题名

統計模型於新冠肺炎防疫評估

并列篇名

Statistical Models for Evaluating COVID-19 Pandemic

DOI

10.6342/NTU202101901

作者

王威淳

关键词

新冠肺炎 ; 機器學習 ; 馬可夫模型 ; 解封指數 ; 精準監測 ; COVID-19 ; Machine learning ; Markov model ; Social distancing index ; Precision surveillance

期刊名称

國立臺灣大學流行病學與預防醫學研究所學位論文

卷期/出版年月

2022年

学位类别

博士

导师

陳秀熙

内容语文

英文

中文摘要

背景 面對新冠肺炎大流行下不同高關注變異株 (VOC) 持續出現,急需新穎的統計模型方法了解疾病的流行與影響。因此,本論文的研究目的包括兩個部分:第一部分是發展機器學習方法於族群層級防疫作為的評估,結合無監督和監督方式,評估在COVID-19不同波流行之下NPIs作為和疫苗接種對社區疫情爆發的影響;第二部分則是發展一系列隨機過程模式估計個人層級從感染、症狀前期到症狀期的自然進展,並應用於邊境控制的精準監測及不同病毒量層級轉的轉轉移以進行流行病學監測。 材料與方法 本論文使用2020年至2022年1月間全球開放式資料進行分析,包括考量疫苗施打情境下解封指數(Social Distancing Index, SDI)、有效再生數等。並利用臺灣地區2021年5月至7月的社區感染資料,結合人口學特徵、症狀和個人病毒量進行個人層級自然病史統計模型的估計。首先,以易感-感染-傳染-恢復(SEIR)模型估計有效再生數(Rt)。結合無監督及監督機器學習方法預測COVID-19的傳播式,開發貝氏隨機多階段馬可夫模型,估計COVID-19疾病進展,以此為基礎進行電腦模擬並提供不同邊境控制精準策略的預期結果。最後,發展病毒量導引馬可夫模型,以四階段馬可夫回歸模式和九階段離散時間馬可夫模型,用於模擬個案在恢復前於不同隱狀態(Hidden State)之間與病毒量相關的詳細動態轉換。 結果 從2021年1月1日到2022年1月22日,全球的流行病至少有三波流行。2021年5月臺灣社區流行的實證資料顯示NPI手段和檢測在前爆發剛開始的兩周估計其降低流行的效益達60%,並在2021年6月14日之後增强到超過90%,同時Rt從2021年5月的4.40下降到7月的0.29。 本論文使用的監督機器學習三種(SVM、邏輯斯回歸和貝氏網絡(Bayesian Network, BN))中,BN在AUC方面表現最為出色,其次則為邏輯斯回歸和SVM。BN將全球流行資料區分為兩個群集:疫苗主導群集(群集1)及NPI主導群集(群集2)。 利用臺灣2020年3月至2022年1月境外移入個案估計個人層級疾病進展模式,本論文將資料依變異株種類及流行趨勢分為7個時期,包括兩期D614G、兩期Alpha、兩期Delta,及近期Omicron。在D614G-1時期,無症狀COVID-19的每日發生率估計爲109(每10萬人)(95%信賴區間(CI):98-121),D614G-2時期下降到40(95% CI:30-51),Alpha-1時期回到163(95% CI:141-188),在疫苗廣泛接種的Alpha-2、Delta-1和Delta-2時期發生率再次分別下降到117(95% CI。100-135)、97(95%CI:77-120)和112(95%CI:90-134),而最近出現的VOC Omicron期則又使發生率重新上升到317(95%CI:267-371)。若以5天隔離期估算,Omicron將累積最多從症狀前期發展到症狀期的個案(94%),其次是Delta(74%和80%於兩時期)、Alpha VOC(74%和66%於兩時期)及D614G(80%和74%於兩時期)。 利用隱藏馬可夫模式分析臺灣地區2021年5月至7月本土個案重覆Ct值變化可將個案分為五種狀態:低風險、中風險、高風險、極高風險和康復狀態,這五種隱狀態對應的放射高斯機率(Emission Probability)分佈之平均值分別爲45.0、34.2、29.9、23.8和15.8。其轉移機率矩陣則顯示病患在病程中不同Ct值變化傾向由低值(轉高風險)至高值(較低風險)。 從上述隱藏馬可夫模式的結果,我們進一步以Ct值15及25將病毒量分為三層,結合個案症狀發生建構四階段馬可夫模式,分析不同病毒量對症狀發生的勝算比及對潛伏時間的影響,結果發現中病毒量(15≦Ct<25)和高病毒量(Ct<15)比低病毒量(Ct≧25)的症狀發生勝算比分別為3.04(2.43 - 3.61)和10.87(1.69 - 44.90)。中病毒量和高病毒量有較短的潛伏時間。 將病毒量變化視為不同階段並估計其多階段病程,結果顯示不論在症狀前期或症狀期,疾病進展朝向高Ct水平(低病毒量)進展的速度比向低Ct水平(高病毒量)方向進展速度快。若比較不同Ct層級由症狀前期進展到症狀期的速率則發現低Ct水平的患者進展至症狀期的速率較高。一旦進入症狀期,向高Ct水平進展的速度比症狀前期階段的速率快。 結論 本論文以一系列系統性的新穎統計模型預測社區流行介入措施之效益,估計考量疫苗施打情境下的解封指數,評估遏制措施(包括NPIs、檢測和疫苗)的效益,並估計考量病毒變化之個人層級COVID-19疾病自然進展史,期望以科學的方法系統性的提供邊境管制實證效益評估和社區監測政策制定的寶貴訊息。

