题名

探討轉錄所伴隨生成的R-loop之機制與調控

并列篇名

The Regulation of Transcription-associated R-loop Formation

DOI

10.6342/NTU.2011.03299

作者

梁云馨

关键词

轉錄 ; DNA拓樸異構酶活化誘導胞嘧啶核苷脫氨酶R圈 ; 基因重組 ; RecF途徑 ; RecA 蛋白質 ; 類核體相關蛋白質 ; Transcription ; DNA topoisomerases ; Activation-induced deaminase (AID) ; R-loop ; Gene recombination ; RecF pathway ; RecA ; Nucleoid-associated proteins

期刊名称

臺灣大學微生物學研究所學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

李財坤

内容语文

英文

中文摘要

去氧核醣核酸(DNA)進行轉錄時,座落於核醣核酸聚合酶(RNA polymerase)之後新轉錄出的核醣核酸(RNA)有時會與模板去氧核醣核酸進行配對互補,並暴露出非轉錄的單股DNA (single-stranded DNA, ssDNA),這樣的結構稱為R-loop。近年來研究發現,免疫B細胞成熟過程中,誘發活化性胞嘧啶核苷脫氨酶(Activation-induced cytidine deaminase, AID)會對ssDNA作用,促進胞嘧啶脫氨轉化成尿嘧啶,進而產生突變,而造成抗體產生多異性(antibody diversification);因此,我們與其他實驗室認為R-loop提供了ssDNA作為AID受質。此外,R-loop也作為DNA複製(replication)時的引子(primer),然而,過度累積的R-loop也會不利於細胞存活。目前在細胞中R-loop的生成及調控機制都尚未被釐清;我們利用大腸桿菌做為操作模式系統,利用在細菌中大量表現AID來刺激產生突變。藉由在不同細菌株中產生不同的AID刺激突變倍數(AID-stimulated mutagenesis fold, ASM fold)來表示所產生R-loop的程度,以此來鑑別參與在其中的細胞因子。此篇論文中,我們探討類核體相關蛋白質(Nucleoid-associated proteins, NAPs)是否參與在R-loop的形成和調控,我們發現Fis缺失的菌種其ASM倍數有降低的現象。此外,我們實驗室先前發現,RecF活化的菌株(RecF-activated strain, JC7623)有極高的ASM倍數,除此之外,RecF活化的菌株也擁有許多獨特的顯型,例如:質體造成的死亡(plasmid-mediated lethality)、滾環狀(rolling-circle)複製以及細菌絲狀生長(cellular filamentation);而這些顯型都可以被額外表現的第一型拓譜異構酶(TopA)或核糖核酸酶H (RNaseH)所抑制。因此,我們認為RecF在R-loop的形成中,可能扮演了重要的角色;而為了得知R-loop調控是由RecF蛋白質或是RecF途徑來參與,我們利用RecF活化JC7623細菌額外突變了RecA的菌株(JC7940)來觀察這些顯型是否存在。我們研究結果顯示,額外突變了RecA也無法降低刺激突變倍數以及減少細菌絲狀生長的現象;然而,可以稍微減緩質體造成的死亡。綜合以上結果,我們認為RecF蛋白質本身對於促使R-loop的增加扮演主要的角色。此暗示了R-loop在細胞中的重要性,也找出調控此結構的分子,此有利於更進一步了解免疫細胞成熟過程中的程序與步驟。

英文摘要

During transcription elongation, the nascent RNA transiently anneals with the DNA template strand behind the RNA polymerase. This RNA-DNA hybrid with a single-stranded DNA (ssDNA) region is called R-loop. Our recent results and other reports have suggested that, R-loop might serve as the substrate for activation-induced deaminase (AID) during B cell maturation and antibody dicersification. In addition, R-loop has also been suggested to function as the primer for initiation of DNA replication. Furthermore, excess amount of R-loop formed in cells might be harmful. However, the regulation of R-loop formation remains largely unclear. Here, we sought to identify cellular factors that regulate the formation of R-loop by taking advantage of the AID-stimulated mutagenesis (ASM) assay in the bacterial model system. The ASM assay was employed to further explore the contributing factors involved in R-loop formation. Our data suggested that nucleoid-associated protein Fis might be involved in the negative regulation of R-loop formation Our previous studies have shown that the ASM level was much higher in the RecF-activated strain (JC7623, recBC sbcBC) than that in the wild type strain. Moreover, the activated RecF pathway contributed to the plasmid-mediated lethality, run-away plasmid replication and cellular filamentation phenotype. Expression of AID further severed these phenotypes. All of above phenotypes could be suppressed by additional expression of functional RNase H or TopA, two identified suppressors for R-loop formation. We thus suggested that RecF may play a role in the R-loop formation rather than in the downstream recombination pathway leading to mutagenesis. Here we investigated whether and how RecF pathway or RecF itself are involved in the R-loop formation and regulation. In this regard, we examined the RecF-associated phenotype in the RecF-activated strain with additional recA mutation (JC7940, recBC sbcBC recA). Our results showed that additional RecA mutation in RecF-activated strain JC7940 cannot reduce the ASM fold, suggesting that the RecA-independence of AID-mediated recombination. The cellular filamentation is also evident in JC7940 cells. Although additional RecA mutation in JC7940 could diminish the vector-mediated lethality, the additional RecA mutation could only partially reduce the plasmid-mediated lethality in JC7940 transform with AID-expressing plasmid. We thus suggest that RecF itself plays the major role in the R-loop formation. In vitro R-loop formation assay with purified proteins were under development to provide further supports for above hypothesis. In this regard, we have successfully expressed and purified several bacterial DNA topoisomerase and RecF proteins.

