题名

鋰離子電池高容量富鋰鎳錳氧正極粉體之製備與分析

并列篇名

Synthesis and Characterization of High-capacity Li-rich Nickel Manganese Oxide Cathode for Lithium-ion Batteries

DOI

10.6342/NTU.2014.02999

作者

陳文勤

关键词

鋰離子電池 ; 富鋰層狀氧化物 ; 形貌變化 ; 石墨烯 ; 導電高分子 ; Li-ion battery ; Li-rich layered oxide ; morphology evolution ; grapheme ; conductive polymer

期刊名称

國立臺灣大學化學工程學系學位論文

卷期/出版年月

2014年

学位类别

博士

导师

吳乃立

内容语文

英文

中文摘要

鋰離子電池材料的研發需朝向降低成本與增加電極能量密度兩大方向進行,目前所開發的正極材料中,層狀富鋰鎳錳氧化物,xLi2MnO3•(1 - x)Li(Mn,M)O2,具有>250 mAh/g 的電容量及平均將近4V的氧化還原平台電壓,因此具~1000 WH/kg 的理論比能量潛力,較LiMn2O4、LiNi0.33Co0.33Mn0.33O2 及LiFePO4系統高出甚多。在本論文中,首次利用穿透式X射線顯微術探討層狀富鋰鎳錳氧化物在高溫合成過程中的微結構變化,然而,加熱層狀富鋰鎳錳氧化物的中間過程所產生的輻射狀分布的孔隙結構、少量的孔隙曲折以及較小的晶粒大小具有較小的電子轉移阻抗與增加的鋰離子固態擴散能力而有助於高速充放電的性能。 此外,結果顯示層狀富鋰鎳錳氧化物顆粒表面的過度金屬組成對於微結構與電化學性能有極大的影響。不論是富含錳或鎳的顆粒表面均會造成電容量的損失,而富含鎳的顆粒表面則因較高的電子轉移阻抗及鎳、鋰離子錯位導致其具有較低的電容量與較差的高速充放電能力,不過在循環充放電過程中,富含鎳的表層可以抑制層狀結構轉換成尖晶石的相變化以及伴隨的電壓衰退。此結果提供了一個新的方式,從層狀富鋰鎳錳氧化物顆粒表面過度金屬組成的觀點開發先進的層狀富鋰鎳錳氧化物正極材料。 另一方面,本論文提出兩個方式提升高電極密度(2.5 g/cm3)的鋰離子電池層狀富鋰鎳錳氧化物正極材料的第一圈的庫倫效率、高速充放電的性能以及循環充放電壽命。首先,藉由添加奈米片狀石墨烯在層狀富鋰鎳錳氧電極中,可以減少電極的極化現象且增加比電容量與高速充放電能力,但也促進正極材料與電解液之間鈍化層的生成。此研究是第一次發現石墨烯添加劑造成的負面效應,結果顯示,約100 ppm石墨烯是最適合同時增加高速充放電及循環穩定性的添加劑含量。 另一個改質方法是經由溶液混合且低溫的方式,將導電性高分子聚3,4-二氧乙基噻吩:聚苯乙烯磺酸 (PEDOT:PSS)進行富鋰鎳錳氧化物的表面包覆,經過2 wt.% PEDOT:PSS的包覆後,富鋰鎳錳氧化物的粉體阻抗大量地減少了4個級數,而PEDOT:PSS的包覆含量大於2 wt.%後,粉體阻抗的改善有限。對於電化學測試,顆粒表面的PEDOT:PSS薄膜可以驅使快速的表面電子傳移並提供電極內部高效率的傳導網絡,進而達到快速充放電與電容量的改善與提升;再者,PEDOT:PSS的表面包覆可抑制高電位下SEI的生成,使得富鋰鎳錳氧化物具有較少的第一圈電容量損失以及較高的循環穩定性。

英文摘要

The future development of active materials for lithium ion battery is expected to proceed toward two major directions, namely reducing material cost and increasing electrode energy density. Among the reported cathode materials so far, layered lithium-rich manganese-transition metal oxide composite cathode (abbreviated as LrMOs), xLi2MnO3•(1-x)Li(Mn, M)O2 (M= Mn, Ni, Co), possesses specific capacity of >250mAh/g with an average redox potential near 4V and therefore potential energy density nearly ~1000 WH/kg, which is much higher than those of Li2MnO4, LiNi0.33Co0.33Mn0.33O2 and LiFePO4. In this dissertation, this is the first time that the micro-structural evolution of the resulting LrMOs during calcinations was investigated mainly by transmission X-ray microscopy (TXM). Thus a radially distributed pore pattern, less pore tortuosity and small grain size produced by intermediate heating history, favor the rate performance of the composite oxide cathode due to reduced charge-transfer resistance and enhanced Li ion solid-state diffusivity. Moreover, the microstructures and electrochemical performance are shown to strongly depend on the transition metal composition on the surface of LrMOs particles. the electrodes containing either Mn- or Ni-rich surface cathode lead to capacity loss, while Ni-rich cathode exhibits much lower discharge capacity and poorer rate capability than the one with Mn-rich because of its high charge-transfer resistance and high degree of Ni/Li cations mixing. Nevertheless, the presence of Ni-rich out-layer suppressed the phase transformation from layer to spinel and associated voltage fading during cycling. The results provide a new strategy to develop advanced lithium-rich layered cathode materials from the viewpoints of metal composition on the surface of LrMOs particles. In the other hand, two methods in this dissertation are proposed to enhance the initial coulombic efficiency, rate capability and cycling stability of a highly packed (2.5 g/cm3) LrMOs cathode for lithium ion batteries. First, graphene nanosheets (GNSs) additive into the LrMOs electrodes can reduce electrode polarization and enhance specific capacity and rate performance, and also promote the formation of solid-electrolyte interface (SEI). This study is the first to identify that such an adverse effect is caused by a graphene additive. the results showed that a GNSs additive content of approximately 100 ppm is optimal for achieving both rate and cycle-life enhancements. In the other modification, a conductive polymer, Poly(3,4-ethylene-dioxythiophene):poly(styrene sulfonate) (abbreviated as PEDOT:PSS), was coated on the LrMOs particles by a liquid mixing and low temperature process. It revealed that the resistance of LrMOs powder can be substantially reduced by four orders through 2 wt.% PEDOT:PSS coating, while it have limited improvement of powder resistance when the amount of PEDOT:PSS is above 2 wt.%. For electrochemical test, the presence of PEDOT:PSS film can drive fast electron transport through the surface of the oxide particle and provide efficient conducting network inside the electrode, leading to enhanced rate performance and increased specific capacity for highly packed LrMOs microsphere electrode. Furthermore, the PEDOT:PSS-coated LrMOs exhibited less initial capacity loss and good cycling stability due to inhibited SEI formation under high potentials.