英文摘要

Background In the face of emerging variant of concern (VOC) on COVID-19 pandemic, the development of new epidemic modelling and approach is urgently needed. The objectives of this thesis therefore include two parts. The first part is to apply machine learning approach, combining the unsupervised and supervised methods, to assessing the influence of Non-Pharmaceutical Interventions (NPIs) and vaccine on community-acquired outbreaks given repeated surges of COVID-19 pandemic on population level; the second part is to develop a serial of stochastic process for modelling natural course of infectious process including pre-symptomatic and symptomatic phase for precision surveillance of border control and for modeling the detailed transitions of viral load level for epidemiological surveillance. Materials and Methods Open data repository in the period between 2020 and January 2022 were used for analysis. Information on demographic characteristic, symptom, and individual viral load were collected from community. The susceptible-exposed-infected-recovery model was used to estimate the effective productive number (Rt). Machine learning approach combining the unsupervised method and the supervised method was adopted to predict the spread of COVID-19. The four-state Markov model and computer simulation experiments with Bayesian underpinning was developed to model pre-symptomatic disease progression during incubation period to provide precision strategies for border control. The effect of viral-load was considered with two approaches, one regression approach and nine-state discrete-time Markov model approach. Ct-guided Markov model was applied to modelling the detailed dynamic transitions between different hidden states in relation to Ct before recovery. Results The epidemics in the globe had at least three waves of epidemics from January 1st 2021 to January 22th 2022. Fitting the observational data on Taiwan community-acquired outbreak in May 2021, over 60 % of the effectiveness by NPI and testing in the first two weeks was estimated and enhanced to over 90% after June 14 2021. Rt decreased from 4.40 to 0.29 from May 18, 2021 to July 17, 2021. Among the three supervised ML approach (SVM, logistic regression, and BN) embedded in the hierarchical supervision machine learning, BN demonstrated the superior performance in terms of AUC (87% in cluster 1 and 86% in cluster 2 for training datasets and 75% in cluster 1 and 70% in cluster 2 for validation datasets) followed by logistic regression and SVM. BN classified the global epidemic data into two clusters: the immunity dominant cluster (cluster 1) and the mitigation strategy dominant cluster (cluster 2). The overall daily rate (per 100,000) of pre-symptomatic COVID-19 cases was estimated as 109 (95% confidence interval (CI): 98-121) in D614G-1 epoch, fell to 40 (95% CI: 30-51) in D614G-2 epoch, resurged to 163 (95% CI: 141-188) in Alpha-1 epoch, declined again to 117 (95% CI: 100-135), 97 (95% CI: 77-120) and 112 (95% CI: 90-134) in Alpha-2, Delta-1, and Delta-2 epoch, respectively, when vaccine was widely administered, and resurged again to 317 (95% CI: 267-371) in the recently emerging VOC Omicron epoch. The probability of progression from pre-symptomatic to symptomatic phase in 5-day quarantine was the highest for Omicron (94%) followed by Delta (74% and 80% in two periods), Alpha VOC (74% and 66% in two periods), followed by D614G (80% and 74% in two periods). The mean of Gaussian emission distribution of Ct value for the five hidden states, namely the low risk (state 2), medium risk (state 3), high risk (state 4), extremely high risk (state 5), and the recovery status (state 1) were estimated as 45.0, 34.2, 29.9, 23.8, and 15.8, respectively. The transition probabilities between these five states indicate that dynamic changes of viral load are more likely from the low to the high low Ct level. Guided by hidden states of Ct level, the high level of viral shedding was associated with higher proportion of being symptomatic. The odds ratios of medium (15Ct<25) and high level (Ct<15) levels were 3.04 (2.43, 3.61) and 10.87 (1.69, 44.90) than low level (Ct25), respectively. Both medium and high level was associated with shorter incubation time. The estimated results show the disease progression towards high Ct level (lower viral shedding) was faster than that towards the detrimental direction in both pre-symptomatic and symptomatic phases. Patients with low Ct level were more likely to develop symptoms compared with high Ct level. Once entering the symptomatic phase, the transition rates towards higher levels of Ct became faster than their counterparts in the pre-symptomatic phase. Conclusion A series of new statistical models with a systematic approach were developed for predicting community-acquired outbreaks with interventions, estimating updated social distancing index, evaluating the effectiveness containment measures (including NPIs, testing, and vaccine), and modelling the occurrence and progression of pre-symptomatic and symptomatic COVID-19 cases in parallel with the evolution of viral shedding. All results provide valuable information for evidence-based policy-making on surveillance of border control and community.

