题名

探討新穎非富勒烯小分子受體材料二環戊烷並苯二噻吩衍生物之分子結構設計對光電性質的影響

并列篇名

Structure Design and Photoelectric Properties of Novel Non-Fullerene Acceptors Based on Small Molecule Indacenodithiophene Derivatives

DOI

10.6342/NTU201704186

作者

游天侑

关键词

非富勒烯小分子受體 ; 二環戊烷並苯二噻吩衍生物 ; 量子力學 ; 全原子分子動力學 ; 光電性質 ; non-fullerene small molecule acceptor ; indacenodithiophene derivatives ; quantum mechanics ; molecular dynamics ; photoelectric properties

期刊名称

臺灣大學高分子科學與工程學研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

黃慶怡

内容语文

繁體中文

中文摘要

本研究選擇新穎的非富勒烯A−D−A型小分子受體材料二環戊烷並苯二噻吩衍生物為研究對象,並採用全原子模型,結合分子動力學與量子力學二種模擬方法來探討不同末端受體單元對光電性質的影響。我們從分子構型出發,並分析一系列包括光捕獲效率、能階、能隙、吸光頻譜及電負度等光電性質,藉此瞭解末端電子受體單元對於A−D−A型二環戊烷並苯二噻吩衍生物光電性質的影響。 首先在構型模擬上我們針對3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2 b:5, 6-b′]dithiophene(IDTT_DCI)進行量子力學及溶液無序狀態下分子動力學兩種方法的模擬,基於兩種模擬方法的構型,進一步求得模擬UV-vis吸收光譜,與文獻實驗值比較後我們推測實際UV-vis吸收光譜可能是同時由主鏈構型較規整的IDTT_DCI(QM)及構型較扭曲的IDTT_DCI (MD)所貢獻,可分別對應到實驗主峰中的最大吸收峰與肩峰,當主鏈構型越扭曲時,主要吸收峰越藍移。我們認為考慮溶劑環境且經由等溫動態平衡後之構型是更加接近真實的情形,因此後續研究中IDT衍生物構型均利用分子動力學方法來取得。 進一步,我們探討一系列IDT衍生物之構型及光電性質。首先在構型部份,引入不同末端電子受體單元主要影響主鏈上扭轉角度,當末端電子受體與芳香核結構間存在較大的立體障礙時,會導致主鏈的扭轉;在側鏈部份則因空間中側鏈與末端電子受體立體障礙較小,影響的幅度並不大。在能階方面,隨著末端電子受體單元拉電子能力越強,IDT衍生物有越高的LUMO能階,當與予體材料P3HT匹配後隨之有越高的Voc,同時影響激子有效分離的參數〖∆E〗_HOMO及〖∆E〗_LUMO均大於0.3 eV,亦說明基於能階的考量上,IDTT_BT有最高的Voc與良好的激子分離效果。在電負度結果中,可發現在此改質IDT衍生物之末端電子受體單元相較於P3HT均有較高的電負度,說明其適合作為受體材料,且在結構類似的IDTT_DCI、IDTT_ID及IDTT_TZD中隨著拉電子能力越強,電負度越高;針對結構相似的IDTT_NTz及IDTT_BT也有同樣的趨勢。吸收頻譜方面,改質末端電子受體明顯改變IDT衍生物之主要吸收峰及吸收範圍;而末端電受體對於振子強度及光捕獲效率也有些微幅度的影響。在此Jsc考量因素較為複雜且並未觀察到固定的趨勢,因此初步未總結出何者會有較高的Jsc。此外,雖然在本研究中並未討論到主動層混摻型態甚至FF的影響,但我們探討了其中影響Voc及Jsc的因素,期許藉由本模擬所歸納出的趨勢與結果,能幫助實驗研究學者合成的設計方向與思考重點,發掘出潛在有應用性的非富勒烯受體材料。