主题分类 工學院 > 化學工程學系
工程學 > 化學工業
参考文献
  1. 1. H. D. Yoo, E. Markevich, G. Salitra, D. Sharon, D. Aurbach. "On the challenge of developing advanced technologies for electrochemical energy storage and conversion", Materials Today, 17, 110-121 (2014).
    連結:
  2. 2. J. M. Tarascon, M. Armand. "Issues and challenges facing rechargeable lithium batteries", Nature, 414, 359-367 (2001).
    連結:
  3. 3. M. M. Thackeray, C. Wolverton, E. D. Isaacs. "Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries", Energy & Environmental Science, 5, 7854-7863 (2012).
    連結:
  4. 5. A. J. Jacobson, R. R. Chianelli, M. S. Whittingham. "Amorphous Molybdenum-Disulfide Cathodes", Journal of The Electrochemical Society, 126, 2277-2278 (1979).
    連結:
  5. 6. K. M. Abraham, D. M. Pasquariello, F. J. Martin. "Mixed Ether Electrolytes for Secondary Lithium Batteries with Improved Low-Temperature Performance", Journal of The Electrochemical Society, 133, 661-666 (1986).
    連結:
  6. 7. M. S. Whittingham, M. B. Dines. "Normal-Butyllithium - Effective, General Cathode Screening Agent", Journal of The Electrochemical Society, 124, 1387-1388 (1977).
    連結:
  7. 8. M. Lazzari, B. Scrosati. "Cyclable Lithium Organic Electrolyte Cell Based on 2 Intercalation Electrodes", Journal of The Electrochemical Society, 127, 773-774 (1980).
    連結:
  8. 9. M. S. Islam, C. A. J. Fisher. "Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties", Chemical Society Reviews, 43, 185-204 (2014).
    連結:
  9. 10. K. Mizushima, P. C. Jones, P. J. Wiseman, J. B. Goodenough. "LixCoO2 (O 連結:
  10. 11. J. N. Reimers, J. R. Dahn. "Electrochemical and Insitu X-Ray-Diffraction Studies of Lithium Intercalation in Lixcoo2", Journal of The Electrochemical Society, 139, 2091-2097 (1992).
    連結:
  11. 12. T. Ohzuku, A. Ueda. "Solid-State Redox Reactions of LiCoO2 ( ) for 4 Volt Secondary Lithium Cells", Journal of The Electrochemical Society, 141, 2972-2977 (1994).
    連結:
  12. 13. Y. J. Kim, T. J. Kim, J. W. Shin, B. Park, J. P. Cho. "The effect of Al2O3 coating on the cycle life performance in thin-film LiCoO2 cathodes", Journal of The Electrochemical Society, 149, A1337-A1341 (2002).
    連結:
  13. 14. L. J. Liu, L. Q. Chen, X. J. Huang, X. Q. Yang, W. S. Yoon, H. S. Lee, J. McBreen. "Electrochemical and in situ synchrotron XRD studies on Al2O3-coated LiCoO2 cathode material", Journal of The Electrochemical Society, 151, A1344-A1351 (2004).
    連結:
  14. 15. K. Y. Chung, W. S. Yoon, J. McBreen, X. Q. Yang, S. H. Oh, H. C. Shin, W. Il Cho, B. W. Cho. "Structural studies on the effects of ZrO2 coating on LiCoO2 during cycling using in situ X-ray diffraction technique", Journal of The Electrochemical Society, 153, A2152-A2157 (2006).
    連結:
  15. 16. C. Delmas, M. Menetrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grune, L. Fournes. "An overview of the Li(Ni,M)O2 systems: syntheses, structures and properties", Electrochimica Acta, 45, 243-253 (1999).
    連結:
  16. 17. W. Li, J. C. Currie, J. Wolstenholme. "Influence of morphology on the stability of LiNiO2", Journal of Power Sources, 68, 565-569 (1997).
    連結:
  17. 18. T. Ohzuku, A. Ueda, M. Kouguchi. "Synthesis and characterization of LiAl1/4Ni3/4O2 ( ) for lithium-ion (shuttlecock) batteries", Journal of The Electrochemical Society, 142, 4033-4039 (1995).
    連結:
  18. 19. I. Saadoune, C. Delmas. "On the LixNi0.8Co0.2O2 system", Journal of Solid State Chemistry, 136, 8-15 (1998).
    連結:
  19. 20. E. Rossen, C. D. W. Jones, J. R. Dahn. "Structure and Electrochemistry of LixMnyNi1-yo2", Solid State Ionics, 57, 311-318 (1992).
    連結:
  20. 21. C. Pouillerie, F. Perton, P. Biensan, J. P. Peres, M. Broussely, C. Delmas. "Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide", Journal of Power Sources, 96, 293-302 (2001).
    連結:
  21. 22. Z. L. Liu, A. S. Yu, J. Y. Lee. "Synthesis and characterization of LiNi1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries", Journal of Power Sources, 81, 416-419 (1999).
    連結:
  22. 23. T. Ohzuku, Y. Makimura. "Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries", Chemistry Letters, 642-643 (2001).
    連結:
  23. 24. N. Yabuuchi, T. Ohzuku. "Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries", Journal of Power Sources, 119, 171-174 (2003).
    連結:
  24. 25. M. E. Spahr, P. Novak, B. Schnyder, O. Haas, R. Nesper. "Characterization of layered lithium nickel manganese oxides synthesized by a novel oxidative coprecipitation method and their electrochemical performance as lithium insertion electrode materials", Journal of The Electrochemical Society, 145, 1113-1121 (1998).
    連結:
  25. 26. G. Amatucci, A. Du Pasquier, A. Blyr, T. Zheng, J. M. Tarascon. "The elevated temperature performance of the LiMn2O4/C system: failure and solutions", Electrochimica Acta, 45, 255-271 (1999).
    連結:
  26. 27. Y. M. Lin, H. C. Wu, Y. C. Yen, Z. Z. Guo, M. H. Yang, H. M. Chen, H. S. Sheu, N. L. Wu. "Enhanced high-rate cycling stability of LiMn2O4 cathode by ZrO2 coating for Li-ion battery", Journal of The Electrochemical Society, 152, A1526-A1532 (2005).
    連結:
  27. 28. T. Ohzuku, M. Kitagawa, T. Hirai. "Electrochemistry of Manganese-Dioxide in Lithium Nonaqueous Cell III. X-Ray Diffractional Study on the Reduction of Spinel-Related Manganese-Dioxide", Journal of The Electrochemical Society, 137, 769-775 (1990).
    連結:
  28. 29. J. B. Goodenough, Y. Kim. "Challenges for Rechargeable Li Batteries", Chemistry of Materials, 22, 587-603 (2010).
    連結:
  29. 30. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. "Phospho-olivines as positive-electrode materials for rechargeable lithium batteries", Journal of The Electrochemical Society, 144, 1188-1194 (1997).
    連結:
  30. 31. V. A. Streltsov, E. L. Belokoneva, V. G. Tsirelson, N. K. Hansen. "Multipole Analysis of the Electron-Density in Triphylite, Lifepo4, Using X-Ray-Diffraction Data", Acta Crystallographica Section B-Structural Science, 49, 147-153 (1993).
    連結:
  31. 32. C. Masquelier, A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough. "New cathode materials for rechargeable lithium batteries: The 3-D framework structures Li3Fe2(XO4)(3) (X = P, As)", Journal of Solid State Chemistry, 135, 228-234 (1998).