主题分类 醫藥衛生 > 基礎醫學
醫學院 > 微生物學研究所
参考文献
  1. Ali Azam, T., Iwata, A., Nishimura, A., Ueda, S., and Ishihama, A. (1999). Growth phase-dependent variation in protein composition of the Escherichia coli nucleoid. J Bacteriol 181, 6361-6370.
    連結:
  2. Anderson, D.G., and Kowalczykowski, S.C. (1997a). The recombination hot spot chi is a regulatory element that switches the polarity of DNA degradation by the RecBCD enzyme. Genes & Development 11, 571-581.
    連結:
  3. Anderson, D.G., and Kowalczykowski, S.C. (1997b). The translocating RecBCD enzyme stimulates recombination by directing RecA protein onto ssDNA in a chi-regulated manner. Cell 90, 77-86.
    連結:
  4. Arnold, D.A., and Kowalczykowski, S.C. (2000). Facilitated loading of RecA protein is essential to recombination by RecBCD enzyme. J Biol Chem 275, 12261-12265.
    連結:
  5. Asai, T., and Kogoma, T. (1994). D-loops and R-loops: alternative mechanisms for the initiation of chromosome replication in Escherichia coli. J Bacteriol 176, 1807-1812.
    連結:
  6. Baaklini, I., Hraiky, C., Rallu, F., Tse-Dinh, Y.-C., and Drolet, M. (2004). RNase HI overproduction is required for efficient full-length RNA synthesis in the absence of topoisomerase I in Escherichia coli. Molecular Microbiology 54, 198-211.
    連結:
  7. Baaklini, I., Usongo, V., Nolent, F., Sanscartier, P., Hraiky, C., Drlica, K., and Drolet, M. (2008). Hypernegative Supercoiling Inhibits Growth by Causing RNA Degradation. Journal of Bacteriology 190, 7346-7356.
    連結:
  8. Baker, T.A., and Kornberg, A. (1988). Transcriptional activation of initiation of replication from the E. coli chromosomal origin: an RNA-DNA hybrid near oriC. Cell 55, 113-123.
    連結:
  9. Barreto, V., Ramiro, A., and Nussenzweig, M. (2005). Activation-induced deaminase: controversies and open questions. Trends in Immunology 26, 90-96.
    連結:
  10. Becker, N.A., Kahn, J.D., and Maher, L.J., 3rd (2007). Effects of nucleoid proteins on DNA repression loop formation in Escherichia coli. Nucleic Acids Res 35, 3988-4000.
    連結:
  11. Berger, J.M., Gamblin, S.J., Harrison, S.C., and Wang, J.C. (1996). Structure and mechanism of DNA topoisomerase II. Nature 379, 225-232.
    連結:
  12. Bottaro, A., Lansford, R., Xu, L., Zhang, J., Rothman, P., and Alt, F.W. (1994). S region transcription per se promotes basal IgE class switch recombination but additional factors regulate the efficiency of the process. EMBO J 13, 665-674.
    連結:
  13. Broccoli, S., Phoenix, P., and Drolet, M. (2000). Isolation of the topB gene encoding DNA topoisomerase III as a multicopy suppressor of topA null mutations in Escherichia coli. Mol Microbiol 35, 58-68.
    連結:
  14. Brown, P.O., and Cozzarelli, N.R. (1981). Catenation and knotting of duplex DNA by type 1 topoisomerases: a mechanistic parallel with type 2 topoisomerases. Proc Natl Acad Sci U S A 78, 843-847.
    連結:
  15. Browning, D.F., Grainger, D.C., and Busby, S.J. (2010). Effects of nucleoid-associated proteins on bacterial chromosome structure and gene expression. Curr Opin Microbiol 13, 773-780.
    連結:
  16. Camps, M., and Loeb, L.A. (2005). Critical role of R-loops in processing replication blocks. Front Biosci 10, 689-698.
    連結:
  17. Carles-Kinch, K., and Kreuzer, K.N. (1997). RNA-DNA hybrid formation at a bacteriophage T4 replication origin. J Mol Biol 266, 915-926.
    連結:
  18. Castaing, B., Zelwer, C., Laval, J., and Boiteux, S. (1995). HU protein of Escherichia coli binds specifically to DNA that contains single-strand breaks or gaps. J Biol Chem 270, 10291-10296.
    連結:
  19. Champoux, J.J. (2001). DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem 70, 369-413.
    連結:
  20. Chaudhuri, J., and Alt, F.W. (2004). Class-switch recombination: interplay of transcription, DNA deamination and DNA repair. Nat Rev Immunol 4, 541-552.
    連結:
  21. Chaudhuri, J., Tian, M., Khuong, C., Chua, K., Pinaud, E., and Alt, F.W. (2003). Transcription-targeted DNA deamination by the AID antibody diversification enzyme. Nature 422, 726-730.