主题分类 醫藥衛生 > 預防保健與衛生學
公共衛生學院 > 流行病學與預防醫學研究所
参考文献
  1. Abdelrahman Z, Liu Q, Jiang S, Li M, Sun Q, Zhang Y, et al. Evaluation of the Current Therapeutic Approaches for COVID-19: A Systematic Review and a Meta-analysis. Front Pharmacol 2021;12:607408.
  2. Adam D. A guide to R - the pandemic's misunderstood metric. Nature 2020;583:346-8.
  3. Ahmadi A, Fadaei Y, Shirani M, Rahmani F. Modeling and forecasting trend of COVID-19 epidemic in Iran until May 13, 2020. Med J Islam Repub Iran 2020;34:27.
  4. Appleby J. Will covid-19 vaccines be cost effective-and does it matter? BMJ. 2020 Nov 26;371:m4491. doi: 10.1136/bmj.m4491.
  5. Arab-Mazar Z, Sah R, Rabaan AA, Dhama K, Rodriguez-Morales AJ. Mapping the incidence of the COVID-19 hotspot in Iran - Implications for Travellers. Travel Med Infect Dis 2020;34:101630.
  6. Baden LR, El Sahly HM, Essink B, et al. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med 2021;384: 403-416.
  7. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, et al; COVE Study Group. Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. N Engl J Med. 2021 Feb 4;384(5):403-416. doi: 10.1056/NEJMoa2035389.
  8. Badshah SL, Ullah A. Spread of coronavirus disease-19 among devotees during religious congregations. Ann Thorac Med 2020;15:105-6.
  9. Becker MG, Taylor T, Kiazyk S, Cabiles DR, Meyers AFA, Sandstrom PA. Recommendations for sample pooling on the Cepheid GeneXpert® system using the Cepheid Xpert® Xpress SARS-CoV-2 assay. PLoS One. 2020 Nov 9;15(11):e0241959. doi: 10.1371/journal.pone.0241959.
  10. Bedford T, Greninger AL, Roychoudhury P, Starita LM, Famulare M, Huang ML, et al. Cryptic transmission of SARS-CoV-2 in Washington state. Science 2020;370:571-5.
  11. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19—Preliminary Report. N Engl J Med 2020; 383(10):993-994.
  12. Beigel JH, Tomashek KM, Dodd LE, Mehta AK, Zingman BS, Kalil AC, et al. Remdesivir for the Treatment of Covid-19 - Final Report. N Engl J Med 2020;383(19):1813–26.
  13. Bellavance F, Dionne G, Lebeau M. The value of a statistical life: a meta-analysis with a mixed effects regression model. J Health Econ 2009;28:444-64. doi: 10.1016/j.jhealeco.2008.10.013.
  14. Bernard Stoecklin S, Rolland P, Silue Y, Mailles A, Campese C, Simondon A, et al. First cases of coronavirus disease 2019 (COVID-19) in France: surveillance, investigations and control measures, January 2020. Euro Surveill. 2020;25:2000094.
  15. Bertuzzo E, Mari L, Pasetto D, Miccoli S, Casagrandi R, Gatto M, et al. The geography of COVID-19 spread in Italy and implications for the relaxation of confinement measures. Nat Commun 2020;11:4264.
  16. Bradley DT, Mansouri MA, Kee F, Garcia LMT. A systems approach to preventing and responding to COVID-19. EClinicalMedicine 2020;21:100325.
  17. Bruxvoort KJ, Sy LS, Qian L, et al. Effectiveness of mRNA-1273 against delta, mu, and other emerging variants of SARS-CoV-2: test negative case-control study. BMJ. 2021;375:e068848. Published 2021 Dec 15. doi:10.1136/bmj-2021-068848
  18. Burki TK. Omicron variant and booster COVID-19 vaccines. Lancet Respir Med. 2022;10(2):e17. doi:10.1016/S2213-2600(21)00559-2
  19. Byambasuren O, Cardona M, Bell K, Clark J, McLaws ML, Glasziou P. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis. JAMMI 2020; 5(4): 223-234. doi:/10.3138/jammi-2020-0030
  20. Cai Q, Huang D, Ou P, Yu H, Zhu Z, Xia Z, et al. COVID-19 in a Designated Infectious Diseases Hospital Outside Hubei Province, China. Allergy 2020;75:1742-52.
  21. Callaway, E., Ledford, H. How bad is Omicron? What scientists know so far. Nature, 2021, 600(7888), 197-199.
  22. Cao B, Wang Y, Wen D, Liu W, Wang J, Fan G, et al. A Trial of Lopinavir-Ritonavir in Adults Hospitalized with Severe Covid-19. N Engl J Med 2020;382:1787–99.
  23. Castillo JC, Ahuja A, Athey S, Baker A, Budish E, Chipty T, et al. Market design to accelerate COVID-19 vaccine supply. Science 2021;371(6534):1107-1109. doi: 10.1126/science.abg0889.
  24. Cavalcanti AB, Zampieri FG, Rosa RG, Azevedo LCP, Veiga VC, Avezum A, et al. Hydroxychloroquine with or without Azithromycin in Mild-to-Moderate Covid-19. N Engl J Med 2020;383:2041–52.
  25. Challen R, Brooks-Pollock E, Read JM, Dyson L, Tsaneva-Atanasova K, Danon L. Risk of mortality in patients infected with SARS-CoV-2 variant of concern 202012/1: matched cohort study. BMJ. 2021;372:n579. Published 2021 Mar 9. doi:10.1136/bmj.n579
  26. Chan JF, Yuan S, Kok KH, To KK, Chu H, Yang J, et al. A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: a study of a family cluster. Lancet 2020;395:514-23.
  27. Chang MC, Baek JH, Park D. Lessons from South Korea Regarding the Early Stage of the COVID-19 Outbreak. Healthcare 2020;8:229.
