21. G. Bellussi, A. Carati, C. Rizzo, and R. Millini, Catalysis Science & Technology, 3 (2013) 833-857.
  65. 23. M. Jafari, A. Nouri, M. Kazemimoghadam, and T. Mohammadi, Powder Technology, 237 (2013) 442–449.
  66. 26. J. H. Lienhard, A heat transfer textbook, Prentice-Hall, Englewood Cliffs, N.J., (1981).
  67. http://www.itrs.net/Links/2012ITRS/Home2012.htm (2012)
  68. 29. W.W. Lee and P.S. Ho, MRS Bulletin, 22 (1997) 19–23.
  69. 30. C.-T. Tsai, H.-Y. Lu, C.-Y. Ting, W.-F. Wu, and B.-Z. Wan, Thin Solid Films, 517 (2009) 2039–2043.
  70. 31. D. Wang and G. P. Bierwagen, Progress in Organic Coatings, 64 (2009) 327–338.
  71. 34. D. E. Beving, A. M. P. McDonnell, W. Yang, and Y. Yan, Journal of The Electrochemical Society, 153 (2006) B325–B329.
  72. 36. Y. Dong, Y. Peng, G. Wang, Z. Wang, and Y. Yan, Journal of Industrial & Engineering Chemistry Research, 51 (2012), 3646–3652.
  73. 37. O. Kesmez, E. Burunkaya, N. Kiraz, H. E. Camurlu, M. Asilturk, and E. Arpac, Journal of Non-Crystalline Solids, 357 (2011) 3130–3135.
  74. 38. H.A. Macleod, Thin Film Optical Filters, vol. 3, Institute of Physics Pub, Bristol and Philadelphia (2001).
  75. 39. C.-H. Chen, S.-Y. Li, A. S. T. Chiang, A. T. Wu, and Y. S. Sun, Solar Energy Materials & Solar Cells, 95 (2011) 1694–1700.
  76. 41. V. Sebastian, O. de la Iglesia, R. Mallada, L. Casado, G. Kolb, V. Hessel, and J. Santamaria, Microporous and Mesoporous Materials, 115 (2008) 147–155.
  77. 43. N. C. Perez, E. E. Miro, and J. M. Zamaro, Applied Catalysis B: Environmental, 129 (2013) 416–425.
  78. 45. J. C. White, P. K. Dutta, K. Shqau, and H. Verweij, Langmuir, 26 (2010) 10287–10293.
  79. 46. S. M. Kwan, A. Y. L. Leung, K. and L. Yeung, Separation and Purification Technology, 73 (2010) 44–50.
  80. 47. M. Tawalbeh, F. H. Tezel, S. Letaief, C. Detellier, and B. Kruczek, Separation Science and Technology, 47 (2012) 1606–1616.
  81. 48. Y. Zhang, J. Sunarso, S. Liu, and R. Wang, International Journal of Greenhouse Gas Control, 12 (2013) 84–107.
  82. 49. D. Kunnakorn, T. Rirksomboon, P. Aungkavattana, N. Kuanchertchoo, D. Atong, K. Hemra, S. Kulprathipanja, and S. Wongkasemjit, Desalination, 280 (2011) 259–265.
  83. 50. M. Drobek, C. Yacou, J. Motuzas, A. Julbe, L. Ding, and J. C.D. da Costa, Journal of Membrane Science, 415–416 (2012) 816–823.
  84. 51. C. Yu, C. Zhong, Y. Liu, X. Gu, G. Yang, W. Xing, and N. Xu, Chemical Engineering Research and Design, 90 (2012) 1372–1380.
  85. 52. L. Li, J. Dong, T. M. Nenoff, and R. Lee, Journal of Membrane Science, 243 (2004) 401–404.
  86. 55. B. Bayati, Z. Belbasi, M. Ejtemaei, N. C. Aghdam, A. A. Babaluo, M. Haghighi, and E. Drioli, Separation and Purification Technology, 106 (2013) 56–62.
  87. 57. M. Vilaseca, J. Coronas, A. Cirera, A. Cornet, J. R. Morante, and J. Santamaria, Sensors and Actuators B, 124 (2007) 99–110.
  88. 60. Z. Wang, A. Mitra, H. Wang, L. Huang, and Y. Yan, Advanced Materials, 13, (2001) 1463–1466.
  89. 62. S. Li, Z. Li, and Y. Yan, Advanced Materials, 15 (2003) 1528–1531.
  90. 63. Z. Li, S. Li, H. Luo, and Y. Yan, Advanced Functional Materials, 14 (2004) 1019–1024.
  91. 64. S. Eslava, M. R. Baklanov, A. V. Neimark, F. Iacopi, C. E. A. Kirschhock, K. Maex, and J. A. Martens, Advanced Materials, 20 (2008) 3110–3116.
  92. 65. S. Eslava, C. E. A. Kirschhock, S. Aldea, M. R. Baklanov, F. Iacopi, K. Maex, and J. A. Martens, Microporous and Mesoporous Materials, 118 (2009) 458–466.
  93. 68. H.-Y. Lu, C.-L. Teng, C.-H. Kung, and B.-Z. Wan, Journal of Industrial & Engineering Chemistry Research, 50 (2011) 3265–3273.
  94. 69. H.-Y. Lu, C.-H. Kung, and B.-Z. Wan, Journal of the Taiwan Institute of Chemical Engineers, 43 (2012) 971–979.
  95. 71. L. Calabrese, L. Bonaccorsi, and E. Proverbio, Journal of Coatings Technology and Research, 9 (2012) 597–607.
  96. 73. T. L. Metroke, O. Kachurina, and E. T. Knobbe, Progress in Organic Coatings, 44 (2002) 295–305.
  97. 74. Y.-C. Hsu, Y.-T. Hsu, H.-Y. Hsu, and C.-M. Yang, Chemistry of Materials, 19 (2007) 1120–1126.
  98. 76. X. Li, and B. Bhushan, Materials Characterization, 48 (2002) 11–36.
  99. 77. J.-T. Luo, W.-F. Wu, H.-C. Wen, B.-Z. Wan, Y.-M. Chang, C.-P. Chou, J.-M. Chen, and W.-N. Chen, Thin Solid Films, 515 (2007) 7275–7280.
  100. 78. C.-Y. Ting, D.-F. Ouyan, and B.-Z. Wan, Journal of Electrochemical Society, 150, (2003) F164–F167.
  101. 79. T. Seo, T. Yoshino, N. Ohnuki, Y. Seino, Y. Cho, N. Hata, and T. Kikkawa, Journal of Electrochemical Society, 156 (2009) H98–H105.
  102. 80. T. Seo, T. Yoshino, N. Ohnuki, Y. Seino, Y. Cho, N. Hata, and T. Kikkawa, Journal of Electrochemical Society, 158 (2011) H659–H665.
  103. 82. T. C. Chang, Y. S. Mor, P. T. Liu, T. M. Tsai, C. W. Chen, Y. J. Mei, F. M. Pan, W. F. Wu, and S. M. Sze, Microelectronic Engineering, 60 (2002) 469–475.
  104. 83. N. Ahner, S. E. Schulz, F. Blaschta, and M. Rennau, Microelectronic Engineering, 84 (2007) 2606–2609.
  105. 84. Y. Uchida, S. Hishiya, N. Fujii, K. Kohmura, T. Nakayama, H. Tanaka, and T. Kikkawa, Microelectronic Engineering, 83 (2006) 2126–2129.
  106. 89. T. A. Florence and D. Attwood, Physicochemical Principles of Pharmacy, Pharmaceutical Press, London (2011).
  107. 92. Y. S. Thio, J. Wu, and F. S. Bates, Macromolecules, 39 (2006) 7187–7189.
  108. 93. Y. Zhu, W. Tong, C. Gao, and H. M‥ohwald, Langmuir, 24 (2008) 7810–7816.
  109. 94. C.-Y. Ting, H.-S. Sheu, W.-F. Wu, and B.-Z. Wan, Journal of Electrochemical Society, 154 (2007) G1–G5.
  110. 96. R. Tsu, J. W. McPherson, and W. R. McKee, in Proceedings of IEEE International Reliability Physics Symposium (IRPS), pp. 348–353, San Jose, CA (2000).
  111. 97. R. J. O. M. Hoofman, G. J. A. M. Verheijden, J. Michelon, F. Iacopi, Y. Travaly, M. R. Baklanov, Z. T‥okei, and G. P. Beyer, Microelectronic Engineering, 80 (2005) 337–344.
  112. 98. A. Grill and D. A. Neumayer, Journal of Applied Physics, 94 (2003) 6697–6707.
  113. 99. G. Solomons and C. Fryhle, Organic Chemistry, 7th ed., p. 79, John Wiley & Sons, New York (2000).
  114. 100. D. L. Wood and E. M. Rabinovich, Applied Spectroscopy, 43 (1989) 263–267.
  115. 102. F. Ay and A. Aydinli, Optical Materials, 26 (2004) 33–46.
  116. 104. S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed., ch. 4., John Wiley & Sons, New Jersey (2007).
  117. 105. S.-J. Ding, C. Zhu, M.-F. Li, and D. W. Zhang, Applied Physics Letters, 87 (2005) 053501.
  118. 107. M. N. Jones, Y. W. Kwon, and D. P. Norton, Applied Physics A, 81 (2005) 285–288.
  119. 109. S. Li, Z. Li, D. Medina, C. Lew, and Y. Yan, Chemistry of Materials, 17 (2005) 1851–1854.
  120. 110. L. Sierra, B. Lopez, H. Gil, and J.-L. Guth, Advanced Materials, 11 (1999) 307–311.
  121. 111. B.R. Midmore, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 145 (1998) 133–143.
  122. 113. T.-Y. Li, C.-H. Yu, H.-Y. Lu, and B.-Z. Wan, ECS Journal of Solid State Science and Technology, 2 (2013) N61–N68.
  123. 114. A.E. Persson, B.J. Schoeman, J. Sterte, and J.-E. Otterstedt, Zeolites, 14 (1994) 557–567.
  124. 115. B. Soydas, P. Z. Culfaz, H. Kalıpcilar, and A. Culfaz, Crystal Research and Technology, 44 (2009) 800 – 806.
  125. 116. S. Yang and A. Navrotsky, Chemistry of Materials, 16 (2004) 210-219.
  126. 118. P. A. Sorensen, S. Kiil, K. Dam-Johansen, and C. E. Weinell, Journal of Coatings Technology and Research, 6 (2009) 135–176.
  127. 119. A.J. Lopez, E. Otero, and J. Rams, Surface & Coatings Technology, 205 (2010) 2375–2385
  128. 121. V.B. Miskovic-Stankovic, M.R. Stanic, and D.M. Drazic, Progress in Organic Coatings, 36 (1999) 53–63.
  129. 123. Maria Forsyth, Marianne Seter, Bruce Hinton, Glen Deacon, and Peter Junk, Australian Journal of Chemistry, 64 (2011) 812–819.
  130. 125. K. Ogle and R.G. Buchheit, Encyclopedia of Electrochemistry, 4 (2003) 460-499.
  131. 126. 周淑金、王正全,「綠色表面處理-六價鉻替代技術的發展」,中華民國電子零件認證委員會,第五十卷,2006,第25-32頁。
  132. 128. A. Naraghi and N. Grahmann, U.S. patent 5611992 (1997).
  133. 129. J. T. Sanner, G. S. Penny, and R. Padgham, U.S. patent 7,122,509 B2 (2006).
  134. 131. D.S. Bhange and V. Ramaswamy, Materials Research Bulletin, 41 (2006) 1392–1402.
  135. 132. Q. Meng and G. S. Frankel, Surface and interface analysis, 36 (2004) 30–42.
  136. 133. J.-W. Kang, M.-J. Ko, Daejeon (KR); M.-S Moon, B.-G. Choi, J.-M. Son, and D.-H. Kang, U.S. patent 7,709,551 B2 (2010).
  137. 134. S. Mintova, N. H. Olson, J. Senker, and T. Bein, Angewandte Chemie, 114 (2002) 2670–2673.
  138. 136. F. P. Incropera, D. P. Dewitt, T. L. Bergman, and A. S. Lavine, Fundamentals of heat and mass transfer, John Wiley & Sons (Asia) Pte Ltd (2007).
  139. 137. J. H. Lienhard IV and J. H. Lienhard V, A Heat Transfer Textbook, Phlogiston Press (2006).
  140. 138. Hsin-Yan Lu, Preparation of Mesoporous Low-k Films from Crystalline Pure Silica Zeolite (PSZ) Nanocrystals and from Noncrystalline Silica Nanoparticles, PhD dissertation, Department of chemical engineering, National Taiwan University, Taiwan (2011).