    連結:
  22. Chavez, S., Beilharz, T., Rondon, A.G., Erdjument-Bromage, H., Tempst, P., Svejstrup, J.Q., Lithgow, T., and Aguilera, A. (2000). A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J 19, 5824-5834.
    連結:
  23. Chodavarapu, S., Felczak, M.M., Yaniv, J.R., and Kaguni, J.M. (2008). Escherichia coli DnaA interacts with HU in initiation at the E. coli replication origin. Mol Microbiol 67, 781-792.
    連結:
  24. Claret, L., and Rouviere-Yaniv, J. (1997). Variation in HU composition during growth of Escherichia coli: the heterodimer is required for long term survival. J Mol Biol 273, 93-104.
    連結:
  25. Clark, A.J. (1973). Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet 7, 67-86.
    連結:
  26. Clewell, D.B. (1972). Nature of Col E 1 plasmid replication in Escherichia coli in the presence of the chloramphenicol. J Bacteriol 110, 667-676.
    連結:
  27. Daneholt, B. (2001). Assembly and transport of a premessenger RNP particle. Proceedings of the National Academy of Sciences 98, 7012-7017.
    連結:
  28. Deighan, P., Beloin, C., and Dorman, C.J. (2003). Three-way interactions among the Sfh, StpA and H-NS nucleoid-structuring proteins of Shigella flexneri 2a strain 2457T. Mol Microbiol 48, 1401-1416.
    連結:
  29. Di Noia, J., and Neuberger, M.S. (2002). Altering the pathway of immunoglobulin hypermutation by inhibiting uracil-DNA glycosylase. Nature 419, 43-48.
    連結:
  30. Dickerson, S.K., Market, E., Besmer, E., and Papavasiliou, F.N. (2003). AID Mediates Hypermutation by Deaminating Single Stranded DNA. Journal of Experimental Medicine 197, 1291-1296.
    連結:
  31. Dillon, S.C., and Dorman, C.J. (2010). Bacterial nucleoid-associated proteins, nucleoid structure and gene expression. Nat Rev Microbiol 8, 185-195.
    連結:
  32. DiNardo, S., Voelkel, K.A., Sternglanz, R., Reynolds, A.E., and Wright, A. (1982). Escherichia coli DNA topoisomerase I mutants have compensatory mutations in DNA gyrase genes. Cell 31, 43-51.
    連結:
  33. Dixon, D.A., and Kowalczykowski, S.C. (1991). Homologous pairing in vitro stimulated by the recombination hotspot, Chi. Cell 66, 361-371.
    連結:
  34. Dorman, C.J., Hinton, J.C., and Free, A. (1999). Domain organization and oligomerization among H-NS-like nucleoid-associated proteins in bacteria. Trends Microbiol 7, 124-128.
    連結:
  35. Dorman, C.J., and Kane, K.A. (2009). DNA bridging and antibridging: a role for bacterial nucleoid-associated proteins in regulating the expression of laterally acquired genes. FEMS Microbiol Rev 33, 587-592.
    連結:
  36. Doyle, M., Fookes, M., Ivens, A., Mangan, M.W., Wain, J., and Dorman, C.J. (2007). An H-NS-like stealth protein aids horizontal DNA transmission in bacteria. Science 315, 251-252.
    連結:
  37. Dreyfuss, G., Kim, V.N., and Kataoka, N. (2002). Messenger-Rna-Binding Proteins and the Messages They Carry. Nature Reviews Molecular Cell Biology 3, 195-205.
    連結:
  38. Drolet, M. (2006). Growth inhibition mediated by excess negative supercoiling: the interplay between transcription elongation, R-loop formation and DNA topology. Mol Microbiol 59, 723-730.
    連結:
  39. Drolet, M., Broccoli, S., Rallu, F., Hraiky, C., Fortin, C., Masse, E., and Baaklini, I. (2003). The problem of hypernegative supercoiling and R-loop formation in transcription. Front Biosci 8, d210-221.
    連結:
  40. Drolet, M., Phoenix, P., Menzel, R., Masse, E., Liu, L.F., and Crouch, R.J. (1995). Overexpression of RNase H partially complements the growth defect of an Escherichia coli delta topA mutant: R-loop formation is a major problem in the absence of DNA topoisomerase I. Proc Natl Acad Sci U S A 92, 3526-3530.
    連結:
  41. Dunnick, W., Hertz, G.Z., Scappino, L., and Gritzmacher, C. (1993). DNA sequences at immunoglobulin switch region recombination sites. Nucleic Acids Res 21, 365-372.
    連結:
  42. Falconi, M., Brandi, A., La Teana, A., Gualerzi, C.O., and Pon, C.L. (1996). Antagonistic involvement of FIS and H-NS proteins in the transcriptional control of hns expression. Mol Microbiol 19, 965-975.