  28. Chen CP, Lin YC, Chen TC, Tseng TY, Wong HL, Kuo CY, et al. A multicenter, randomized, open-label, controlled trial to evaluate the efficacy and tolerability of hydroxychloroquine and a retrospective study in adult patients with mild to moderate coronavirus disease 2019 (COVID-19). PLoS One 2020;15:e0242763.
  29. Chen SL, Yen AM, Lai CC, Hsu CY, Chan CC, Chen TH. An Index for Lifting Social Distancing During the COVID-19 Pandemic: Algorithm Recommendation for Lifting Social Distancing. J Med Internet Res 2020;22:e22469.
  30. Cheng HY, Chueh YN, Chen CM, Jian SW, Lai SK, Liu DP. Taiwan's COVID-19 response: Timely case detection and quarantine, January to June 2020. J Formos Med Assoc 2020:S0929-6646(20)30502-7.
  31. Chinazzi M, Davis JT, Ajelli M, Gioannini C, Litvinova M, Merler S, et al. The effect of travel restrictions on the spread of the 2019 novel coronavirus (COVID-19) outbreak. Science. 2020;368:395-400.
  32. Chowell G, Ammon CE, Hengartner NW, Hyman JM. Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. J Theor Biol. 2006;241:193-204.
  33. Constantino-Shor C, Rani G, Olin S, Holmes C, Nasenbeny K. Containment of a COVID-19 Outbreak in an Inpatient Geriatric Psychiatry Unit. J Am Psychiatr Nurses Assoc 2021;27:77-82.
  34. Cutler DM, Summers LH. The COVID-19 Pandemic and the $16 Trillion Virus. JAMA. 2020;324(15):1495-1496. doi: 10.1001/jama.2020.19759.
  35. Dagan N, Barda N, Kepten E, Miron O, Perchik S, Katz MA, Hernán MA, Lipsitch M, Reis B, Balicer RD. BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting. N Engl J Med. 2021:NEJMoa2101765. doi: 10.1056/NEJMoa2101765.
  36. Daley, D. J., Gani, J. Epidemic modelling: an introduction (No. 15). Cambridge University Press; 2020.
  37. David Barber. Bayesian Reasoning and Machine Learning. Cambridge University Press. 2012.
  38. Deb B, Shah H, Goel S. Current global vaccine and drug efforts against COVID-19: Pros and cons of bypassing ani-mal trials. J Biosci 2020: 45: 82. doi: 10.1007/s12038-020-00053-2.4.
  39. Delamater PL, Street EJ, Leslie TF, Yang YT, Jacobsen KH. Complexity of the Basic Reproduction Number (R0). Emerg Infect Dis 2019;25:1-4.
  40. Dong E, Du H, Gardner L. An interactive web-based dashboard to track COVID-19 in real time [published correction appears in Lancet Infect Dis. 2020;20(9):e215]. Lancet Infect Dis. 2020;20:533-534.
  41. Emanuel EJ, Persad G, Upshur R, Thome B, Parker M, Glickman A, et al. Fair Allocation of Scarce Medical Resources in the Time of Covid-19. N Engl J Med 2020;382:2049-55.
  42. Eurosurveillance editorial team. Rapid risk assessment from ECDC: Resurgence of reported cases of COVID-19 in the EU/EEA, the UK and EU candidate and potential candidate countries. Euro Surveill. 2020;25:2007021.
  43. Fauci AS, Lane HC, Redfield RR. Covid-19 - Navigating the Uncharted. N Engl J Med 2020;382:1268-9.
  44. Ferretti L, Wymant C, Kendall M, Zhao L, Nurtay A, Abeler-Dörner L, Parker M, Bonsall D, Fraser C. Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing. Science 2020; 368(6491):eabb6936. PMID: 32234805. doi: 10.1126/science.abb6936.
  45. Forster P, Forster L, Renfrew C, Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proc Natl Acad Sci U S A 2020;117:9241-3.
  46. Gandhi RT, Lynch JB, Del Rio C. Mild or Moderate Covid-19. N Engl J Med 2020;383:1757-66
  47. Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc Natl Acad Sci U S A 2020;117:10484-91.
  48. Giovanetti M, Benvenuto D, Angeletti S, Ciccozzi M. The first two cases of 2019-nCoV in Italy: Where they come from? J Med Virol 2020;92:518-21.
  49. Goyal A, Cardozo-Ojeda EF, Schiffer JT. Potency and timing of antiviral therapy as determinants of duration of SARS-CoV-2 shedding and intensity of inflammatory response. Sci Adv 2020;6:eabc7112.
  50. Grasselli G, Zangrillo A, Zanella A, Antonelli M, Cabrini L, Castelli A, et al. Baseline Characteristics and Outcomes of 1591 Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. JAMA. 2020;323:1574-1581.
  51. Grech V. Unknown unknowns - COVID-19 and potential global mortality. Early Hum Dev. 2020;144:105026.
  52. Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA, Eichinger S. Thrombotic Thrombocytopenia after ChAdOx1 nCov-19 Vaccination. N Engl J Med. 2021. doi: 10.1056/NEJMoa2104840.
  53. Guo YR, Cao QD, Hong ZS, Tan YY, Chen SD, Jin HJ, et al. The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak - an update on the status. Mil Med Res. 2020;7:11.
  54. Gupta R. Advancing new tools for infectious diseases. Science 2020;370:913-4.
  55. Hammitt JK. Valuing mortality risk in the time of COVID-19. Journal Risk Uncertainty 2020; 61:129–154. Doi:10.1007/s11166-020-09338-1.
  56. Hansen CH, Schelde AB, Moustsen-Helm IR, Emborg H-D, Krause TG, Mølbak K, et al. Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: A Danish cohort study. medRxiv.2021.12.20.21267966. preprint.
  57. Hansen et.al preprint: Vaccine effectiveness against SARS-CoV-2 infection with the Omicron or Delta variants following a two-dose or booster BNT162b2 or mRNA-1273 vaccination series: A Danish cohort study, 2022
  58. Hatchett RJ, Mecher CE, Lipsitch M. Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc Natl Acad Sci U S A. 2007;104:7582-7587.
  59. Hellewell J, Abbott S, Gimma A, Bosse NI, Jarvis CI, Russell TW, et al. Feasibility of controlling COVID-19 outbreaks by isolation of cases and contacts. Lancet Glob Health 2020;8:e488-e96.
  60. Hsu CY, Lai CC, Yeh YP, Chang-Chuan C, Chen HH. Progression from Pneumonia to ARDS as a Predictor for Fatal COVID-19. J Infect Public Health. 2021 Apr;14(4):504-507. doi: 10.1016/j.jiph.2020.12.026.
  61. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China [published correction appears in Lancet. 2020 Jan 30]. Lancet. 2020;395:497-506.
  62. Iacobucci, G. Covid-19: Runny nose, headache, and fatigue are commonest symptoms of omicron, early data show. 2021Inoue H, Todo Y. The propagation of economic impacts through supply chains: The case of a mega-city lockdown to prevent the spread of COVID-19. PLoS One. 2020;15(9):e0239251. doi: 10.1371/journal.pone.0239251.
  63. Jen HH, Chang WJ, Lin TY, Hsu CY, Yen AM, Lai CC, Chen TH. Evaluating Clinical Efficacy of Antiviral Therapy for COVID-19: A Surrogate Endpoint Approach. Infect Dis Ther. 2021 Mar 18:1-11. doi: 10.1007/s40121-021-00431-9.
  64. Jen HH, Chen SY, Chang WJ, Chen CN, Yen AMF, Chang RE. Evaluating Medical Capacity for Hospitalization and Intensive Care Unit of COVID-19: A Queue Model Approach. J Formosan Med Assoc 2021 (In revision).
  65. Jeong E, Hagose M, Jung H, Ki M, Flahault A. Understanding South Korea's Response to the COVID-19 Outbreak: A Real-Time Analysis. Int J Environ Res Public Health 2020;17:9571.
  66. Kalil AC, Patterson TF, Mehta AK, Tomashek KM, Wolfe CR, Ghazaryan V, et al. Baricitinib plus Remdesivir for Hospitalized Adults with Covid-19. N Engl J M 2021;384:795–807.
  67. Kim JM, Park SY, Lee D, Kim JS, Park Y, Gwack J, et al. Genomic investigation of the coronavirus disease-2019 outbreak in the Republic of Korea. Sci Rep 2021;11:6009.
  68. Kim S, Jeong YD, Byun JH, Cho G, Park A, Jung JH, et al. Evaluation of COVID-19 epidemic outbreak caused by temporal contact-increase in South Korea. Int J Infect Dis 2020;96:454-7.
  69. Kohli M, Maschio M, Becker D, Weinstein MC. The potential public health and economic value of a hypothetical COVID-19 vaccine in the United States: Use of cost-effectiveness modeling to inform vaccination prioritization. Vaccine 2021;39(7):1157-1164. doi: 10.1016/j.vaccine.2020.12.078.
  70. Kozlov, M. Omicron's feeble attack on the lungs could make it less dangerous. Nature, 2022; 601(7892), 177.
  71. Kreps SE, Kriner DL. Model uncertainty, political contestation, and public trust in science: Evidence from the COVID-19 pandemic. Sci Adv 2020;6:eabd4563.
  72. Ku MS, Huang LM, Chiu YH, Wang WC, Jeng YC, Yen MY, et al. Continental Transmission of Emerging COVID-19 on the 38o North Latitude. J Formos Med Assoc 2021.
  73. Kupferschmidt K. Startling new variant raises urgent questions. Science. 2021 Dec 3;374(6572):1178-1180.
  74. Labor Statistics Inquiry Network. Gross domestic product per capita, https://statdb.mol.gov.tw/statis/jspProxy.aspx?sys=210 kind=21 type=1 funid=q01016 rdm=5ucfaLfI; 2020 [accessed 21 March 2020].
  75. Lai CC, Hsu CY, Jen HH, Yen AM, Chan CC, Chen HH. The Bayesian Susceptible-Exposed-Infected-Recovered model for the outbreak of COVID-19 on the Diamond Princess Cruise Ship. Stoch Environ Res Risk Assess. 2021 Jan 26:1-15. doi: 10.1007/s00477-020-01968-w.
  76. Lamontagne F, Agoritsas T, Siemieniuk R, Rochwerg B, Bartoszko J, Askie L, et al. A living WHO guideline on drugs to prevent covid-19. BMJ 2021;372:n526.
  77. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, et al. The Incubation Period of Coronavirus Disease 2019 (COVID-19) From Publicly Reported Confirmed Cases: Estimation and Application. Ann Intern Med. 2020;172:577-582.
  78. Le TT, Andreadakis Z, Kumar A et al. The COVID-19 vaccine development landscape. Nat Rev Drug Discov 2020:19: 305–306.
  79. Lee JY, Hong SW, Hyun M, Park JS, Lee JH, Suh YS, et al. Epidemiological and clinical characteristics of coronavirus disease 2019 in Daegu, South Korea. Int J Infect Dis 2020;98:462-6.
  80. Legido-Quigley H, Asgari N, Teo YY, Leung GM, Oshitani H, Fukuda K, et al. Are high-performing health systems resilient against the COVID-19 epidemic? Lancet 2020;395:848-50.
  81. Lewnard JA, Lo NC. Scientific and ethical basis for social-distancing interventions against COVID-19. Lancet Infect Dis 2020;20:631-3.
  82. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382:1199-1207.
  83. Lisboa Bastos M, Tavaziva G, Abidi SK, Campbell JR, Haraoui LP, Johnston JC, Lan Z, Law S, MacLean E, Trajman A, Menzies D, Benedetti A, Ahmad Khan F. Diagnostic accuracy of serological tests for covid-19: systematic review and meta-analysis. BMJ. 2020 Jul 1;370:m2516. doi: 10.1136/bmj.m2516.
  84. Liu JT, Hammitt JK, Wang JD, Tsou MW. Valuation of the risk of SARS in Taiwan. Health Econ. 2005;14(1):83-91.
  85. Liu W, Zhou P, Chen K, Ye Z, Liu F, Li X, et al. Efficacy and safety of antiviral treatment for COVID-19 from evidence in studies of SARS-CoV-2 and other acute viral infections: a systematic review and meta-analysis. CMAJ 2020;192:E734-44
  86. Logunov DY, Dolzhikova IV, Shcheblyakov DV, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021;397: 671-681.
  87. Lopez Bernal J, Andrews N, Gower C, et al. Effectiveness of the Pfizer-BioNTech and Oxford-AstraZeneca vaccines on covid-19 related symptoms, hospital admissions, and mortality in older adults in England: test negative case-control study. BMJ. 2021;373:n1088. Published 2021 May 13. doi:10.1136/bmj.n1088
  88. MacDonald G, Moen AC, St Louis ME. The national inventory of core capabilities for pandemic influenza preparedness and response: an instrument for planning and evaluation. Influenza Other Respir Viruses 2014;8:189-93.
  89. Mahase E. AstraZeneca vaccine: Blood clots are "extremely rare" and benefits outweigh risks, regulators conclude. BMJ. 2021;373:n931. doi: 10.1136/bmj.n931.
  90. Mallow PJ. Estimates of the value of life lost from COVID-19 in Ohio. J Comp Eff Res. 2021;10(4):281-284. doi:10.2217/cer-2020-0245.
  91. McLean E, Pebody RG, Campbell C, Chamberland M, Hawkins C, Nguyen-Van-Tam JS, et al. Pandemic (H1N1) 2009 influenza in the UK: clinical and epidemiological findings from the first few hundred (FF100) cases. Epidemiol Infect. 2010;138:1531-1541.
  92. McMichael TM, Currie DW, Clark S, Pogosjans S, Kay M, Schwartz NG, et al. Epidemiology of Covid-19 in a Long-Term Care Facility in King County, Washington. N Engl J Med 2020;382:2005-11.
  93. Mehta N, Mazer-Amirshahi M, Alkindi N, Pourmand A. Pharmacotherapy in COVID-19; A narrative review for emergency providers. Am J Emerg Med 2020;38:1488-93.
  94. Mekonnen D, Mengist HM, Derbie A, Nibret E, Munshea A, He H, Li B, Jin T. Diagnostic accuracy of serological tests and kinetics of severe acute respiratory syndrome coronavirus 2 antibody: A systematic review and meta-analysis. Rev Med Virol. 2021 May;31(3):e2181. doi: 10.1002/rmv.2181.
  95. Meng, B., Ferreira, I., Abdullahi, A., Kemp, S. A., Goonawardane, N., Papa, G., ... CITIID-NIHR BioResource COVID-19 Collaboration. SARS-CoV-2 Omicron spike mediated immune escape, infectivity and cell-cell fusion. 2021; BioRxiv.Miller, M. 2019 Novel Coronavirus COVID-19 (2019-nCoV) Data Repository. Bulletin-Association of Canadian Map Libraries and Archives (ACMLA), 2020;47-51.
  96. Miller, N. L., Clark, T., Raman, R., Sasisekharan, R. Insights on the mutational landscape of the SARS-CoV-2 Omicron variant. 2021; bioRxiv.Mitjà O, Corbacho-Monné M, Ubals M, Tebe C, Peñafiel J, Tobias A, et al. Hydroxychloroquine for Early Treatment of Adults with Mild Covid-19: A Randomized-Controlled Trial. Clin Infect Dis 2020;ciaa1009.
  97. Morse SS. Pandemic influenza: studying the lessons of history. Proc Natl Acad Sci U S A. 2007;104:7313-7314.
  98. National Health Insurance Administration. https://www.nhi.gov.tw/Content_List.aspx?n=58ED9C8D8417D00B
  99. National Health Insurance administration. The National health insurance benefits items and payment standards for medical services, https://www.nhi.gov.tw/Content_List.aspx?n=58ED9C8D8417D00B; 2020 [accessed 20 March 2020].
  100. National Institute of Health. COVID-19 Treatment guidelines. November 3, 2020. National Institute of Health; 2020. Available from: https://www.covid19treatmentguidelines.nih.gov/antiviral-therapy/remdesivir/ Accessed 6 Dec 2020.
  101. National Institutes of Health. Clinical Spectrum of SARS-CoV-2 Infection. October 19, 2021. https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum/
  102. Nishiura, H., Chowell, G. The effective reproduction number as a prelude to statistical estimation of time-dependent epidemic trends. In Mathematical and statistical estimation approaches in epidemiology (pp. 103-121). Springer, Dordrecht; 2009.
  103. Omrani AS, Pathan SA, Thomas SA, Harris TRE, Coyle PV., Thomas CE, et al. Randomized double-blinded placebo-controlled trial of hydroxychloroquine with or without azithromycin for virologic cure of non-severe Covid-19. EClinicalMedicine 2020;29:100645.
  104. Onder G, Rezza G, Brusaferro S. Case-Fatality Rate and Characteristics of Patients Dying in Relation to COVID-19 in Italy. JAMA 2020;323:1775-6.
  105. Oran DP, Topol EJ. Prevalence of Asymptomatic SARS-CoV-2 Infection : A Narrative Review. Ann Intern Med. 2020 Sep 1;173(5):362-367. doi: 10.7326/M20-3012.
  106. Padula WV, and Malaviya S, Reid NM, Tierce J, Alexander GC, Economic value of treatment and vaccine to address the COVID-19 pandemic: A U.S. Cost-effectiveness and budget impact analysis (4/22/2020). Available at SSRN: https://ssrn.com/abstract=3586694 or http://dx.doi.org/10.2139/ssrn.3586694.
  107. Phua J, Weng L, Ling L, Egi M, Lim CM, Divatia JV, et al. Intensive care management of coronavirus disease 2019 (COVID-19): challenges and recommendations. Lancet Respir Med 2020;8:506-17.
  108. Planas D, Veyer D, Baidaliuk A, et al. Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization. Nature. 2021;596(7871):276-280. doi:10.1038/s41586-021-03777-9
  109. Planas, D., Saunders, N., Maes, P., Guivel-Benhassine, F., Planchais, C., Buchrieser, J., ... Schwartz, O. Considerable escape of SARS-CoV-2 Omicron to antibody neutralization. Nature, 2021; 1-7.
  110. Polack FP, Thomas SJ, Kitchin N, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. N Engl J Med 2020;383: 2603-2615.
  111. Pollard, D. Strong Consistency of K-Means Clustering. The Annals of Statistics. 1981, 9:135-140
  112. Potter GE, Handcock MS, Longini IM Jr, Halloran ME, Estamating within-household contact networks from egocentric data. Ann Appl Stat 2011;5:1816-38.
  113. Prem K, Liu Y, Russell TW, Kucharski AJ, Eggo RM, Davies N, et al. The effect of control strategies to reduce social mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Public Health 2020;5:e261-e70.
  114. Ranney ML, Griffeth V, Jha AK. Critical Supply Shortages - The Need for Ventilators and Personal Protective Equipment during the Covid-19 Pandemic. N Engl J Med 2020;382:e41.
  115. Rasmussen AL, Popescu SV. SARS-CoV-2 transmission without symptoms. Science 2021;371(6535):1206-1207. PMID: 33737476. doi: 10.1126/science.abf9569.
  116. RECOVERY Collaborative Group, Horby P, Mafham M, Linsell L, Bell JL, Staplin N, et al. Effect of Hydroxychloroquine in Hospitalized Patients with Covid-19. N Engl J Med 2020;383:2030–40.
  117. RECOVERY Collaborative Group. Lopinavir-ritonavir in patients admitted to hospital with COVID-19 (RECOVERY): a randomised, controlled, open-label, platform trial. Lancet 2020;396:1345-52.
  118. Richardo Palacios, Ana Paula Batista, Camila Santos Nascimento Albuquerque, et al. Efficacy and Safety of a COVID-19 Inactivated Vaccine in Healthcare Professionals in Brazil: The PROFISCOV Study. Available at SSRN: https://ssrn.com/abstract=3822780
  119. Riley S, Ainslie KEC, Eales O, et al. Resurgence of SARS-CoV-2: Detection by community viral surveillance. Science. 2021;372(6545):990-995. doi:10.1126/science.abf0874
  120. Rothe C, Schunk M, Sothmann P, Bretzel G, Froeschl G, Wallrauch C, et al. Transmission of 2019-nCoV Infection from an Asymptomatic Contact in Germany. N Engl J Med. 2020;382:970-971.
  121. Sadoff J, Le Gars M, Shukarev G, et al. Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. N Engl J Med. 2021;NEJMoa2034201.
  122. Schmidt, F., Muecksch, F., Weisblum, Y., Da Silva, J., Bednarski, E., Cho, A., ... Bieniasz, P. D. Plasma neutralization of the SARS-CoV-2 omicron variant. 2021; New England Journal of Medicine.Summers J, Cheng HY, Lin HH, Barnard LT, Kvalsvig A, Wilson N, et al. Potential lessons from the Taiwan and New Zealand health responses to the COVID-19 pandemic. The Lancet Regional Health-Western Pacific 2020,100044.
  123. Sun J, He WT, Wang L, Lai A, Ji X, Zhai X, et al. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends Mol Med 2020;26:483-95.
  124. Sun J, He WT, Wang L, Lai A, Ji X, Zhai X, et al. COVID-19: Epidemiology, Evolution, and Cross-Disciplinary Perspectives. Trends Mol Med 2020;26:483-95.
  125. Suwantika AA, Boersma C, Postma MJ. The potential impact of COVID-19 pandemic on the immunization performance in Indonesia. Expert Rev Vaccines 2020 Aug;19(8):687-690. doi: 10.1080/14760584.2020.1800461.
  126. Taiwan Centers for Disease Control. Travelers entering Taiwan to be required to complete health declaration form starting February 11. 2020, https://www.cdc.gov.tw/En/Bulletin/Detail/nn4-vFhmIl-4GqA_GDhtmQ?typeid=158; 2020 [accessed 24 April 2021].
  127. Thomas, JC and Weber DJ. Epidemiologic methods for the study of infectious diseases. Oxford University Press 2001.
  128. UK Health Secretary Agency, SARS-CoV-2 variants of concern and variants under investigation in England Technical briefing 33Van Gemert C, Tapo PS, Sero K; Vanuatu Ministry of Health–Health Technical Advisory Group. Border screening is an essential component of COVID-19 testing strategies in Vanuatu. Lancet Infect Dis. 2021 Jun;21(6):769-770. doi: 10.1016/S1473-3099(21)00135-3
  129. UK Health Security Agency. Investigation of SARS-CoV-2 variants: technical briefings. Assess at https://www.gov.uk/government/publications/investigation-of-sars-cov-2-variants-technical-briefings on 2022-01-19
  130. UK Health Security Agency. SARS-CoV-2 variants of concern and variants under investigation in England: Technical briefing 33