    連結:
  32. 33. A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, S. Okada, J. B. Goodenough. "Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates", Journal of The Electrochemical Society, 144, 1609-1613 (1997).
    連結:
  33. 34. A. Guerfi, M. Kaneko, M. Petitclerc, M. Mori, K. Zaghib. "LiFePO4 water-soluble binder electrode for Li-ion batteries", Journal of Power Sources, 163, 1047-1052 (2007).
    連結:
  34. 35. A. S. Andersson, B. Kalska, L. Haggstrom, J. O. Thomas. "Lithium extraction/insertion in LiFePO4: an X-ray diffraction and Mossbauer spectroscopy study", Solid State Ionics, 130, 41-52 (2000).
    連結:
  35. 36. C. Delacourt, L. Laffont, R. Bouchet, C. Wurm, J. B. Leriche, M. Morcrette, J. M. Tarascon, C. Masquelier. "Toward understanding of electrical limitations (electronic, ionic) in LiMPO4 (M = Fe, Mn) electrode materials", Journal of The Electrochemical Society, 152, A913-A921 (2005).
    連結:
  36. 37. Z. L. Gong, Y. Yang. "Recent advances in the research of polyanion-type cathode materials for Li-ion batteries", Energy & Environmental Science, 4, 3223-3242 (2011).
    連結:
  37. 38. Z. H. Lu, D. D. MacNeil, J. R. Dahn. "Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries", Electrochemical and Solid State Letters, 4, A191-A194 (2001).
    連結:
  38. 39. M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney. "Advances in manganese-oxide 'composite' electrodes for lithium-ion batteries", Journal of Materials Chemistry, 15, 2257-2267 (2005).
    連結:
  39. 40. M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, S. A. Hackney. "Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries", Journal of Materials Chemistry, 17, 3112-3125 (2007).
    連結:
  40. 41. X. T. Guan, B. Ding, X. F. Liu, J. J. Zhu, C. H. Mi, X. G. Zhang. "Enhancing the electrochemical performance of Li1.2Ni0.2Mn0.6O2 by surface modification with nickel-manganese composite oxide", Journal of Solid State Electrochemistry, 17, 2087-2093 (2013).
    連結:
  41. 42. C. S. Johnson, N. C. Li, C. Lefief, J. T. Vaughey, M. M. Thackeray. "Synthesis, Characterization and Electrochemistry of Lithium Battery Electrodes: xLi2MnO3・(1-x)LiMn0.333Ni0.333Co0.333O2 (0 ≤ x ≤ 0.7)", Chemistry of Materials, 20, 6095-6106 (2008).
    連結:
  42. 43. B. Ammundsen, J. Paulsen, I. Davidson, R. S. Liu, C. H. Shen, J. M. Chen, L. Y. Jang, J. F. Lee. "Local structure and first cycle redox mechanism of layered Li1.2Cr0.4Mn0.4O2 cathode material", Journal of The Electrochemical Society, 149, A431-A436 (2002).
    連結:
  43. 44. C. J. Pan, Y. J. Lee, B. Ammundsen, C. P. Grey. "Li-6 MAS NMR studies of the local structure and electrochemical properties of Cr-doped lithium manganese and lithium cobalt oxide cathode materials for lithium-ion batteries", Chemistry of Materials, 14, 2289-2299 (2002).
    連結:
  44. 46. C. H. Lei, J. Bareno, J. G. Wen, I. Petrov, S. H. Kang, D. P. Abraham. "Local structure and composition studies of Li1.2Ni0.2Mn0.6O2 by analytical electron microscopy", Journal of Power Sources, 178, 422-433 (2008).
    連結:
  45. 47. M. Gu, I. Belharouak, A. Genc, Z. G. Wang, D. P. Wang, K. Amine, F. Gao, G. W. Zhou, S. Thevuthasan, D. R. Baer, J. G. Zhang, N. D. Browning, J. Liu, C. M. Wang. "Conflicting Roles of Nickel in Controlling Cathode Performance in Lithium Ion Batteries", Nano Letters, 12, 5186-5191 (2012).
    連結:
  46. 48. J. Bareno, C. H. Lei, J. G. Wen, S. H. Kang, I. Petrov, D. P. Abraham. "Local Structure of Layered Oxide Electrode Materials for Lithium-Ion Batteries", Advanced Materials, 22, 1122-1127 (2010).
    連結:
  47. 49. A. Boulineau, L. Simonin, J. F. Colin, E. Canevet, L. Daniel, S. Patoux. "Evolutions of Li1.2Mn0.61Ni0.18Mg0.01O2 during the Initial Charge/Discharge Cycle Studied by Advanced Electron Microscopy", Chemistry of Materials, 24, 3558-3566 (2012).
    連結:
  48. 50. B. Xu, C. R. Fell, M. F. Chi, Y. S. Meng. "Identifying surface structural changes in layered Li-excess nickel manganese oxides in high voltage lithium ion batteries: A joint experimental and theoretical study", Energy & Environmental Science, 4, 2223-2233 (2011).
    連結:
  49. 51. J. G. Wen, J. Bareno, C. H. Lei, S. H. Kang, M. Balasubramanian, I. Petrov, D. P. Abraham. "Analytical electron microscopy of Li1.2Co0.4Mn0.4O2 for lithium-ion batteries", Solid State Ionics, 182, 98-107 (2011).
    連結:
  50. 52. H. Koga, L. Croguennec, P. Mannessiez, M. Menetrier, F. Weill, L. Bourgeois, M. Duttine, E. Suard, C. Delmas. "Li1.20Mn0.54Co0.13Ni0.13O2 with Different Particle Sizes as Attractive Positive Electrode Materials for Lithium-Ion Batteries: Insights into Their Structure", Journal of Physical Chemistry C, 116, 13497-13506 (2012).
    連結:
  51. 53. K. A. Jarvis, Z. Q. Deng, L. F. Allard, A. Manthiram, P. J. Ferreira. "Atomic Structure of a Lithium-Rich Layered Oxide Material for Lithium-Ion Batteries: Evidence of a Solid Solution", Chemistry of Materials, 23, 3614-3621 (2011).
    連結:
  52. 54. W. S. Yoon, N. Kim, X. Q. Yang, J. McBreen, C. P. Grey. "Li-6 MAS NMR and in situ X-ray studies of lithium nickel manganese oxides", Journal of Power Sources, 119, 649-653 (2003).
    連結:
  53. 55. J. Breger, M. Jiang, N. Dupre, Y. S. Meng, Y. Shao-Horn, G. Ceder, C. P. Grey. "High-resolution X-ray diffraction, DIFFaX, NMR and first principles study of disorder in the Li2MnO3-Li[Ni1/2Mn1/2]O2 solid solution", Journal of Solid State Chemistry, 178, 2575-2585 (2005).
    連結:
  54. 56. S. H. Kang, P. Kempgens, S. Greenbaum, A. J. Kropf, K. Amine, M. M. Thackeray. "Interpreting the structural and electrochemical complexity of 0.5Li2MnO3・0.5LiMO2 electrodes for lithium batteries (M = Mn0.5-xNi0.5-xCo2x, 0 ≤ x ≤ 0.5)", Journal of Materials Chemistry, 17, 2069-2077 (2007).
    連結:
  55. 57. M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, S. A. Hackney. "Comments on the structural complexity of lithium-rich Li1+xM1-xO2 electrodes (M = Mn, Ni, Co) for lithium batteries", Electrochemistry Communications, 8, 1531-1538 (2006).
    連結:
  56. 58. T. Ohzuku, M. Nagayama, K. Tsuji, K. Ariyoshi. "High-capacity lithium insertion materials of lithium nickel manganese oxides for advanced lithium-ion batteries: toward rechargeable capacity more than 300 mAh g-1", Journal of Materials Chemistry, 21, 10179-10188 (2011).
    連結:
  57. 59. D. Mohanty, S. Kalnaus, R. A. Meisner, K. J. Rhodes, J. L. Li, E. A. Payzant, D. L. Wood, C. Daniel. "Structural transformation of a lithium-rich Li1.2Co0.1Mn0.55Ni0.15O2 cathode during high voltage cycling resolved by in situ X-ray diffraction", Journal of Power Sources, 229, 239-248 (2013).
    連結:
  58. 60. J. Kikkawa, T. Akita, M. Tabuchi, M. Shikano, K. Tatsumi, M. Kohyama. "Real-space observation of Li extraction/insertion in Li1.2Mn0.4Fe0.4O2 positive electrode material for Li-ion batteries", Electrochemical and Solid State Letters, 11, A183-A186 (2008).
    連結:
  59. 61. H. J. Yu, H. S. Zhou. "High-Energy Cathode Materials (Li2MnO3-LiMO2) for Lithium-Ion Batteries", Journal of Physical Chemistry Letters, 4, 1268-1280 (2013).
    連結:
  60. 63. J. S. Kim, C. S. Johnson, J. T. Vaughey, M. M. Thackeray, S. A. Hackney. "Electrochemical and structural properties of xLi2M'O3・(1-x)LiMn0.5Ni0.5O2 eIectrodes for lithium batteries (M' = Ti, Mn, Zr; 0 ≤ x ≤ 0.3)", Chemistry of Materials, 16, 1996-2006 (2004).
    連結:
  61. 64. J. S. Kim, C. S. Johnson, M. M. Thackeray. "Layered xLiMO2・(1-x)Li2M'O3 electrodes for lithium batteries: a study of 0.95LiMn0.5Ni0.5O2・0.05Li2TiO3", Electrochemistry Communications, 4, 205-209 (2002).
    連結:
  62. 65. C. P. Grey, W. S. Yoon, J. Reed, G. Ceder. "Electrochemical activity of Li in the transition-metal sites of O3 Li[Li(1-2x)/3Mn(2-x)/3Nix]O2", Electrochemical and Solid State Letters, 7, A290-A293 (2004).
    連結:
  63. 66. K. Kang, G. Ceder. "Factors that affect Li mobility in layered lithium transition metal oxides", Physical Review B, 74, (2006).
    連結:
  64. 68. K. Shizuka, T. Kobayashi, K. Okahara, K. Okamoto, S. Kanzaki, R. Kanno. "Characterization of Li1+yNixCo1-2xMnxO2 positive active materials for lithium ion batteries", Journal of Power Sources, 146, 589-593 (2005).
    連結:
  65. 69. A. Rougier, P. Gravereau, C. Delmas. "Optimization of the composition of the Li1-zNi1+zO2 electrode materials: Structural, magnetic, and electrochemical studies", Journal of The Electrochemical Society, 143, 1168-1175 (1996).
    連結:
  66. 70. Z. H. Lu, L. Y. Beaulieu, R. A. Donaberger, C. L. Thomas, J. R. Dahn. "Synthesis, structure, and electrochemical behavior of Li[NixLi1/3-2x/3Mn2/3-x/3]O2", Journal of The Electrochemical Society, 149, A778-A791 (2002).
    連結:
  67. 71. L. Y. Yu, W. H. Qiu, F. Lian, J. Y. Huang, X. L. Kang. "Understanding the phenomenon of increasing capacity of layered 0.65Li[Li1/3Mn2/3]O2・0.35Li(Ni1/3Co1/3Mn1/3)O2", Journal of Alloys and Compounds, 471, 317-321 (2009).
    連結:
  68. 72. A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, P. G. Bruce. "Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2", Journal of the American Chemical Society, 128, 8694-8698 (2006).
    連結:
  69. 73. N. Yabuuchi, K. Yoshii, S. T. Myung, I. Nakai, S. Komaba. "Detailed Studies of a High-Capacity Electrode Material for Rechargeable Batteries, Li2MnO3-LiCo1/3Ni1/3Mn1/3O2", Journal of the American Chemical Society, 133, 4404-4419 (2011).
    連結:
  70. 74. C. S. Johnson, J. S. Kim, C. Lefief, N. Li, J. T. Vaughey, M. M. Thackeray. "The significance of the Li2MnO3 component in 'composite' xLi2MnO3・(1-x)LiMn0.5Ni0.5O2 electrodes", Electrochemistry Communications, 6, 1085-1091 (2004).
    連結:
  71. 75. A. Ito, D. C. Li, Y. Sato, M. Arao, M. Watanabe, M. Hatano, H. Horie, Y. Ohsawa. "Cyclic deterioration and its improvement for Li-rich layered cathode material Li[Ni0.17Li0.2Co0.07Mn0.56]O2", Journal of Power Sources, 195, 567-573 (2010).
    連結:
  72. 76. S. H. Kang, M. M. Thackeray. "Enhancing the rate capability of high capacity xLi2MnO3・(1-x)LiMO2 (M = Mn, Ni, Co) electrodes by Li-Ni-PO4 treatment", Electrochemistry Communications, 11, 748-751 (2009).
    連結:
  73. 77. A. D. Robertson, P. G. Bruce. "Mechanism of electrochemical activity in Li2MnO3", Chemistry of Materials, 15, 1984-1992 (2003).
    連結:
  74. 78. O. Toprakci, H. A. K. Toprakci, Y. Li, L. W. Ji, L. G. Xue, H. Lee, S. Zhang, X. W. Zhang. "Synthesis and characterization of xLi2MnO3・(1-x)LiMn1/3Ni1/3Co1/3O2 composite cathode materials for rechargeable lithium-ion batteries", Journal of Power Sources, 241, 522-528 (2013).
    連結:
  75. 79. N. Yabuuchi, K. Yamamoto, K. Yoshii, I. Nakai, T. Nishizawa, A. Omaru, T. Toyooka, S. Komaba. "Structural and Electrochemical Characterizations on Li2MnO3-LiCoO2-LiCrO2 System as Positive Electrode Materials for Rechargeable Lithium Batteries", Journal of The Electrochemical Society, 160, A39-A45 (2013).
    連結:
  76. 80. N. Tran, L. Croguennec, C. Labrugere, C. Jordy, P. Biensan, C. Delmas. "Layered Li1+x(Ni0.425Mn0.425Co0.15)(1-x)O2 positive electrode materials for lithium-ion batteries", Journal of The Electrochemical Society, 153, A261-A269 (2006).
    連結:
  77. 81. J. Wang, M. H. Zhang, C. L. Tang, Y. G. Xia, Z. P. Liu. "Microwave-irradiation synthesis of Li1.3NixCoyMn1-x-yO2.4 cathode materials for lithium ion batteries", Electrochimica Acta, 80, 15-21 (2012).
    連結:
  78. 82. L. Li, X. X. Zhang, R. J. Chen, T. L. Zhao, J. Lu, F. Wu, K. Amine. "Synthesis and electrochemical performance of cathode material Li1.2Co0.13Ni0.13Mn0.54O2 from spent lithium-ion batteries", Journal of Power Sources, 249, 28-34 (2014).
    連結:
  79. 83. X. Jin, Q. J. Xu, X. L. Yuan, L. Z. Zhou, Y. Y. Xia. "Synthesis, characterization and electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode materials for lithium-ion batteries", Electrochimica Acta, 114, 605-610 (2013).
    連結:
  80. 84. P. G. Bruce, B. Scrosati, J. M. Tarascon. "Nanomaterials for rechargeable lithium batteries", Angewandte Chemie-International Edition, 47, 2930-2946 (2008).
    連結:
  81. 85. Y. Wang, G. Z. Cao. "Developments in nanostructured cathode materials for high-performance lithium-ion batteries", Advanced Materials, 20, 2251-2269 (2008).