    連結:
  43. Finkel, S.E., and Johnson, R.C. (1992). The Fis protein: it's not just for DNA inversion anymore. Mol Microbiol 6, 3257-3265.
    連結:
  44. Fujii, S., Isogawa, A., and Fuchs, R.P. (2006). RecFOR proteins are essential for Pol V-mediated translesion synthesis and mutagenesis. EMBO J 25, 5754-5763.
    連結:
  45. Ge, H., and Manley, J.L. (1990). A protein factor, ASF, controls cell-specific alternative splicing of SV40 early pre-mRNA in vitro. Cell 62, 25-34.
    連結:
  46. Gille, H., Egan, J.B., Roth, A., and Messer, W. (1991). The FIS protein binds and bends the origin of chromosomal DNA replication, oriC, of Escherichia coli. Nucleic Acids Res 19, 4167-4172.
    連結:
  47. Gottipati, P., and Helleday, T. (2009). Transcription-associated recombination in eukaryotes: link between transcription, replication and recombination. Mutagenesis 24, 203-210.
    連結:
  48. Gowrishankar, J., and Harinarayanan, R. (2004). Why is transcription coupled to translation in bacteria? Molecular Microbiology 54, 598-603.
    連結:
  49. Grainger, D.C., Goldberg, M.D., Lee, D.J., and Busby, S.J. (2008). Selective repression by Fis and H-NS at the Escherichia coli dps promoter. Mol Microbiol 68, 1366-1377.
    連結:
  50. Handa, N., Morimatsu, K., Lovett, S.T., and Kowalczykowski, S.C. (2009). Reconstitution of initial steps of dsDNA break repair by the RecF pathway of E. coli. Genes Dev 23, 1234-1245.
    連結:
  51. Harriman, G.R., Bradley, A., Das, S., Rogers-Fani, P., and Davis, A.C. (1996). IgA class switch in I alpha exon-deficient mice. Role of germline transcription in class switch recombination. J Clin Invest 97, 477-485.
    連結:
  52. Hecht, R.M., and Pettijohn, D.E. (1976). Studies of DNA bound RNA molecules isolated from nucleoids of Escherichia coli. Nucleic Acids Res 3, 767-788.
    連結:
  53. Hobbs, M.D., Sakai, A., and Cox, M.M. (2007). SSB protein limits RecOR binding onto single-stranded DNA. J Biol Chem 282, 11058-11067.
    連結:
  54. Horii, Z., and Clark, A.J. (1973). Genetic analysis of the recF pathway to genetic recombination in Escherichia coli K12: isolation and characterization of mutants. J Mol Biol 80, 327-344.
    連結:
  55. Huertas, P., and Aguilera, A. (2003). Cotranscriptionally Formed DNA:RNA Hybrids Mediate Transcription Elongation Impairment and Transcription-Associated Recombination. Molecular Cell 12, 711-721.
    連結:
  56. Jung, S., Rajewsky, K., and Radbruch, A. (1993). Shutdown of class switch recombination by deletion of a switch region control element. Science 259, 984-987.
    連結:
  57. Kamashev, D., Balandina, A., Mazur, A.K., Arimondo, P.B., and Rouviere-Yaniv, J. (2008). HU binds and folds single-stranded DNA. Nucleic Acids Res 36, 1026-1036.
    連結:
  58. Kamashev, D., and Rouviere-Yaniv, J. (2000). The histone-like protein HU binds specifically to DNA recombination and repair intermediates. EMBO J 19, 6527-6535.
    連結:
  59. Kavenoff, R., and Bowen, B.C. (1976). Electron microscopy of membrane-free folded chromosomes from Escherichia coli. Chromosoma 59, 89-101.
    連結:
  60. Kavenoff, R., and Ryder, O.A. (1976). Electron microscopy of membrane-associated folded chromosomes of Escherichia coli. Chromosoma 55, 13-25.
    連結:
  61. Kim, J., Yoshimura, S.H., Hizume, K., Ohniwa, R.L., Ishihama, A., and Takeyasu, K. (2004). Fundamental structural units of the Escherichia coli nucleoid revealed by atomic force microscopy. Nucleic Acids Res 32, 1982-1992.
    連結:
  62. Kirkegaard, K., and Wang, J.C. (1985). Bacterial DNA topoisomerase I can relax positively supercoiled DNA containing a single-stranded loop. J Mol Biol 185, 625-637.
    連結:
  63. Kleppe, K., Ovrebo, S., and Lossius, I. (1979). The bacterial nucleoid. J Gen Microbiol 112, 1-13.
    連結:
  64. Kogoma, T. (1997). Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol Biol Rev 61, 212-238.
    連結:
  65. Kruse, T., Blagoev, B., Lobner-Olesen, A., Wachi, M., Sasaki, K., Iwai, N., Mann, M., and Gerdes, K. (2006). Actin homolog MreB and RNA polymerase interact and are both required for chromosome segregation in Escherichia coli. Genes Dev 20, 113-124.
    連結:
  66. Kushner, S.R., Nagaishi, H., Templin, A., and Clark, A.J. (1971). Genetic recombination in Escherichia coli: the role of exonuclease I. Proc Natl Acad Sci U S A 68, 824-827.
    連結:
  67. Lee, D.Y., and Clayton, D.A. (1996). Properties of a primer RNA-DNA hybrid at the mouse mitochondrial DNA leading-strand origin of replication. J Biol Chem 271, 24262-24269.
    連結:
  68. Li, X., and Manley, J.L. (2005). Inactivation of the SR Protein Splicing Factor ASF/SF2 Results in Genomic Instability. Cell 122, 365-378.
    連結:
  69. Liu, L.F., and Wang, J.C. (1987). Supercoiling of the DNA template during transcription. Proc Natl Acad Sci U S A 84, 7024-7027.
    連結:
  70. Longerich, S., Basu, U., Alt, F., and Storb, U. (2006). AID in somatic hypermutation and class switch recombination. Curr Opin Immunol 18, 164-174.
    連結:
  71. Martin, A., Bardwell, P.D., Woo, C.J., Fan, M., Shulman, M.J., and Scharff, M.D. (2002). Activation-induced cytidine deaminase turns on somatic hypermutation in hybridomas. Nature 415, 802-806.
    連結:
  72. Martomo, S.A., Fu, D., Yang, W.W., Joshi, N.S., and Gearhart, P.J. (2005). Deoxyuridine is generated preferentially in the nontranscribed strand of DNA from cells expressing activation-induced cytidine deaminase. J Immunol 174, 7787-7791.
    連結:
  73. Masse, E., and Drolet, M. (1999a). Escherichia coli DNA topoisomerase I inhibits R-loop formation by relaxing transcription-induced negative supercoiling. J Biol Chem 274, 16659-16664.
    連結:
  74. Masse, E., and Drolet, M. (1999b). R-loop-dependent hypernegative supercoiling in Escherichia coli topA mutants preferentially occurs at low temperatures and correlates with growth inhibition. J Mol Biol 294, 321-332.
    連結:
  75. Masse, E., Phoenix, P., and Drolet, M. (1997). DNA topoisomerases regulate R-loop formation during transcription of the rrnB operon in Escherichia coli. J Biol Chem 272, 12816-12823.
    連結:
  76. Masukata, H., and Tomizawa, J. (1984). Effects of point mutations on formation and structure of the RNA primer for ColE1 DNA replication. Cell 36, 513-522.
    連結:
  77. Mayer, O., Rajkowitsch, L., Lorenz, C., Konrat, R., and Schroeder, R. (2007). RNA chaperone activity and RNA-binding properties of the E. coli protein StpA. Nucleic Acids Res 35, 1257-1269.
    連結:
  78. Mayorov, V.I., Rogozin, I.B., Adkison, L.R., and Gearhart, P.J. (2005). DNA polymerase eta contributes to strand bias of mutations of A versus T in immunoglobulin genes. J Immunol 174, 7781-7786.
    連結:
  79. McLeod, S.M., Aiyar, S.E., Gourse, R.L., and Johnson, R.C. (2002). The C-terminal domains of the RNA polymerase alpha subunits: contact site with Fis and localization during co-activation with CRP at the Escherichia coli proP P2 promoter. J Mol Biol 316, 517-529.
    連結:
  80. Mumm, J.P., Landy, A., and Gelles, J. (2006). Viewing single lambda site-specific recombination events from start to finish. EMBO J 25, 4586-4595.
    連結:
  81. Muramatsu, M., Kinoshita, K., Fagarasan, S., Yamada, S., Shinkai, Y., and Honjo, T. (2000). Class switch recombination and hypermutation require activation-induced cytidine deaminase (AID), a potential RNA editing enzyme. Cell 102, 553-563.
    連結:
  82. Muramatsu, M., Sankaranand, V.S., Anant, S., Sugai, M., Kinoshita, K., Davidson, N.O., and Honjo, T. (1999). Specific expression of activation-induced cytidine deaminase (AID), a novel member of the RNA-editing deaminase family in germinal center B cells. J Biol Chem 274, 18470-18476.
    連結:
  83. Nambu, Y., Sugai, M., Gonda, H., Lee, C.G., Katakai, T., Agata, Y., Yokota, Y., and Shimizu, A. (2003). Transcription-coupled events associating with immunoglobulin switch region chromatin. Science 302, 2137-2140.
    連結:
  84. Nichols, M.D., DeAngelis, K., Keck, J.L., and Berger, J.M. (1999). Structure and function of an archaeal topoisomerase VI subunit with homology to the meiotic recombination factor Spo11. EMBO J 18, 6177-6188.
    連結:
  85. Nitiss, J.L. (1998). Investigating the biological functions of DNA topoisomerases in eukaryotic cells. Biochim Biophys Acta 1400, 63-81.
    連結:
  86. Nitiss, J.L. (2009). DNA topoisomerase II and its growing repertoire of biological functions. Nat Rev Cancer 9, 327-337.
    連結:
  87. Oberto, J., Nabti, S., Jooste, V., Mignot, H., and Rouviere-Yaniv, J. (2009). The HU regulon is composed of genes responding to anaerobiosis, acid stress, high osmolarity and SOS induction. PLoS One 4, e4367.
    連結:
  88. Ohniwa, R.L., Morikawa, K., Kim, J., Ohta, T., Ishihama, A., Wada, C., and Takeyasu, K. (2006). Dynamic state of DNA topology is essential for genome condensation in bacteria. EMBO J 25, 5591-5602.
    連結:
  89. Ohniwa, R.L., Morikawa, K., Takeshita, S.L., Kim, J., Ohta, T., Wada, C., and Takeyasu, K. (2007). Transcription-coupled nucleoid architecture in bacteria. Genes Cells 12, 1141-1152.
    連結:
  90. Okazaki, I.M., Kinoshita, K., Muramatsu, M., Yoshikawa, K., and Honjo, T. (2002). The AID enzyme induces class switch recombination in fibroblasts. Nature 416, 340-345.
    連結:
  91. Pavlov, Y.I., Rogozin, I.B., Galkin, A.P., Aksenova, A.Y., Hanaoka, F., Rada, C., and Kunkel, T.A. (2002). Correlation of somatic hypermutation specificity and A-T base pair substitution errors by DNA polymerase eta during copying of a mouse immunoglobulin kappa light chain transgene. Proc Natl Acad Sci U S A 99, 9954-9959.
    連結:
  92. Pavri, R., Gazumyan, A., Jankovic, M., Di Virgilio, M., Klein, I., Ansarah-Sobrinho, C., Resch, W., Yamane, A., San-Martin, B.R., Barreto, V., et al. (2010). Activation-Induced Cytidine Deaminase Targets DNA at Sites of RNA Polymerase II Stalling by Interaction with Spt5. Cell 143, 122-133.
    連結:
  93. Petersen-Mahrt, S.K., Harris, R.S., and Neuberger, M.S. (2002). AID mutates E. coli suggesting a DNA deamination mechanism for antibody diversification. Nature 418, 99-103.
    連結:
  94. Pham, P., Bransteitter, R., Petruska, J., and Goodman, M.F. (2003). Processive AID-catalysed cytosine deamination on single-stranded DNA simulates somatic hypermutation. Nature 424, 103-107.
    連結:
  95. Phoenix, P., Raymond, M.A., Masse, E., and Drolet, M. (1997). Roles of DNA topoisomerases in the regulation of R-loop formation in vitro. J Biol Chem 272, 1473-1479.
    連結:
  96. Pommier, Y. (2006). Topoisomerase I inhibitors: camptothecins and beyond. Nature Reviews Cancer 6, 789-802.
    連結:
  97. Poplawski, A., and Bernander, R. (1997). Nucleoid structure and distribution in thermophilic Archaea. J Bacteriol 179, 7625-7630.
    連結:
  98. Pruss, G.J., Manes, S.H., and Drlica, K. (1982). Escherichia coli DNA topoisomerase I mutants: increased supercoiling is corrected by mutations near gyrase genes. Cell 31, 35-42.
    連結:
  99. Pul, U., Wurm, R., Lux, B., Meltzer, M., Menzel, A., and Wagner, R. (2005). LRP and H-NS--cooperative partners for transcription regulation at Escherichia coli rRNA promoters. Mol Microbiol 58, 864-876.
    連結:
  100. Rada, C., Di Noia, J.M., and Neuberger, M.S. (2004). Mismatch recognition and uracil excision provide complementary paths to both Ig switching and the A/T-focused phase of somatic mutation. Mol Cell 16, 163-171.
    連結:
  101. Ramiro, A.R., Stavropoulos, P., Jankovic, M., and Nussenzweig, M.C. (2003). Transcription enhances AID-mediated cytidine deamination by exposing single-stranded DNA on the nontemplate strand. Nat Immunol 4, 452-456.
    連結:
  102. Roberts, R.W., and Crothers, D.M. (1992). Stability and properties of double and triple helices: dramatic effects of RNA or DNA backbone composition. Science 258, 1463-1466.
    連結:
  103. Robinow, C., and Kellenberger, E. (1994). The bacterial nucleoid revisited. Microbiol Rev 58, 211-232.
    連結:
  104. Rooney, S., Chaudhuri, J., and Alt, F.W. (2004). The role of the non-homologous end-joining pathway in lymphocyte development. Immunol Rev 200, 115-131.
