题名

可變負重之二連桿與平行四連桿機構的設計

并列篇名

Design of 2-bar and 4-bar Parallelogram Mechanism with Load Adjusting Ability

DOI

10.6342/NTU.2011.03353

作者

汪柏辰

关键词

二連桿 ; 平行四連桿 ; 重力平衡 ; 靜平衡 ; 可變負重 ; 2-bar ; 4-bar parallelogram ; gravity balance ; static balance ; load variable

期刊名称

國立臺灣大學機械工程學系學位論文

卷期/出版年月

2011年

学位类别

碩士

导师

陳達仁

内容语文

繁體中文

中文摘要

本文提出一個可變負重的二連桿與平行四連桿機構的設計。一個可承載負重,且在任何位置都能完全抵消重力影響的機構稱為重力平衡機構。重力平衡機構可不費力的在與重力方向平行的方向上移動,且在任何位置都能達到靜平衡。本研究以二連桿與平行四連桿機構為基礎,可平衡不同負重的重力平衡機構。 藉由分析二連桿中重力位能在二連桿上的負重與桿件間夾角改變時的變化情形,並利用達到平衡時總能量恆為定值的原理,可以得到相對應的彈力位能形式。藉由求出的彈力位能方程式可得出平衡負重可變的二連桿機構的彈簧安裝方式。 由於平行四連桿機構與二連桿機構具有相似運動特性,重力位能在負重與桿件間夾角改變時的變化情形也與二連桿機構相似,所以可將在二連桿得出的彈簧安裝方式應用在平行四連桿機構上,得出一個可變負重的平行四連桿機構設計。

英文摘要

ABSTRACT The design of 2-bar and 4-bar parallelogram mechanism with load adjusting ability is presented. A mechanism which sustains the load, and compensates the effect of gravity is called “Gravity Equilibrator”. A gravity equilibrator can be moved in corresponding to the direction of gravity effortlessly and achieve static balance in any position at the same time. The design in this paper is therefore based on the 2-bar and 4-bar parallelogram mechanisms which compensate variable load of the mechanism. Through employing the methodology of conservation of potential energy, and by analyzing the variation of potential energy of 2-bar mechanism while the load and the angle between bars are varied, the spring potential energy can thus be obtained. The installation of springs on 2-bar mechanism can thus be gained by the spring potential energy. Since the 4-bar parallelogram mechanism is similar to the 2-bar mechanism, the spring installation on the 2-bar can then also be applied to the 4-bar parallelogram mechanism.

主题分类 工學院 > 機械工程學系
工程學 > 機械工程
参考文献
  1. [5] Shieh, W. B., Chen, D. Z., Lin, P. Y., 2007, “Design of statically balanced planar four-bar linkages with base-attached springs,” 12th IFToMM World Congress, Besançon .
    連結:
  2. [6] Rahman, T., Ramanathan, R., Seliktar, R. and Harwin, W., 1995, “A Simple Technique to Passively Gravity-Balance Articulated Mechanisms”. ASME Journal of Mechanical Design, pp. 655-658.
    連結:
  3. [7] Streit, D. A. and Shin, E., 1993, “Equilibrators for Planar Linkages”. ASME Journal of Mechanical Design, pp. 604-611.
    連結:
  4. [11] Nathan, R. H., 1985, “A Constant Force Generating Mechanism,” ASME J. Mech., Transm., Autom. Des., 10712 pp. 508–512.
    連結:
  5. [12] Herder, J. L., 2001, “Energy-Free Systems; Theory, Conception and Design of Statically Balanced Spring Mechanisms,” Ph.D. thesis, Delft University of Technology.
    連結:
  6. Barents, R., Shenk, M., Van Dorsser, W.D., Wisse, B.M., Herder, J.L., 2009, “Spring-to-spring Balancing as Energy-Free Adjustment Method In Gravity Equilibrators,” Proceedings of the ASME 2009 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2009 August 30 - September 2, 2009, San Diego, California, USA, paper number DETC2009-86770.
  7. [2] Wisse, B.M., Van Dorsser, W.D., Barents, R., Herder, J.L., 2007, “Energy-Free Adjustment of Gravity Equilibrators Using the Virtual Spring Concept,” Proceedings of ICORR2007, 10th International Conference on Rehabilitation Robotics, June 13-15, 2007, Noordwijk, The Netherlands.
  8. [3] Van Dorsser, W.D., Barents, R., Wisse, B.M., Herder, J.L., 2007, “Gravity-Balanced Arm Support With Energy-Free Adjustment,” ASME Journal of Medical Devices, Vol. 1, No. 2, pp. 151-158.
  9. [4] Herder, J.L.,Vrijlandt, N.,Antonides, T., Cloosterman, M., Mastenbroek, P. L., 2006, “Principle and design of a mobile arm support for people with muscular weakness,” Journal of Rehabilitation Research & Development JRRD Volume 43, Number 5, pp. 591–604.
  10. [8] Van Dorsser, W.D., Barents, R., Wisse, B.M., Schenk, M., Herder, J.L., 2007, “Energy-Free Adjustment of Gravity Equilibrators Using the Possibility of Adjusting the Spring Stiffness”, submitted to Proceedings of the IMechE Part C, Journal of Mechanical Engineering Science.
  11. [9] Carwardine, G., 1932, “Improvements in Elastic Force Mechanisms,” UK Patent No. 377.251, Specifications of Inventions, Vol. 2773, Patent Office Sale Branch, London.
  12. [10] Hain, K., 1961, “Spring Mechanisms—Point Balancing, and Spring Mechanisms—Continuous Balancing,” Spring Design and Application, N., ad., pp. 268-275, McGraw-Hill.
  13. [13] Rahman, T., Sample, W., Seliktar, R., Alexander, M., and Scavina, M., 2000,“A Body-Powered Functional Upper Limb Orthosis,” J. Rehabil. Res. Dev.,376, pp. 675–680.
  14. [14] Vrijlandt, N., and Herder, J. L., 2004, “Seating Unit for Supporting a Body or Part of a Body,” NL 1018178 2002-12-03, PCT/NL02/00344,US2004195883 2004-10-07.
  15. [15] Cardoso, L. F., Tomazio, S. and Herder, J. L., 2002, “Conceptual Design of a Passive Arm Orthosis”, In Proceedings, ASME Design Engineering Technical Conferences, MECH-34285.
  16. [16] Fisher, K. J., 1992, “Counterbalance Mechanism Positions a Light with Surgical Precision,” Mechanical Engineering, pp. 76-80.