    連結:
  82. 86. X. Wei, S. C. Zhang, Z. J. Du, P. H. Yang, J. Wang, Y. B. Ren. "Electrochemical performance of high-capacity nanostructured Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for lithium ion battery by hydrothermal method", Electrochimica Acta, 107, 549-554 (2013).
    連結:
  83. 87. S. X. Liao, Y. J. Zhong, B. H. Zhong, H. Liu, X. D. Guo. "Effective enhancement of electrochemical performance for low-cost cathode material Li1.231Mn0.615Ni0.154O2 via a novel facile hydrothermal modification", Journal of Power Sources, 246, 569-573 (2014).
    連結:
  84. 88. X. K. Huang, Q. S. Zhang, H. T. Chang, J. L. Gan, H. J. Yue, Y. Yang. "Hydrothermal Synthesis of Nanosized LiMnO2-Li2MnO3 Compounds and Their Electrochemical Performances", Journal of The Electrochemical Society, 156, A162-A168 (2009).
    連結:
  85. 89. M. G. Kim, M. Jo, Y. S. Hong, J. Cho. "Template-free synthesis of Li[Ni0.25Li0.15Mn0.6]O2 nanowires for high performance lithium battery cathode", Chemical Communications, 218-220 (2009).
    連結:
  86. 90. M. Gao, F. Lian, H. Q. Liu, C. J. Tian, L. L. Ma, W. Y. Yang. "Synthesis and electrochemical performance of long lifespan Li-rich Li1+x(Ni0.37Mn0.63)(1-x)O2 cathode materials for lithium-ion batteries", Electrochimica Acta, 95, 87-94 (2013).
    連結:
  87. 91. H. X. Deng, I. Belharouak, R. E. Cook, H. M. Wu, Y. K. Sun, K. Amine. "Nanostructured Lithium Nickel Manganese Oxides for Lithium-Ion Batteries", Journal of The Electrochemical Society, 157, A447-A452 (2010).
    連結:
  88. 92. D. P. Wang, I. Belharouak, G. M. Koenig, G. W. Zhou, K. Amine. "Growth mechanism of Ni0.3Mn0.7CO3 precursor for high capacity Li-ion battery cathodes", Journal of Materials Chemistry, 21, 9290-9295 (2011).
    連結:
  89. 93. D. P. Wang, I. Belharouak, S. Gallagher, G. W. Zhou, K. Amine. "Chemistry and electrochemistry of concentric ring cathode Li1.42Ni0.25Mn0.75O2+γ for lithium batteries", Journal of Materials Chemistry, 22, 12039-12045 (2012).
    連結:
  90. 94. G. Singh, R. Thomas, A. Kumar, R. S. Katiyar, A. Manivannan. "Electrochemical and Structural Investigations on ZnO Treated 0.5Li2MnO3-0.5LiMn0.5Ni0.5O2 Layered Composite Cathode Material for Lithium Ion Battery", Journal of The Electrochemical Society, 159, A470-A478 (2012).
    連結:
  91. 95. Y. K. Sun, S. T. Myung, B. C. Park, J. Prakash, I. Belharouak, K. Amine. "High-energy cathode material for long-life and safe lithium batteries", Nature Materials, 8, 320-324 (2009).
    連結:
  92. 96. J. L. Liu, L. Chen, M. Y. Hou, F. Wang, R. C. Che, Y. Y. Xia. "General synthesis of xLi2MnO3・(1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: towards a high capacity and high power cathode for rechargeable lithium batteries", Journal of Materials Chemistry, 22, 25380-25387 (2012).
    連結:
  93. 97. Z. Y. Wang, B. A. Li, J. Ma, D. G. Xia. "The Enhanced Electrochemical Performance of Nanocrystalline Li[Li0.26Ni0.11Mn0.63]O2 Synthesized by the Molten-Salt Method for Li-ion batteries", Electrochimica Acta, 117, 285-291 (2014).
    連結:
  94. 98. J. L. Liu, M. Y. Hou, J. Yi, S. S. Guo, C. X. Wang, Y. Y. Xia. "Improving the electrochemical performance of Layered lithium-rich transition-metal oxides by controlling the structural defects", Energy & Environmental Science, 7, 705-714 (2014).
    連結:
  95. 99. S. H. Kang, C. S. Johnson, J. T. Vaughey, K. Amine, M. M. Thackeray. "The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3・0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells", Journal of The Electrochemical Society, 153, A1186-A1192 (2006).
    連結:
  96. 100. J. S. Kim, C. S. Johnson, J. T. Vaughey, M. M. Thackeray. "Pre-conditioned layered electrodes for lithium batteries", Journal of Power Sources, 153, 258-264 (2006).
    連結:
  97. 101. J. Zheng, S. N. Deng, Z. C. Shi, H. J. Xu, H. Xu, Y. F. Deng, Z. Zhang, G. H. Chen. "The effects of persulfate treatment on the electrochemical properties of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material", Journal of Power Sources, 221, 108-113 (2013).
    連結:
  98. 102. D. Y. W. Yu, K. Yanagida, H. Nakamura. "Surface Modification of Li-Excess Mn-based Cathode Materials", Journal of The Electrochemical Society, 157, A1177-A1182 (2010).
    連結:
  99. 103. S. H. Kang, M. M. Thackeray. "Stabilization of xLi2MnO3・(1-x)LiMO2 electrode surfaces (M = Mn, Ni, Co) with mildly acidic, fluorinated solutions", Journal of The Electrochemical Society, 155, A269-A275 (2008).
    連結:
  100. 104. Y. Wu, A. Manthiram. "High capacity, surface-modified layered Li[Li(1-x)/3Mn(2-x)/3Nix/3Cox/3]O2 cathodes with low irreversible capacity loss", Electrochemical and Solid State Letters, 9, A221-A224 (2006).
    連結:
  101. 105. W. C. West, J. Soler, M. C. Smart, B. V. Ratnakumar, S. Firdosy, V. Ravi, M. S. Anderson, J. Hrbacek, E. S. Lee, A. Manthiram. "Electrochemical Behavior of Layered Solid Solution Li2MnO3-LiMO2 (M = Ni, Mn, Co) Li-Ion Cathodes with and without Alumina Coatings", Journal of The Electrochemical Society, 158, A883-A889 (2011).
    連結:
  102. 106. J. Liu, A. Manthiram. "Functional surface modifications of a high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode", Journal of Materials Chemistry, 20, 3961-3967 (2010).
    連結:
  103. 107. S. H. Guo, H. J. Yu, P. Liu, X. Z. Liu, D. Li, M. W. Chen, M. Ishida, H. S. Zhou. "Surface coating of lithium-manganese-rich layered oxides with delaminated MnO2 nanosheets as cathode materials for Li-ion batteries", Journal of Materials Chemistry A, 2, 4422-4428 (2014).
    連結:
  104. 108. F. Wu, N. Li, Y. F. Su, H. Q. Lu, L. J. Zhang, R. An, Z. Wang, L. Y. Bao, S. Chen. "Can surface modification be more effective to enhance the electrochemical performance of lithium rich materials?", Journal of Materials Chemistry, 22, 1489-1497 (2012).
    連結:
  105. 109. E. S. Han, Y. P. Li, L. Z. Zhu, L. Zhao. "The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries", Solid State Ionics, 255, 113-119 (2014).
    連結:
  106. 110. Z. Y. Wang, E. Z. Liu, L. C. Guo, C. S. Shi, C. N. He, J. J. Li, N. Q. Zhao. "Cycle performance improvement of Li-rich layered cathode material Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by ZrO2 coating", Surface & Coatings Technology, 235, 570-576 (2013).
    連結:
  107. 112. X. F. Zhang, I. Belharouak, L. Li, Y. Lei, J. W. Elam, A. M. Nie, X. Q. Chen, R. S. Yassar, R. L. Axelbaum. "Structural and Electrochemical Study of Al2O3 and TiO2 Coated Li1.2Ni0.13Mn0.54Co0.13O2 Cathode Material Using ALD", Advanced Energy Materials, 3, 1299-1307 (2013).
    連結:
  108. 113. Z. Y. Wang, E. Z. Liu, C. N. He, C. S. Shi, J. J. Li, N. Q. Zhao. "Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1.2Ni0.13Co0.13Mn0.54O2 as cathode material for Li-ion batteries", Journal of Power Sources, 236, 25-32 (2013).
    連結:
  109. 114. Y. Wu, A. V. Murugan, A. Manthiram. "Surface modification of high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes by AlPO4", Journal of The Electrochemical Society, 155, A635-A641 (2008).
    連結:
  110. 115. Y. K. Sun, M. J. Lee, C. S. Yoon, J. Hassoun, K. Amine, B. Scrosati. "The Role of AlF3 Coatings in Improving Electrochemical Cycling of Li-Enriched Nickel-Manganese Oxide Electrodes for Li-Ion Batteries", Advanced Materials, 24, 1192-1196 (2012).
    連結:
  111. 116. F. Amalraj, M. Talianker, B. Markovsky, L. Burlaka, N. Leifer, G. Goobes, E. M. Erickson, O. Haik, J. Grinblat, E. Zinigrad, D. Aurbach, J. K. Lampert, J. Y. Shin, M. Schulz-Dobrick, A. Garsuch. "Studies of Li and Mn-Rich Lix[MnNiCo]O2 Electrodes: Electrochemical Performance, Structure, and the Effect of the Aluminum Fluoride Coating", Journal of The Electrochemical Society, 160, A2220-A2233 (2013).
    連結:
  112. 117. H. Deng, I. Belharouak, C. S. Yoon, Y. K. Sun, K. Amine. "High Temperature Performance of Surface-Treated Li1.1(Ni0.15Co0.1Mn0.55)O1.95 Layered Oxide", Journal of The Electrochemical Society, 157, A1035-A1039 (2010).
    連結:
  113. 118. C. R. Wu, X. P. Fang, X. W. Guo, Y. Mao, J. Ma, C. C. Zhao, Z. X. Wang, L. Q. Chen. "Surface modification of Li1.2Mn0.54Co0.13Ni0.13O2 with conducting polypyrrole", Journal of Power Sources, 231, 44-49 (2013).
    連結:
  114. 119. D. Ahn, Y. M. Koo, M. G. Kim, N. Shin, J. Park, J. Eom, J. Cho, T. J. Shin. "Polyaniline Nanocoating on the Surface of Layered Li[Li0.2Co0.1Mn0.7]O2 Nanodisks and Enhanced Cyclability as a Cathode Electrode for Rechargeable Lithium-Ion Battery", Journal of Physical Chemistry C, 114, 3675-3680 (2010).
    連結:
  115. 120. C. Arbizzani, A. Balducci, M. Mastragostino, M. Rossi, F. Soavi. "Characterization and electrochemical performance of Li-rich manganese oxide spinel/poly(3,4-ethylenedioxythiophene) as the positive electrode for lithium-ion batteries", Journal of Electroanalytical Chemistry, 553, 125-133 (2003).
    連結:
  116. 121. J. Liu, Q. Y. Wang, B. Reeja-Jayan, A. Manthiram. "Carbon-coated high capacity layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathodes", Electrochemistry Communications, 12, 750-753 (2010).
    連結:
  117. 122. L. N. Cong, X. G. Gao, S. C. Ma, X. Guo, Y. P. Zeng, L. H. Tai, R. S. Wang, H. M. Xie, L. Q. Sun. "Enhancement of electrochemical performance of Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with Li4Ti5O12", Electrochimica Acta, 115, 399-406 (2014).
    連結:
  118. 123. Q. Q. Qiao, H. Z. Zhang, G. R. Li, S. H. Ye, C. W. Wang, X. P. Gao. "Surface modification of Li-rich layered Li(Li0.17Ni0.25Mn0.58)O2 oxide with Li-Mn-PO4 as the cathode for lithium-ion batteries", Journal of Materials Chemistry A, 1, 5262-5268 (2013).
    連結:
  119. 124. B. Liu, Q. Zhang, S. C. He, Y. C. Sato, J. W. Zheng, D. C. Li. "Improved electrochemical properties of Li1.2Ni0.18Mn0.59Co0.03O2 by surface modification with LiCoPO4", Electrochimica Acta, 56, 6748-6751 (2011).
    連結:
  120. 125. C. C. Wang, A. Manthiram. "Influence of cationic substitutions on the first charge and reversible capacities of lithium-rich layered oxide cathodes", Journal of Materials Chemistry A, 1, 10209-10217 (2013).
    連結:
  121. 126. Y. K. Sun, M. G. Kim, S. H. Kang, K. Amine. "Electrochemical performance of layered Li[Li0.15Ni0.275-xMgxMn0.575]O2 cathode materials for lithium secondary batteries", Journal of Materials Chemistry, 13, 319-322 (2003).
    連結:
  122. 127. J. H. Park, J. Lim, J. Yoon, K. S. Park, J. Gim, J. Song, H. Park, D. Im, M. Park, D. Ahn, Y. Paik, J. Kim. "The effects of Mo doping on 0.3Li[Li0.33Mn0.67]O2・0.7Li[Ni0.5Co0.2Mn0.3]O2 cathode material", Dalton Transactions, 41, 3053-3059 (2012).
    連結:
  123. 128. G. Singh, R. Thomas, A. Kumar, R. S. Katiyar. "Electrochemical Behavior of Cr- Doped Composite Li2MnO3-LiMn0.5Ni0.5O2 Cathode Materials", Journal of The Electrochemical Society, 159, A410-A420 (2012).
    連結:
  124. 129. H. J. Yu, H. S. Zhou. "Initial Coulombic efficiency improvement of the Li1.2Mn0.567Ni0.166Co0.067O2 lithium-rich material by ruthenium substitution for manganese", Journal of Materials Chemistry, 22, 15507-15510 (2012).
    連結:
  125. 130. Z. Li, N. A. Chernova, J. J. Feng, S. Upreti, F. Omenya, M. S. Whittingham. "Stability and Rate Capability of Al Substituted Lithium-Rich High-Manganese Content Oxide Materials for Li-Ion Batteries", Journal of The Electrochemical Society, 159, A116-A120 (2012).
    連結:
  126. 131. L. F. Jiao, M. Zhang, H. T. Yuan, M. Zhao, H. Guo, W. Wang, X. Di Zhou, Y. M. Wang. "Effect of Cr doping on the structural, electrochemical properties of Li[Li0.2Ni0.2-x/2Mn0.6-x/2Crx]O2 (x=0, 0.02, 0.04, 0.06, 0.08) as cathode materials for lithium secondary batteries", Journal of Power Sources, 167, 178-184 (2007).
    連結:
  127. 132. Z. Q. Deng, A. Manthiram. "Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes", Journal of Physical Chemistry C, 115, 7097-7103 (2011).
    連結:
  128. 133. H. Deng, I. Belharouak, H. Wu, D. Dambournet, K. Amine. "Effect of Cobalt Incorporation and Lithium Enrichment in Lithium Nickel Manganese Oxides", Journal of The Electrochemical Society, 157, A776-A781 (2010).
    連結:
  129. 134. H. X. Li, L. Z. Fan. "Effects of fluorine substitution on the electrochemical performance of layered Li-excess nickel manganese oxides cathode materials for lithium-ion batteries", Electrochimica Acta, 113, 407-411 (2013).
