题名

分離式圓形雙簧壓電薄膜泵之設計與性能研究

并列篇名

Study of Separable Diaphragm Micro-pump Actuated by Circular Bimorph Piezo Disk

DOI

10.6342/NTU.2015.02766

作者

于寧祥

关键词

壓電片 ; 雙簧 ; 微型泵 ; 可拋棄 ; 傳力柱 ; disposable ; piezoelectric ; circular bimorph piezo disk ; micro-pump ; valveless ; plunger

期刊名称

國立臺灣大學機械工程學系學位論文

卷期/出版年月

2015年

学位类别

碩士

导师

馬小康

内容语文

繁體中文

中文摘要

本研究提出可應用於微型輸液之分離式壓電泵浦,整體微型泵採用組合式設計,選用漸擴管作為流向控制元件,並採用輸出力量較大之雙簧圓形壓電片為致動器,藉由傳力柱與薄膜傳遞動能給流體。組裝時,塗佈一層黏膠以確保氣密性與薄膜平整度,提升幫浦之流量穩定性,以進行各參數影響評估。實驗設計參數包含:壓電片基板厚度、薄膜材質與厚度、傳力柱與腔體直徑大小,同時以理論分析各元件對於流量的影響,最後選擇最佳化之泵浦進行效能測試,觀察此分離式微型泵的流量穩定性、揚程及效率表現。 研究結果顯示,在薄膜選擇上,楊氏模數較大之非彈性體,其流量表現較彈性體材料為佳;而較薄之壓電片基板其變形曲率較大,故流量較大,並以0.2mm厚的黃銅基板為最佳;此外,在固定柱腔比(傳力柱與腔體直徑比值)下,腔體直徑由26mm 縮小至15mm 能使流量從1675μl/min提升至2686μl/min;另一方面,因壓電片在不同條件下之變形量具顯著差異,故在定義腔體大小與最佳柱腔比之關係時,需同時評估每次壓縮體積與等效彈性係數之影響。最後,本研究之最佳化分離式無閥微型泵可提供最大流量為7549μl/min,揚程為1.5kPa,誤差控制於±5%。