英文摘要

A class of A−D−A type non-fullerene acceptor materials based on small molecule indacenodithiophene(IDT) derivatives used in organic solar cell has been designed and investigated by means of all-atom molecular dynamics(AAMD) and quantum mechanical methods(QM). To gain a better understanding of the effects of terminal acceptors on the modulation of photoelectric properties of these A−D−A molecules, the geometrical structure, light harvesting efficiency, energy level, bandgap, absorption spectrum, and electronegativity are analyzed. The geometrical structure of 3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-indanone)-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2′,3′-d′]-s-indaceno[1,2-b:5, 6-b′]-dithiophene(IDTT_DCI) is simulated by AAMD and QM methods to get IDTT_DCI(MD) and IDTT_DCI(QM). The disordered IDTT_DCI(MD) exhibited a much larger degree of distortion out of coplanarity along the main chain direction, leading to a blue-shift absorption behavior compared with much ordered IDTT_DCI(QM). We speculated that the actual UV-vis absorption spectrum may be simultaneously contributed by the IDTT_DCI (QM) and the more distorted IDTT_DCI (MD), which can correspond to the wavelength of maximum absorbance and the shoulder at the lower wavelength. Also, we assume that the equilibrated molecular structure predicted from equilibrium dynamics of the solvent environment is closer to the real experimental conditions. Therefore, the MD simulation method is adapted for the geometries of the IDT derivatives. Introduction of different terminal acceptors mainly affects the torsional angle on the main-chain due to the existence of larger steric hindrance between core structure and terminal acceptor. The calculated energy level results indicate that with the incorporation of stronger electron withdrawing building block, the IDT derivatives show higher LUMO level and higher Voc when paired with P3HT. Also, according to the energy matching relationship, the designed acceptor IDTT_BT is well-matched with P3HT, which not only guarantee the effective exciton dissociation but also maintain the higher Voc. The electronegativity results also show similar trends, compared to P3HT, IDT derivatives show higher electronegativity which are suitable to be as acceptor materials. In the absorption spectrum, terminal acceptors have strong correlation with main absorption peak and absorption range, and little effect on oscillator strength and light harvesting efficiency. Since factors affect Jsc are more complicated than Voc and inconsistent trend are observed from the results of optical properties of IDT derivatives; thus we can not surely say which material will have higher Jsc. Though effects of morphology or FF are not considered, still we investigate the factors influencing Voc and Jsc, hope these results can help researchers explore the potential candidates of non-fullerene acceptor materials for organic solar cells.

主题分类 工學院 > 高分子科學與工程學研究所
工程學 > 化學工業
参考文献
  1. [1] J. Rogelj, M. Den Elzen, N. Höhne, T. Fransen, H. Fekete, H. Winkler, R. Schaeffer, F. Sha, K. Riahi, M. Meinshausen, Paris Agreement climate proposals need a boost to keep warming well below 2 C, Nature 534(7609) (2016) 631-639.
    連結:
  2. [2] IEA, World Energy Outlook 2015, OECD Publishing.
    連結:
  3. [3] G. Conibeer, Third-generation photovoltaics, Materials today 10(11) (2007) 42-50.
    連結:
  4. [4] M.A. Green, Photovoltaics: technology overview, Energy Policy 28(14) (2000) 989-998.
    連結:
  5. [5] G.v. Sauvé, R. Fernando, Beyond fullerenes: designing alternative molecular electron acceptors for solution-processable bulk heterojunction organic photovoltaics, The journal of physical chemistry letters 6(18) (2015) 3770-3780.
    連結:
  6. [6] Y. Lin, Y. Li, X. Zhan, Small molecule semiconductors for high-efficiency organic photovoltaics, Chemical Society Reviews 41(11) (2012) 4245-4272.
    連結:
  7. [7] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications, Chemical reviews 109(11) (2009) 5868-5923.
    連結:
  8. [8] J.-M. Nunzi, Organic photovoltaic materials and devices, Comptes Rendus Physique 3(4) (2002) 523-542.
    連結:
  9. [9] W. Brütting, Introduction to the physics of organic semiconductors, Wiley Online Library2006.
    連結:
  10. [10] M.A. Green, Third generation photovoltaics: Ultra‐high conversion efficiency at low cost, Progress in Photovoltaics: Research and Applications 9(2) (2001) 123-135.
    連結:
  11. [11] S.R. Cowan, N. Banerji, W.L. Leong, A.J. Heeger, Charge formation, recombination, and sweep‐out dynamics in organic solar cells, Advanced Functional Materials 22(6) (2012) 1116-1128.
    連結:
  12. [12] A. Moliton, J.M. Nunzi, How to model the behaviour of organic photovoltaic cells, Polymer International 55(6) (2006) 583-600.
    連結:
  13. [13] O.V. Mikhnenko, P.W. Blom, T.-Q. Nguyen, Exciton diffusion in organic semiconductors, Energy & Environmental Science 8(7) (2015) 1867-1888.
    連結:
  14. [14] K. Petritsch, Organic solar cell architectures, na2000.
    連結:
  15. [15] N.A. Ran, J.A. Love, C.J. Takacs, A. Sadhanala, J.K. Beavers, S.D. Collins, Y. Huang, M. Wang, R.H. Friend, G.C. Bazan, Harvesting the full potential of photons with organic solar cells, Advanced Materials (2015).
    連結:
  16. [16] G. Dennler, M.C. Scharber, C.J. Brabec, Polymer‐Fullerene bulk‐heterojunction solar cells, Advanced Materials 21(13) (2009) 1323-1338.
    連結:
  17. [17] Y. Shang, Q. Li, L. Meng, D. Wang, Z. Shuai, Computational characterization of organic photovoltaic devices, Theoretical Chemistry Accounts 129(3-5) (2011) 291-301.
    連結:
  18. [19] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca, On the origin of the open-circuit voltage of polymer-fullerene solar cells, Nature materials 8(11) (2009) 904.
    連結:
  19. [20] D. Wynands, M. Levichkova, M. Riede, M. Pfeiffer, P. Baeuerle, R. Rentenberger, P. Denner, K. Leo, Correlation between morphology and performance of low bandgap oligothiophene: C60 mixed heterojunctions in organic solar cells, Journal of Applied Physics 107(1) (2010) 014517.
    連結:
  20. [22] Q. Wang, S. Zhang, B. Xu, L. Ye, H. Yao, Y. Cui, H. Zhang, W. Yuan, J. Hou, Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione‐based Photovoltaic Polymer by Grafting Alkylthio Functional Groups, Chemistry–An Asian Journal 11(19) (2016) 2650-2655.
    連結:
  21. [23] J.K. van Duren, X. Yang, J. Loos, C.W. Bulle‐Lieuwma, A.B. Sieval, J.C. Hummelen, R.A. Janssen, Relating the morphology of poly (p‐phenylene vinylene)/methanofullerene blends to solar‐cell performance, Advanced Functional Materials 14(5) (2004) 425-434.
    連結:
  22. [24] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N.S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene‐based bulk‐heterojunction solar cells, Advanced Functional Materials 14(10) (2004) 1005-1011.
    連結:
  23. [25] C.-Y. Nam, Q. Wu, D. Su, C.-y. Chiu, N.J. Tremblay, C. Nuckolls, C.T. Black, Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices, Journal of Applied Physics 110(6) (2011) 064307.
    連結:
  24. [26] O.V. Mikhnenko, H. Azimi, M. Scharber, M. Morana, P.W. Blom, M.A. Loi, Exciton diffusion length in narrow bandgap polymers, Energy & Environmental Science 5(5) (2012) 6960-6965.
    連結:
  25. [27] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency, Advanced materials 18(6) (2006) 789-794.
    連結:
  26. [29] P. Morvillo, E. Bobeico, Tuning the LUMO level of the acceptor to increase the open-circuit voltage of polymer-fullerene solar cells: a quantum chemical study, Solar Energy Materials and Solar Cells 92(10) (2008) 1192-1198.
    連結:
  27. [30] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature photonics 3(11) (2009) 649-653.
    連結:
  28. [31] M. Bourass, A.T. Benjelloun, M. Benzakour, M. Mcharfi, M. Hamidi, S.M. Bouzzine, M. Bouachrine, DFT and TD-DFT calculation of new thienopyrazine-based small molecules for organic solar cells, Chemistry Central Journal 10(1) (2016) 67.
    連結:
  29. [32] B. Qi, J. Wang, Fill factor in organic solar cells, Physical Chemistry Chemical Physics 15(23) (2013) 8972-8982.
    連結:
  30. [33] X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, Polymer solar cells with enhanced fill factors, Nature Photonics 7(10) (2013) 825-833.
    連結:
  31. [34] J. Yan, Q. Liang, K. Liu, J. Miao, H. Chen, S. Liu, Z. He, H. Wu, J. Wang, Y. Cao, Optimized Phase Separation and Reduced Geminate Recombination in High Fill Factor Small-Molecule Organic Solar Cells, ACS Energy Letters 2(1) (2016) 14-21.
    連結:
  32. [35] J.-W. Kang, S.-P. Lee, D.-G. Kim, S. Lee, G.-H. Lee, J.-K. Kim, S.-Y. Park, J.H. Kim, H.-K. Kim, Y.-S. Jeong, Reduction of series resistance in organic photovoltaic using low sheet resistance of ITO electrode, Electrochemical and Solid-State Letters 12(3) (2009) H64-H66.
    連結:
  33. [36] M.-S. Kim, B.-G. Kim, J. Kim, Effective variables to control the fill factor of organic photovoltaic cells, ACS applied materials & interfaces 1(6) (2009) 1264-1269.
    連結:
  34. [37] T.M. Clarke, J.R. Durrant, Charge photogeneration in organic solar cells, Chemical reviews 110(11) (2010) 6736-6767.
    連結:
  35. [38] Y. Li, Molecular design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption, Accounts of Chemical Research 45(5) (2012) 723-733.
    連結:
  36. [39] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chemical reviews 107(4) (2007) 1324-1338.
    連結:
  37. [40] J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols, Nature materials 6(7) (2007) 497-500.
    連結:
  38. [41] L. Lu, L. Yu, Understanding low bandgap polymer PTB7 and optimizing polymer solar cells based on it, Advanced Materials 26(26) (2014) 4413-4430.
    連結:
  39. [42] Y. Liang, Y. Wu, D. Feng, S.-T. Tsai, H.-J. Son, G. Li, L. Yu, Development of new semiconducting polymers for high performance solar cells, Journal of the American Chemical Society 131(1) (2008) 56-57.
    連結:
  40. [43] Q. Wan, X. Guo, Z. Wang, W. Li, B. Guo, W. Ma, M. Zhang, Y. Li, 10.8% Efficiency Polymer Solar Cells Based on PTB7‐Th and PC71BM via Binary Solvent Additives Treatment, Advanced Functional Materials 26(36) (2016) 6635-6640.
    連結:
  41. [44] C. Liu, C. Yi, K. Wang, Y. Yang, R.S. Bhatta, M. Tsige, S. Xiao, X. Gong, Single-junction polymer solar cells with over 10% efficiency by a novel two-dimensional donor–acceptor conjugated copolymer, ACS applied materials & interfaces 7(8) (2015) 4928-4935.
    連結:
  42. [45] Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nature communications 5 (2014).
    連結:
  43. [46] H. Hu, K. Jiang, G. Yang, J. Liu, Z. Li, H. Lin, Y. Liu, J. Zhao, J. Zhang, F. Huang, Terthiophene-based D–A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells, Journal of the American Chemical Society 137(44) (2015) 14149-14157.
    連結:
  44. [47] J. Zhao, Y. Li, G. Yang, K. Jiang, H. Lin, H. Ade, W. Ma, H. Yan, Efficient organic solar cells processed from hydrocarbon solvents, Nature Energy 1 (2016) 15027.
    連結:
  45. [48] R. Singh, O. Kushwaha, Progress towards efficiency of polymer solar cells, Nature (2016) 30.
    連結:
  46. [49] Z. Hu, L. Ying, F. Huang, Y. Cao, Towards a bright future: polymer solar cells with power conversion efficiencies over 10%, Science China Chemistry 60(5) (2017) 571-582.
    連結:
  47. [50] L.K. Jagadamma, M. Al‐Senani, A. El‐Labban, I. Gereige, N. Ndjawa, O. Guy, J.C. Faria, T. Kim, K. Zhao, F. Cruciani, Polymer Solar Cells with Efficiency> 10% Enabled via a Facile Solution‐Processed Al‐Doped ZnO Electron Transporting Layer, Advanced Energy Materials 5(12) (2015).
    連結:
  48. [51] Y. He, Y. Li, Fullerene derivative acceptors for high performance polymer solar cells, Physical chemistry chemical physics 13(6) (2011) 1970-1983.
    連結:
  49. [52] H.S. Vogelbaum, G. Sauvé, Recently developed high-efficiency organic photoactive materials for printable photovoltaic cells: a mini review, Synthetic Metals 223 (2017) 107-121.
    連結:
  50. [53] M. Jørgensen, K. Norrman, F.C. Krebs, Stability/degradation of polymer solar cells, Solar Energy Materials and Solar Cells 92(7) (2008) 686-714.
    連結:
  51. [54] F.B. Kooistra, J. Knol, F. Kastenberg, L.M. Popescu, W.J. Verhees, J.M. Kroon, J.C. Hummelen, Increasing the open circuit voltage of bulk-heterojunction solar cells by raising the LUMO level of the acceptor, Organic Letters 9(4) (2007) 551-554.
    連結:
  52. [55] S. Rondeau-Gagné, C. Curutchet, F. Grenier, G.D. Scholes, J.-F. Morin, Synthesis, characterization and DFT calculations of new ethynyl-bridged C 60 derivatives, Tetrahedron 66(23) (2010) 4230-4242.
    連結:
  53. [56] W. Chen, Q. Zhang, Recent progress in non-fullerene small molecule acceptors in organic solar cells (OSCs), Journal of Materials Chemistry C 5(6) (2017) 1275-1302.
    連結:
  54. [57] Y. Lin, J. Wang, Z.G. Zhang, H. Bai, Y. Li, D. Zhu, X. Zhan, An electron acceptor challenging fullerenes for efficient polymer solar cells, Advanced Materials 27(7) (2015) 1170-1174.
    連結:
  55. [58] H. Bai, Y. Wang, P. Cheng, J. Wang, Y. Wu, J. Hou, X. Zhan, An electron acceptor based on indacenodithiophene and 1, 1-dicyanomethylene-3-indanone for fullerene-free organic solar cells, Journal of Materials Chemistry A 3(5) (2015) 1910-1914.
    連結:
  56. [59] Y. Lin, F. Zhao, Q. He, L. Huo, Y. Wu, T.C. Parker, W. Ma, Y. Sun, C. Wang, D. Zhu, High-performance electron acceptor with thienyl side chains for organic photovoltaics, Journal of the American Chemical Society 138(14) (2016) 4955-4961.
    連結:
  57. [60] W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, J. Hou, Fullerene‐Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability, Advanced Materials 28(23) (2016) 4734-4739.
    連結:
  58. [61] Y. Yang, Z.-G. Zhang, H. Bin, S. Chen, L. Gao, L. Xue, C. Yang, Y. Li, Side-chain isomerization on an n-type organic semiconductor ITIC acceptor makes 11.77% high efficiency polymer solar cells, Journal of the American Chemical Society 138(45) (2016) 15011-15018.
    連結:
  59. [62] Y. Li, X. Liu, F.-P. Wu, Y. Zhou, Z.-Q. Jiang, B. Song, Y. Xia, Z.-G. Zhang, F. Gao, O. Inganäs, Non-fullerene acceptor with low energy loss and high external quantum efficiency: towards high performance polymer solar cells, Journal of Materials Chemistry A 4(16) (2016) 5890-5897.
    連結:
  60. [63] Y. Li, D. Qian, L. Zhong, J.-D. Lin, Z.-Q. Jiang, Z.-G. Zhang, Z. Zhang, Y. Li, L.-S. Liao, F. Zhang, A fused-ring based electron acceptor for efficient non-fullerene polymer solar cells with small HOMO offset, Nano Energy 27 (2016) 430-438.
    連結:
  61. [64] N. Qiu, H. Zhang, X. Wan, C. Li, X. Ke, H. Feng, B. Kan, H. Zhang, Q. Zhang, Y. Lu, A New Nonfullerene Electron Acceptor with a Ladder Type Backbone for High‐Performance Organic Solar Cells, Advanced Materials 29(6) (2017).
    連結:
  62. [65] S. Li, L. Ye, W. Zhao, S. Zhang, S. Mukherjee, H. Ade, J. Hou, Energy‐Level Modulation of Small‐Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells, Advanced Materials 28(42) (2016) 9423-9429.
    連結:
  63. [66] L.R. Rutledge, S.M. McAfee, G.C. Welch, Design and computational characterization of non-fullerene acceptors for use in solution-processable solar cells, The Journal of Physical Chemistry A 118(36) (2014) 7939-7951.
    連結:
  64. [67] D. Wang, W. Ding, Z. Geng, L. Wang, Y. Geng, Z. Su, H. Yu, Rational design and characterization of high-efficiency planar A–π–D–π–A type electron donors in small molecule organic solar cells: A quantum chemical approach, Materials Chemistry and Physics 145(3) (2014) 387-396.
    連結:
  65. [68] D. Wang, X. Zhang, W. Ding, X. Zhao, Z. Geng, Density functional theory design and characterization of D–A–A type electron donors with narrow band gap for small-molecule organic solar cells, Computational and Theoretical Chemistry 1029 (2014) 68-78.
    連結:
  66. [69] Y.A. Duan, Y. Geng, H.B. Li, J.L. Jin, Y. Wu, Z.M. Su, Theoretical characterization and design of small molecule donor material containing naphthodithiophene central unit for efficient organic solar cells, Journal of computational chemistry 34(19) (2013) 1611-1619.
    連結:
  67. [70] K. Do, Q. Saleem, M.K. Ravva, F. Cruciani, Z. Kan, J. Wolf, M.R. Hansen, P.M. Beaujuge, J.L. Brédas, Impact of Fluorine Substituents on π‐Conjugated Polymer Main‐Chain Conformations, Packing, and Electronic Couplings, Advanced Materials 28(37) (2016) 8197-8205.
    連結:
  68. [71] Y.-C. Huang, T.-C. Lu, C.-I. Huang, Exploring the correlation between molecular conformation and UV–visible absorption spectra of two-dimensional thiophene-based conjugated polymers, Polymer 54(23) (2013) 6489-6499.
    連結:
  69. [72] Y.-K. Lan, C.-I. Huang, Charge mobility and transport behavior in the ordered and disordered states of the regioregular poly (3-hexylthiophene), The Journal of Physical Chemistry B 113(44) (2009) 14555-14564.
    連結:
  70. [73] E.M. Nowak, J. Sanetra, M. Grucela, E. Schab-Balcerzak, Azomethine naphthalene diimides as component of active layers in bulk heterojunction solar cells, Materials Letters 157 (2015) 93-98.
    連結:
  71. [74] Z. Fu, W. Shen, R. He, X. Liu, H. Sun, W. Yin, M. Li, Theoretical studies on the effect of a bithiophene bridge with different substituent groups (R= H, CH 3, OCH 3 and CN) in donor–π–acceptor copolymers for organic solar cell applications, Physical Chemistry Chemical Physics 17(3) (2015) 2043-2053.
    連結:
  72. [75] S. Steinberger, A. Mishra, E. Reinold, J. Levichkov, C. Uhrich, M. Pfeiffer, P. Bäuerle, Vacuum-processed small molecule solar cells based on terminal acceptor-substituted low-band gap oligothiophenes, Chemical Communications 47(7) (2011) 1982-1984.
    連結:
  73. [76] W. Ni, X. Wan, M. Li, Y. Wang, Y. Chen, A–D–A small molecules for solution-processed organic photovoltaic cells, Chemical Communications 51(24) (2015) 4936-4950.
    連結:
  74. [77] Y. Cui, P. Li, C. Song, H. Zhang, Terminal Modulation of D-π-A Small Molecule for Organic Photovoltaic Materials: A Theoretical Molecular Design, The Journal of Physical Chemistry C (2016).
    連結:
  75. [78] S. Steinberger, A. Mishra, G. Schulz, C. Uhrich, M. Pfeiffer, P. Bäuerle, ADA-Type Oligothiophenes Containing Benzothiadiazole Terminal Units for Small Molecule Organic Solar Cells, Organic Photonics and Photovoltaics 2(1) (2014).
    連結:
  76. [79] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations, Journal of Physical chemistry 94(26) (1990) 8897-8909.
    連結:
  77. [80] A.K. Rappe, W.A. Goddard III, Charge equilibration for molecular dynamics simulations, The Journal of Physical Chemistry 95(8) (1991) 3358-3363.
    連結:
  78. [82] P. Stephens, F. Devlin, C. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, The Journal of Physical Chemistry 98(45) (1994) 11623-11627.
    連結:
  79. [83] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical review 136(3B) (1964) B864.
    連結:
  80. [84] J.E. Ridley, M.C. Zerner, Triplet states via intermediate neglect of differential overlap: benzene, pyridine and the diazines, Theoretical Chemistry Accounts: Theory, Computation, and Modeling (Theoretica Chimica Acta) 42(3) (1976) 223-236.
    連結:
  81. [85] G. Zhang, C.B. Musgrave, Comparison of DFT methods for molecular orbital eigenvalue calculations, The Journal of Physical Chemistry A 111(8) (2007) 1554-1561.
    連結:
  82. [86] L. Zhang, K. Pei, M. Yu, Y. Huang, H. Zhao, M. Zeng, Y. Wang, J. Gao, Theoretical investigations on donor–acceptor conjugated copolymers based on naphtho [1, 2-c: 5, 6-c] bis [1, 2, 5] thiadiazole for organic solar cell applications, The Journal of Physical Chemistry C 116(50) (2012) 26154-26161.
    連結:
  83. [87] J. Wu, Y.-H. Kan, Y. Wu, Z.-M. Su, Computational design of host materials suitable for green-(deep) blue phosphors through effectively tuning the triplet energy while maintaining the ambipolar property, The Journal of Physical Chemistry C 117(16) (2013) 8420-8428.
    連結:
  84. [88] X.-H. Xie, W. Shen, R.-X. He, M. Li, A density functional study of furofuran polymers as potential materials for Polymer solar cells, Bulletin of the Korean Chemical Society 34(10) (2013) 2995-3004.
    連結:
  85. [18] H.S. Nalwa, Handbook of advanced electronic and photonic materials and devices: semiconductors. Vol. 1, Academic Press2001.
  86. [21] H. Peng, X. Sun, W. Weng, X. Fang, Polymer Materials for Energy and Electronic Applications, Academic Press2016.
  87. [28] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Advanced Functional Materials 11(5) (2001) 374-380.
  88. [81] E. Frisc, M. Frisch, F. Clemente, G. Trucks, Gaussian 09, Revision D. 01, Gaussian, Inc., Wallingford CT (2013).