  131. van Riel D, de Wit E. Next-generation vaccine platforms for COVID-19. Nat Mater. 2020;19(8):810-812. doi: 10.1038/s41563-020-0746-0.
  132. Venkatakrishnan, AJ, Praveen Anand, Patrick Lenehan, Rohit Suratekar, Bharathwaj Raghunathan, Michiel J. Niesen, and Venky Soundararajan. “Omicron Variant of Sars-cov-2 Harbors a Unique Insertion Mutation of Putative Viral or Human Genomic Origin.” OSF Preprints. December 3, 2021
  133. Voysey M, Clemens SAC, Madhi SA, et al. Safety and efficacy of the ChAdOx1 nCoV-19 vaccine (AZD1222) against SARS-CoV-2: an interim analysis of four randomised controlled trials in Brazil, South Africa, and the UK. Lancet 2021;397: 99-111.
  134. Wang CJ, Ng CY, Brook RH. Response to COVID-19 in Taiwan: Big Data Analytics, New Technology, and Proactive Testing. JAMA 2020;323:1341-1342.
  135. Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol. 2020;92:441-447.
  136. Wang WC, Lin TY, Chiu SY, Chen CN, Sarakarn P, Ibrahim M, Chen SL, Chen HH, Yeh YP. Classification of community-acquired outbreaks for the global transmission of COVID-19: Machine learning and statistical model analysis. J Formos Med Assoc. 2021 Jun;120 Suppl 1:S26-S37.
  137. Wang Y, Zhang D, Du G, Du R, Zhao J, Jin Y, et al. Remdesivir in adults with severe COVID-19: a randomised, double-blind, placebo-controlled, multicentre trial. Lancet 2020;395:1569–78.
  138. Wang, L., and Cheng, G. Sequence analysis of the Emerging Sars‐CoV‐2 Variant Omicron in South Africa. Journal of medical virology. 2021
  139. Wang, L., Berger, N. A., Kaelber, D. C., Davis, P. B., Volkow, N. D., Xu, R. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron. 2022; medRxiv.
  140. Wells CR, Sah P, Moghadas SM, Pandey A, Shoukat A, Wang Y, et al. Impact of international travel and border control measures on the global spread of the novel 2019 coronavirus outbreak. Proc Natl Acad Sci U S A 2020;117:7504-9.
  141. WHO (2020) Rolling updates on coronavirus disease (COVID-19). Accessed at https://www.who.int/emergencies/diseases/novelcoronavirus-2019/events-as-they-happen on 15 Apr 2020
  142. WHO. COVID-19 situation reports. 2020. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports (accessed 31st March, 2021)
  143. Willett, B. J., Grove, J., MacLean, O., Wilkie, C., Logan, N., De Lorenzo, G., ... G2P-UK National Virology Consortium.. The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism. 2022; medRxiv.
  144. Wolter, N., Jassat, W., Walaza, S., Welch, R., Moultrie, H., Groome, M., ... Cohen, C. Early assessment of the clinical severity of the SARS-CoV-2 Omicron variant in South Africa. 2021; medRxiv.
  145. World Health Organization (2020) Rolling updates on coronavirus disease (COVID-19). Accessed at https://www.who.int/emergencies/diseases/novelcoronavirus-2019/events-as-they-happen on 15 Apr 2020
  146. World Health Organization. (2021). COVID-19 Weekly Epidemiological Update, 27 April 2021.
  147. World Health Organization. (2021). COVID-19 Weekly Epidemiological Update, 27 April 2021.
  148. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 38; 2020
  149. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 50; 2020
  150. World Health Organization. Coronavirus disease 2019 (COVID-19): situation report, 67; 2020
  151. World Health Organization. COVID-19 Therapeutic Trial Synopsis World Health Organization; February 18, 2020, Geneva, Switzerland
  152. World Health Organization. The first few X cases and contacts (FFX) investigation protocol for coronavirus disease 2019 (COVID-19) (No. WHO/2019-nCoV/FFXprotocol/2020.2). World Health Organization; 2020.
  153. World Health Organization. Therapeutics and COVID-19: living guideline, 20 November 2020. Geneva, Switzerland: World Health Organization; 2020. Available from: https://www.who.int/publications/i/item/therapeutics-and-covid-19-living-guideline Accessed on 6 Dec 2020.
  154. Worobey M, Pekar J, Larsen BB, Nelson MI, Hill V, Joy JB, et al. The emergence of SARS-CoV-2 in Europe and North America. Science 2020;370:564-570.
  155. Wouters OJ, Shadlen KC, Salcher-Konrad M, Pollard AJ, Larson HJ, et al. Challenges in ensuring global access to COVID-19 vaccines: production, affordability, allocation, and deployment. Lancet. 2021 Mar 13;397(10278):1023-1034. doi: 10.1016/S0140-6736(21)00306-8.,
  156. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020;323:1239-1242.
  157. Yang X, Yu Y, Xu J, Shu H, Xia J, Liu H, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study [published correction appears in Lancet Respir Med. 2020;8(4):e26]. Lancet Respir Med. 2020;8:475-481.
  158. Yezli S, Khan A. COVID-19 pandemic: it is time to temporarily close places of worship and to suspend religious gatherings. J Travel Med 2021;28:taaa065.
  159. Zhou Q, Gao Y, Wang X, Liu R, Du P, Wang X, et al. Nosocomial infections among patients with COVID-19, SARS and MERS: a rapid review and meta-analysis. Ann Transl Med 2020;8:629.