    連結:
  105. Rossi, F., Labourier, E., Forne, T., Divita, G., Derancourt, J., Riou, J.F., Antoine, E., Cathala, G., Brunel, C., and Tazi, J. (1996). Specific phosphorylation of SR proteins by mammalian DNA topoisomerase I. Nature 381, 80-82.
    連結:
  106. Roth, A., Urmoneit, B., and Messer, W. (1994). Functions of histone-like proteins in the initiation of DNA replication at oriC of Escherichia coli. Biochimie 76, 917-923.
    連結:
  107. Rouviere-Yaniv, J., Yaniv, M., and Germond, J.E. (1979). E. coli DNA binding protein HU forms nucleosomelike structure with circular double-stranded DNA. Cell 17, 265-274.
    連結:
  108. Roy, D., Yu, K., and Lieber, M.R. (2008). Mechanism of R-loop formation at immunoglobulin class switch sequences. Mol Cell Biol 28, 50-60.
    連結:
  109. Ryan, V.T., Grimwade, J.E., Nievera, C.J., and Leonard, A.C. (2002). IHF and HU stimulate assembly of pre-replication complexes at Escherichia coli oriC by two different mechanisms. Mol Microbiol 46, 113-124.
    連結:
  110. Schneider, R., Travers, A., Kutateladze, T., and Muskhelishvili, G. (1999). A DNA architectural protein couples cellular physiology and DNA topology in Escherichia coli. Mol Microbiol 34, 953-964.
    連結:
  111. Schrader, C.E. (2005). Inducible DNA breaks in Ig S regions are dependent on AID and UNG. Journal of Experimental Medicine 202, 561-568.
    連結:
  112. Shen, H.M., Poirier, M.G., Allen, M.J., North, J., Lal, R., Widom, J., and Storb, U. (2009). The activation-induced cytidine deaminase (AID) efficiently targets DNA in nucleosomes but only during transcription. J Exp Med 206, 1057-1071.
    連結:
  113. Shen, H.M., Ratnam, S., and Storb, U. (2005). Targeting of the activation-induced cytosine deaminase is strongly influenced by the sequence and structure of the targeted DNA. Mol Cell Biol 25, 10815-10821.
    連結:
  114. Shen, H.M., and Storb, U. (2004). Activation-induced cytidine deaminase (AID) can target both DNA strands when the DNA is supercoiled. Proc Natl Acad Sci U S A 101, 12997-13002.
    連結:
  115. Sloof, P., Maagdelijn, A., and Boswinkel, E. (1983). Folding of prokaryotic DNA. Isolation and characterization of nucleoids from Bacillus licheniformis. J Mol Biol 163, 277-297.
    連結:
  116. Smith, G.R. (1991). Conjugational recombination in E. coli: myths and mechanisms. Cell 64, 19-27.
    連結:
  117. Solovei, I., Pasero, P., and Visa, N. (2008). A journey into the nucleus. Conference on Nuclear Structure and Dynamics. EMBO Rep 9, 228-233.
    連結:
  118. Sun, Q., and Margolin, W. (2004). Effects of perturbing nucleoid structure on nucleoid occlusion-mediated toporegulation of FtsZ ring assembly. J Bacteriol 186, 3951-3959.
    連結:
  119. Swinger, K.K., and Rice, P.A. (2004). IHF and HU: flexible architects of bent DNA. Curr Opin Struct Biol 14, 28-35.
    連結:
  120. Taylor, A.F., and Smith, G.R. (1985). Substrate specificity of the DNA unwinding activity of the RecBC enzyme of Escherichia coli. J Mol Biol 185, 431-443.
    連結:
  121. Tian, M. (2000). Transcription-induced Cleavage of Immunoglobulin Switch Regions by Nucleotide Excision Repair Nucleases in Vitro. Journal of Biological Chemistry 275, 24163-24172.
    連結:
  122. Travers, A., Schneider, R., and Muskhelishvili, G. (2001). DNA supercoiling and transcription in Escherichia coli: The FIS connection. Biochimie 83, 213-217.
    連結:
  123. Tuduri, S., Crabbé, L., Conti, C., Tourrière, H., Holtgreve-Grez, H., Jauch, A., Pantesco, V., De Vos, J., Thomas, A., Theillet, C., et al. (2009). Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nature Cell Biology 11, 1315-1324.
    連結:
  124. Wang, J.C. (1971). Interaction between DNA and an Escherichia coli protein omega. J Mol Biol 55, 523-533.
    連結:
  125. Wang, J.C. (1985). DNA topoisomerases. Annu Rev Biochem 54, 665-697.
    連結:
  126. Wang, J.C. (1996). DNA topoisomerases. Annu Rev Biochem 65, 635-692.
    連結:
  127. Wang, J.C. (1998). Moving one DNA double helix through another by a type II DNA topoisomerase: the story of a simple molecular machine. Q Rev Biophys 31, 107-144.
    連結:
  128. Wang, J.C. (2002). Cellular roles of dna topoisomerases: a molecular perspective. Nature Reviews Molecular Cell Biology 3, 430-440.
    連結:
  129. Webb, B.L., Cox, M.M., and Inman, R.B. (1997). Recombinational DNA repair: the RecF and RecR proteins limit the extension of RecA filaments beyond single-strand DNA gaps. Cell 91, 347-356.
    連結:
  130. Weinstein-Fischer, D., and Altuvia, S. (2007). Differential regulation of Escherichia coli topoisomerase I by Fis. Mol Microbiol 63, 1131-1144.
    連結:
  131. Worcel, A., and Burgi, E. (1972). On the structure of the folded chromosome of Escherichia coli. J Mol Biol 71, 127-147.
    連結:
  132. Xu, L., Gorham, B., Li, S.C., Bottaro, A., Alt, F.W., and Rothman, P. (1993). Replacement of germ-line epsilon promoter by gene targeting alters control of immunoglobulin heavy chain class switching. Proc Natl Acad Sci U S A 90, 3705-3709.
    連結:
  133. Yu, K., Chedin, F., Hsieh, C.-L., Wilson, T.E., and Lieber, M.R. (2003). R-loops at immunoglobulin class switch regions in the chromosomes of stimulated B cells. Nature Immunology 4, 442-451.
    連結:
  134. Drolet, M., Bi, X., and Liu, L.F. (1994). Hypernegative supercoiling of the DNA template during transcription elongation in vitro. J Biol Chem 269, 2068-2074.
  135. Dworsky, P., and Schaechter, M. (1973). Effect of rifampin on the structure and membrane attachment of the nucleoid of Escherichia coli. J Bacteriol 116, 1364-1374.
  136. Gritzmacher, C.A. (1989). Molecular aspects of heavy-chain class switching. Crit Rev Immunol 9, 173-200.
  137. Hong, X., Cadwell, G.W., and Kogoma, T. (1995). Escherichia coli RecG and RecA proteins in R-loop formation. EMBO J 14, 2385-2392.
  138. Howard-Flanders, P., Simson, E., and Theriot, L. (1964). A Locus That Controls Filament Formation and Sensitivity to Radiation in Escherichia Coli K-12. Genetics 49, 237-246.
  139. Huang, S.-Y. (2006). Regulation of R-loop formation and its implications: AID-stimulated mutagenesis 臺灣大學微生物學研究所學位論文.
  140. Kasahara, M., Clikeman, J.A., Bates, D.B., and Kogoma, T. (2000). RecA protein-dependent R-loop formation in vitro. Genes Dev 14, 360-365.
  141. Kowalczykowski, S.C., Dixon, D.A., Eggleston, A.K., Lauder, S.D., and Rehrauer, W.M. (1994). Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev 58, 401-465.
  142. Kuzminov, A. (1999). Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63, 751-813, table of contents.
  143. Raji, A., Zabel, D.J., Laufer, C.S., and Depew, R.E. (1985). Genetic analysis of mutations that compensate for loss of Escherichia coli DNA topoisomerase I. J Bacteriol 162, 1173-1179.
  144. Smyth, C.P., Lundback, T., Renzoni, D., Siligardi, G., Beavil, R., Layton, M., Sidebotham, J.M., Hinton, J.C., Driscoll, P.C., Higgins, C.F., et al. (2000). Oligomerization of the chromatin-structuring protein H-NS. Mol Microbiol 36, 962-972.
  145. Stavnezer-Nordgren, J., and Sirlin, S. (1986). Specificity of immunoglobulin heavy chain switch correlates with activity of germline heavy chain genes prior to switching. EMBO J 5, 95-102.
  146. Strasser, K., Masuda, S., Mason, P., Pfannstiel, J., Oppizzi, M., Rodriguez-Navarro, S., Rondon, A.G., Aguilera, A., Struhl, K., Reed, R., et al. (2002). TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417, 304-308.
  147. Wen, C.-Y. (2009). Regulation and Biological Functions of R-loop: Roles of RecF Pathway and DNA Topoisomerases臺灣大學微生物學研究所學位論文
  148. Zhang, J., Bottaro, A., Li, S., Stewart, V., and Alt, F.W. (1993). A selective defect in IgG2b switching as a result of targeted mutation of the I gamma 2b promoter and exon. EMBO J 12, 3529-3537.
  149. Zulianello, L., de la Gorgue de Rosny, E., van Ulsen, P., van de Putte, P., and Goosen, N. (1994). The HimA and HimD subunits of integration host factor can specifically bind to DNA as homodimers. EMBO J 13, 1534-1540.