    連結:
  130. 135. S. H. Kang, K. Amine. "Layered Li(Li0.2Ni0.15+0.5zCo0.10Mn0.55-0.5z)O2-zFz cathode materials for Li-ion secondary batteries", Journal of Power Sources, 146, 654-657 (2005).
    連結:
  131. 136. S. W. Cho, G. O. Kim, K. S. Ryu. "Sulfur anion doping and surface modification with LiNiPO4 of a Li[Co0.1Ni0.15Li0.2Mn0.55]O2 cathode material for Li-ion batteries", Solid State Ionics, 206, 84-90 (2012).
    連結:
  132. 137. S. K. Martha, J. Nanda, G. M. Veith, N. J. Dudney. "Electrochemical and rate performance study of high-voltage lithium-rich composition: Li1.2Mn0.525Ni0.175Co0.1O2", Journal of Power Sources, 199, 220-226 (2012).
    連結:
  133. 138. A. Ito, D. Li, Y. Ohsawa, Y. Sato. "A new approach to improve the high-voltage cyclic performance of Li-rich layered cathode material by electrochemical pre-treatment", Journal of Power Sources, 183, 344-346 (2008).
    連結:
  134. 139. A. R. Armstrong, N. Dupre, A. J. Paterson, C. P. Grey, P. G. Bruce. "Combined neutron diffraction, NMR, and electrochemical investigation of the layered-to-spinel transformation in LiMnO2", Chemistry of Materials, 16, 3106-3118 (2004).
    連結:
  135. 140. B. Xu, D. N. Qian, Z. Y. Wang, Y. S. L. Meng. "Recent progress in cathode materials research for advanced lithium ion batteries", Materials Science & Engineering R-Reports, 73, 51-65 (2012).
    連結:
  136. 141. M. Gu, I. Belharouak, J. M. Zheng, H. M. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J. G. Zhang, N. D. Browning, J. Liu, C. M. Wang. "Formation of the Spinel Phase in the Layered Composite Cathode Used in Li-Ion Batteries", Acs Nano, 7, 760-767 (2013).
    連結:
  137. 142. J. M. Zheng, M. Gu, J. Xiao, P. J. Zuo, C. M. Wang, J. G. Zhang. "Corrosion/Fragmentation of Layered Composite Cathode and Related Capacity/Voltage Fading during Cycling Process", Nano Letters, 13, 3824-3830 (2013).
    連結:
  138. 144. X. Y. Liu, J. L. Liu, T. Huang, A. S. Yu. "CaF2-coated Li1.2Mn0.54Ni0.13Co0.13O2 as cathode materials for Li-ion batteries", Electrochimica Acta, 109, 52-58 (2013).
    連結:
  139. 145. J. H. Kim, M. S. Park, J. H. Song, D. J. Byun, Y. J. Kim, J. S. Kim. "Effect of aluminum fluoride coating on the electrochemical and thermal properties of 0.5Li2MnO3・0.5LiNi0.5Co0.2Mn0.3O2 composite material", Journal of Alloys and Compounds, 517, 20-25 (2012).
    連結:
  140. 146. M. Bettge, Y. Li, K. Gallagher, Y. Zhu, Q. L. Wu, W. Q. Lu, I. Bloom, D. P. Abraham. "Voltage Fade of Layered Oxides: Its Measurement and Impact on Energy Density", Journal of The Electrochemical Society, 160, A2046-A2055 (2013).
    連結:
  141. 147. J. R. Croy, D. Kim, M. Balasubramanian, K. Gallagher, S. H. Kang, M. M. Thackeray. "Countering the Voltage Decay in High Capacity xLi2MnO3・(1-x)LiMO2 Electrodes (M=Mn, Ni, Co) for Li+-Ion Batteries", Journal of The Electrochemical Society, 159, A781-A790 (2012).
    連結:
  142. 148. D. Kim, G. Sandi, J. R. Croy, K. G. Gallagher, S. H. Kang, E. Lee, M. D. Slater, C. S. Johnson, M. M. Thackeray. "Composite 'Layered-Layered-Spinel' Cathode Structures for Lithium-Ion Batteries", Journal of The Electrochemical Society, 160, A31-A38 (2013).
    連結:
  143. 149. X. K. Yang, D. Wang, R. Z. Yu, Y. S. Bai, H. B. Shu, L. Ge, H. P. Guo, Q. L. Wei, L. Liu, X. Y. Wang. "Suppressed capacity/voltage fading of high-capacity lithium-rich layered materials via the design of heterogeneous distribution in the composition", Journal of Materials Chemistry A, 2, 3899-3911 (2014).
    連結:
  144. 150. M. N. Ates, S. Mukerjee, K. M. Abraham. "A Li-Rich Layered Cathode Material with Enhanced Structural Stability and Rate Capability for Li-on Batteries", Journal of The Electrochemical Society, 161, A355-A363 (2014).
    連結:
  145. 151. K. S. Lee, S. T. Myung, H. J. Bang, S. J. Chung, Y. K. Sun. "Co-precipitation synthesis of spherical Li1.05M0.05Mn1.9O4 (M = Ni, Mg, Al) spinel and its application for lithium secondary battery cathode", Electrochimica Acta, 52, 5201-5206 (2007).
    連結:
  146. 152. Z. H. Lu, J. R. Dahn. "Structure and electrochemistry of layered Li[CrxLi(1/3-x3)Mn(2/3-2x/3)]O2", Journal of The Electrochemical Society, 149, A1454-A1459 (2002).
    連結:
  147. 153. D. Y. W. Yu, K. Yanagida, Y. Kato, H. Nakamura. "Electrochemical Activities in Li2MnO3", Journal of The Electrochemical Society, 156, A417-A424 (2009).
    連結:
  148. 154. H. X. Deng, I. Belharouak, Y. K. Sun, K. Amine. "LixNi0.25Mn0.75Oy (0.5 ≤ x ≤ 2, 2 ≤ y ≤ 2.75) compounds for high-energy lithium-ion batteries", Journal of Materials Chemistry, 19, 4510-4516 (2009).
    連結:
  149. 155. S. Zhang, C. Deng, B. L. Fu, S. Y. Yang, L. Ma. "Synthetic optimization of spherical Li[Ni1/3Mn1/3Co1/3]O2 prepared by a carbonate co-precipitation method", Powder Technology, 198, 373-380 (2010).
    連結:
  150. 156. T. Wang, Z. H. Liu, L. H. Fan, Y. F. Han, X. H. Tang. "Synthesis optimization of Li1+x[Mn0.45Co0.40Ni0.15]O2 with different spherical sizes via co-precipitation", Powder Technology, 187, 124-129 (2008).
    連結:
  151. 157. G. M. Koenig, I. Belharouak, H. X. Deng, Y. K. Sun, K. Amine. "Composition-Tailored Synthesis of Gradient Transition Metal Precursor Particles for Lithium-Ion Battery Cathode Materials", Chemistry of Materials, 23, 1954-1963 (2011).
    連結:
  152. 158. D. K. Lee, S. H. Park, K. Amine, H. J. Bang, J. Parakash, Y. K. Sun. "High capacity Li[Li0.2Ni0.2Mn0.6]O2 cathode materials via a carbonate co-precipitation method", Journal of Power Sources, 162, 1346-1350 (2006).
    連結:
  153. 159. X. F. Luo, X. Y. Wang, L. Liao, S. Gamboa, P. J. Sebastian. "Synthesis and characterization of high tap-density layered Li[Ni1/3Co1/3Mn1/3]O2 cathode material via hydroxide co-precipitation", Journal of Power Sources, 158, 654-658 (2006).
    連結:
  154. 160. C. S. Johnson, N. Li, J. T. Vaughey, S. A. Hackney, M. M. Thackeray. "Lithium-manganese oxide electrodes with layered-spinel composite structures xLi2MnO3・(1-x)Li1+yMn2-yO4 (0 < x < 1, 0 ≤ y ≤ 0.33) for lithium batteries", Electrochemistry Communications, 7, 528-536 (2005).
    連結:
  155. 161. J. M. Atebamba, J. Moskon, S. Pejovnik, M. Gaberscek. "On the Interpretation of Measured Impedance Spectra of Insertion Cathodes for Lithium-Ion Batteries", Journal of The Electrochemical Society, 157, A1218-A1228 (2010).
    連結:
  156. 162. A. Dell'Era, M. Pasquali. "Comparison between different ways to determine diffusion coefficient and by solving Fick's equation for spherical coordinates", Journal of Solid State Electrochemistry, 13, 849-859 (2009).
    連結:
  157. 163. K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari. "EIS and GITT studies on oxide cathodes, O2-Li(2/3)+x(Co0.15Mn0.85)O2 (x=0 and 1/3)", Electrochimica Acta, 48, 2691-2703 (2003).
    連結:
  158. 164. K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari. "Influence of Li-ion kinetics in the cathodic performance of layered Li(Ni1/3Co1/3Mn1/3)O2", Journal of The Electrochemical Society, 151, A1324-A1332 (2004).
    連結:
  159. 165. M. Park, X. C. Zhang, M. D. Chung, G. B. Less, A. M. Sastry. "A review of conduction phenomena in Li-ion batteries", Journal of Power Sources, 195, 7904-7929 (2010).
    連結:
  160. 166. K. M. Shaju, G. V. S. Rao, B. V. R. Chowdari. "Li-ion kinetics and polarization effect on the electrochemical performance of Li(Ni1/2Mn1/2)O2", Electrochimica Acta, 49, 1565-1576 (2004).
    連結:
  161. 167. P. Gao, Y. H. Li, H. D. Liu, J. Pinto, X. F. Jiang, G. Yang. "Improved High Rate Capacity and Lithium Diffusion Ability of LiNi1/3Co1/3Mn1/3O2 with Ordered Crystal Structure", Journal of The Electrochemical Society, 159, A506-A513 (2012).
    連結:
  162. 168. J. Li, R. Klopsch, M. C. Stan, S. Nowak, M. Kunze, M. Winter, S. Passerini. "Synthesis and electrochemical performance of the high voltage cathode material Li[Li0.2Mn0.56Ni0.16Co0.08]O2 with improved rate capability", Journal of Power Sources, 196, 4821-4825 (2011).
    連結:
  163. 169. F. Li, S. X. Zhao, K. Z. Wang, B. H. Li, C. W. Nan. "Structural and electrochemical performance of layered high-Mn cathode materials Li1+n[NimComMn1-2m]O2 for lithium rechargeable batteries", Electrochimica Acta, 97, 17-22 (2013).
    連結:
  164. 170. Y. K. Sun, S. T. Myung, M. H. Kim, J. Prakash, K. Amine. "Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries", Journal of the American Chemical Society, 127, 13411-13418 (2005).
    連結:
  165. 171. P. Kalyani, N. Kalaiselvi. "Various aspects of LiNiO2 chemistry: A review", Science and Technology of Advanced Materials, 6, 689-703 (2005).
    連結:
  166. 172. R. J. Xiao, H. Li, L. Q. Chen. "Density Functional Investigation on Li2MnO3", Chemistry of Materials, 24, 4242-4251 (2012).
    連結:
  167. 173. D. P. Abraham, R. D. Twesten, M. Balasubramanian, I. Petrov, J. McBreen, K. Amine. "Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells", Electrochemistry Communications, 4, 620-625 (2002).
    連結:
  168. 174. A. K. Geim, K. S. Novoselov. "The rise of graphene", Nature Materials, 6, 183-191 (2007).
    連結:
  169. 175. S. Park, R. S. Ruoff. "Chemical methods for the production of graphenes", Nature Nanotechnology, 4, 217-224 (2009).
    連結:
  170. 176. B. H. Song, M. O. Lai, Z. W. Liu, H. W. Liu, L. Lu. "Graphene-based surface modification on layered Li-rich cathode for high-performance Li-ion batteries", Journal of Materials Chemistry A, 1, 9954-9965 (2013).
    連結:
  171. 177. S. J. R. Prabakar, Y. H. Hwang, B. Lee, K. S. Sohn, M. Pyo. "Graphene-Sandwiched LiNi0.5Mn1.5O4 Cathode Composites for Enhanced High Voltage Performance in Li Ion Batteries", Journal of The Electrochemical Society, 160, A832-A837 (2013).
    連結:
  172. 178. B. Wang, D. L. Wang, Q. M. Wang, T. F. Liu, C. F. Guo, X. S. Zhao. "Improvement of the electrochemical performance of carbon-coated LiFePO4 modified with reduced graphene oxide", Journal of Materials Chemistry A, 1, 135-144 (2013).
    連結:
  173. 179. X. Z. Liu, H. Q. Li, D. Li, M. Ishida, H. S. Zhou. "PEDOT modified LiNi1/3Co1/3Mn1/3O2 with enhanced electrochemical performance for lithium ion batteries", Journal of Power Sources, 243, 374-380 (2013).
    連結:
  174. 180. M. C. Kim, S. H. Kim, V. Aravindan, W. S. Kim, S. Y. Lee, Y. S. Lee. "Ultrathin Polyimide Coating for a Spinel LiNi0.5Mn1.5O4 Cathode and Its Superior Lithium Storage Properties under Elevated Temperature Conditions", Journal of The Electrochemical Society, 160, A1003-A1008 (2013).
    連結:
  175. 181. Y. J. Xia, K. Sun, J. Y. Ouyang. "Solution-Processed Metallic Conducting Polymer Films as Transparent Electrode of Optoelectronic Devices", Advanced Materials, 24, 2436-2440 (2012).
    連結:
  176. 182. Y. Yang, G. H. Yu, J. J. Cha, H. Wu, M. Vosgueritchian, Y. Yao, Z. A. Bao, Y. Cui. "Improving the Performance of Lithium-Sulfur Batteries by Conductive Polymer Coating", Acs Nano, 5, 9187-9193 (2011).
    連結:
  177. 4. G. A. Nazri, G. Pistoia. Lithium batteries - Science and technology. Kluwer Academic Publishers, Boston (2004).
  178. 45. J. Bareno, M. Balasubramanian, S. H. Kang, J. G. Wen, C. H. Lei, S. V. Pol, I. Petrov, D. P. Abraham. "Long-Range and Local Structure in the Layered Oxide Li1.2Co0.4Mn0.4O2", Chemistry of Materials, 23, 2039-2050 (2011).
  179. 62. Z. H. Lu, Z. H. Chen, J. R. Dahn. "Lack of cation clustering in Li[NixLi1/3-2x/3Mn2/3-x/3]O2 (0 < x ≤ 1/2) and Li[CrxLi(1-x)/3Mn(2-2x)/3]O2 (0 < x < 1)", Chemistry of Materials, 15, 3214-3220 (2003).
  180. 67. M. M. Thackeray, W. I. F. David, P. G. Bruce, J. B. Goodenough. "Lithium Insertion into Manganese Spinels", Materials Research Bulletin, 18, 461-472 (1983).
  181. 111. W. B. Nie, Q. C. Xiao, J. L. Wang, G. T. Lei, Q. Z. Xiao, Z. H. Li. "Preparation of Li1.2Mn0.54Co0.13Ni0.13O2@V2O5 Core-shell Composite and Its Electrochemical Properties", Journal of Inorganic Materials, 29, 257-263 (2014).
  182. 143. I. Bloom, L. Trahey, A. Abouimrane, I. Belharouak, X. F. Zhang, Q. L. Wu, W. Q. Lu, D. P. Abraham, M. Bettge, J. W. Elam, X. B. Meng, A. K. Burrell, C. M. Ban, R. Tenent, J. Nanda, N. Dudney. "Effect of interface modifications on voltage fade in 0.5Li2MnO3・0.5LiNi0.375Mn0.375CO0.25O2 cathode materials", Journal of Power Sources, 249, 509-514 (2014).