英文摘要

In this study, a separable piezoelectric micro-pump which can be applied in medical and chemical infusion was presented. The structure includes nozzle/diffuser for valveless design, the plunger and a diaphragm for delivering the kinetic energy to fluid, and a circular bimorph piezo disk for offering sufficient force. Also, in purpose to easily test the influence of parameters, the separable pump was formed through assembly. Further, glue spreading can assure airtight character and diaphragm smoothness. Five parameters such as working frequency, diaphragm properties, the thickness of the passive plate in the actuator, ratio of plunger diameter to chamber diameter(Piston ratio, P), and chamber diameter are analyzed to evaluate the performance of the micro-pump. Eventually, the optimal micro-pump has been tested about its flow rate stability and pumping head. The experimental results indicate that plastic material is more appropriate than elastomer for separable pump, the thinner passive plate can perform bigger deflection, and different chamber diameter should combine with different Piston ratio to create more flow-rate. As a result, the optimal combination for the separable pump was achieved with 0.2mm thickness of the passive plate, 0.1 mm thickness PET diaphragm, 0.67 Piston ratio, 15mm chamber diameter, and working frequency in 45Hz. Maximum flow-rate can reach 7.5 ml/min while the maximum pumping head is 1.5kPa, also, the relative errors can be controlled in 5%.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. controlled piezoelectric insulin pump and valves," Sonics and Ultrasonics, IEEE
    連結:
  2. based on micromachining of silicon," Sensors and actuators, vol. 15, pp.
    連結:
  3. 153-167, 1988.
    連結:
  4. [3] E. Stemme and G. Stemme, "A valveless diffuser/nozzle-based fluid pump,"
    連結:
  5. [4] A. Ullmann, "The piezoelectric valve-less pump—performance enhancement
    連結:
  6. [5] D. Laser and J. Santiago, "A review of micropumps," Journal of
    連結:
  7. application of a diaphragm micro-pump with piezoelectric device," Microsystem
    連結:
  8. [7] H.K. Ma, B.R. Hou, C.Y. Lin, and J.J. Gao, "The improved performance of
    連結:
  9. one-side actuating diaphragm micropump for a liquid cooling system,"
    連結:
  10. International Communications in Heat and Mass Transfer, vol. 35, pp. 957-966,
    連結:
  11. [8] A.B. Wang and M.C. Hsieh, "Unveiling the missing transport mechanism inside
    連結:
  12. [9] T. Bourouina and J.P. Grandchamp, "Modeling micropumps with electrical
    連結:
  13. equivalent networks," Journal of Micromechanics and Microengineering, vol. 6,
    連結:
  14. p. 398, 1996.
    連結:
  15. [10] W. S. Oates and C. S. Lynch, "Piezoelectric hydraulic pump system dynamic
    連結:
  16. [11] S. Li and S. Chen, "Analytical analysis of a circular PZT actuator for valveless
    連結:
  17. micropumps," Sensors and Actuators A: Physical, vol. 104, pp. 151-161, 2003.
    連結:
  18. test of a high-performance piezoelectric micropump for drug delivery," Sensors
    連結:
  19. [13] T. Dinh and Y. Ogami, "A dynamic model of valveless micropumps with a fluid
    連結:
  20. 115016, 2011.
    連結:
  21. 110, pp. 1-7, 2005.
    連結:
  22. "Electromagnetically actuated ball valve micropumps," in Solid-State Sensors,
    連結:
  23. Actuators and Microsystems, 2005. Digest of Technical Papers.
    連結:
  24. TRANSDUCERS'05. The 13th International Conference on, 2005, pp. 192-196.
    連結:
  25. 1337-1339, 2009.
    連結:
  26. disposable micropump for fluidic delivery applications," Sensors and Actuators
    連結:
  27. "Modular Architecture of a Non-Contact Pinch Actuation Micropump," Sensors,
    連結:
  28. diffuser based micropump using pinch actuation," Advanced Materials Research,
    連結:
  29. [21] 徐聖惟, "腔體可分離式壓電薄膜微型泵之設計與效能分析," 碩士論文, 機
    連結:
  30. Institute of Technology, 1998.
    連結:
  31. flat-walled diffuser elements for valve-less micropumps," Sensors and Actuators
    連結:
  32. [25] C. Sun and K. Huang, "Numerical characterization of the flow rectification of
    連結:
  33. dynamic microdiffusers," Journal of Micromechanics and Microengineering, vol.
    連結:
  34. 16, p. 1331, 2006.
    連結:
  35. pp. 999-1007, 2008.
    連結:
  36. [27] M. Nabavi, "Steady and unsteady flow analysis in microdiffusers and
    連結:
  37. 599-619, 2009.
    連結:
  38. Marcel Dekker, Inc, 2001.
    連結:
  39. [1] W. Spencer, W. T. Corbett, L. Dominguez, and B. Shafer, "An electronically
  40. Transactions on, vol. 25, pp. 153-156, 1978.
  41. [2] H. Van Lintel, F. Van de Pol, and S. Bouwstra, "A piezoelectric micropump
  42. Sensors and Actuators A: physical, vol. 39, pp. 159-167, 1993.
  43. analysis," Sensors and Actuators A: Physical, vol. 69, pp. 97-105, 1998.
  44. micromechanics and microengineering, vol. 14, p. R35, 2004.
  45. [6] H. Ma, B. Hou, H. Wu, C. Lin, J. Gao, and M. Kou, "Development and
  46. Technologies, vol. 14, pp. 1001-1007, 2008.
  47. 2008.
  48. the valveless micropump," Lab on a Chip, vol. 12, pp. 3024-3027, 2012.
  49. model," Journal of intelligent material systems and structures, vol. 12, pp.
  50. 737-744, 2001.
  51. [12] K. Junwu, Y. Zhigang, P. Taijiang, C. Guangming, and W. Boda, "Design and
  52. and Actuators A: Physical, vol. 121, pp. 156-161, 2005.
  53. 47
  54. damping effect," Journal of Micromechanics and Microengineering, vol. 21, p.
  55. [14] J.H. Kim, C. Kang, and Y.S. Kim, "A disposable polydimethylsiloxane-based
  56. diffuser micropump actuated by piezoelectric-disc," Microelectronic
  57. Engineering, vol. 71, pp. 119-124, 2004.
  58. [15] C. Yamahata, F. Lacharme, Y. Burri, and M. A. Gijs, "A ball valve micropump in
  59. glass fabricated by powder blasting," Sensors and Actuators B: Chemical, vol.
  60. [16] C. Yamahata, F. Lacharme, J. Matter, S. Schnydrig, Y. Burri, and M. A. Gijs,
  61. [17] S.M. Ha, W. Cho, and Y. Ahn, "Disposable thermo-pneumatic micropump for
  62. bio lab-on-a-chip application," Microelectronic Engineering, vol. 86, pp.
  63. [18] M. L. Cantwell, F. Amirouche, and J. Citerin, "Low-cost high performance
  64. A: Physical, vol. 168, pp. 187-194, 2011.
  65. [19] P. S. Chee, R. Arsat, T. Adam, U. Hashim, R. A. Rahim, and P. L. Leow,
  66. vol. 12, pp. 12572-12587, 2012.
  67. [20] P. S. Chee, R. A. Rahim, U. Hashim, R. Arsat, and P. L. Leow, "Low cost
  68. vol. 422, pp. 397-400, 2012.
  69. 械工程研究所, 國立臺灣大學, 2014.
  70. [22] F. M. White, "Diffuser performance," in Fluid Mechanics, Sixth ed, 2008, pp.
  71. 397-401.
  72. [23] A. Olsson, "Valve-less Diffuser Micropumps," Electrical Engineering, Royal
  73. [24] A. Olsson, G. Stemme, and E. Stemme, "Numerical and experimental studies of
  74. 48
  75. A: Physical, vol. 84, pp. 165-175, 2000.
  76. [26] S. Tanaka, H. Tsukamoto, and K. Miyazaki, "Development of diffuser/nozzle
  77. based valveless micropump," Journal of Fluid Science and Technology, vol. 3,
  78. micropumps: a critical review," Microfluidics and nanofluidics, vol. 7, pp.
  79. [28] 周卓明, 壓電力學. 臺北市: 全華科技圖書股份有限公司, 2003.
  80. [29] S. Singh, N. Kumar, D. George, and A. Sen, "Analytical modeling, simulations
  81. and experimental studies of a PZT actuated planar valveless PDMS
  82. micropump," Sensors and Actuators A: Physical, vol. 225, pp. 81-94, 2015.
  83. [30] E. Ventsel and T. Krauthammer, "Circular plates," in Thin Plates and Shells
  84. Theory, Analysis, and Applications, ed The Pennsylvania State University: