参考文献
|
-
[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” in Advances in Neural Information Processing Systems, 2012, pp. 1097–1105.
連結:
-
[2] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A. Mohamed, N. Jaitly, A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath, et al. “Deep neural networks for acoustic modeling in speech recognition,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82-97, 2012
連結:
-
[4] D. Silver et al., “Mastering the game of Go with deep neural networks and tree search,” Nature, vol. 529, no. 7587, pp. 484–489, Jan. 2016.
連結:
-
[7] P. Norman. et al, “In-Datacenter Performance Analysis of a Tensor Processing Unit TM,” ArXiv:1704.04760v1 [cs.AR], 2017.
連結:
-
[9] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen, Z. Xu, N. Sun, O. Temam, "DaDianNao: A machine-learning supercomputer," in Proc. of 2014 47th Annual IEEE/ACM International Symposium on MICRO, Dec 2014, pp. 609-622.
連結:
-
[10] Y. Chen, T. Krishna, J. Emer, and V. Sze, “Eyeriss : An EnergyEfficient Reconfigurable Accelerator for Deep Convolutional Neural Networks Future of Deep Learning Recognit ion DCNN Accelerator is Crucial • High Throughput for Real-time,” in Proc. of IEEE Int. Solid-State Circuits Conf. , Feb. 2016, pp. 1–43.
連結:
-
[11] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. Horowitz, W. Dally, “EIE: Efficient Inference Engine on Compressed Deep Neural Network,” Arxiv: 1602.01528, 2016.
連結:
-
[12] K. Bong, S. Choi, C. Kim, S. Kang, Y. Kim, and H.-J. Yoo, “A 0.62 mW ultra-low-power convolutional-neural-network face-recognition processor and a CIS integrated with always-on Haar-like face detector,” in Proc. of IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, Feb. 2017, pp. 248–250.
連結:
-
[20] D. D. Lin, S. S. Talathi, "Overcoming Challenges in Fixed Point Training of Deep Convolutional Networks," ArXiv:1607.02241 [cs.LG], 2016.
連結:
-
[29] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. "Gradient-based learning applied to document recognition," in Proc. of the IEEE, vol. 86, no.11, pp. 2278-2324, November 1998.
連結:
-
[30] K.-H. Chen, C.-N. Chen, and T.-D. Chiueh, “Grouped signed power-of-two algorithms for low-complexity adaptive equalization,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 52, no. 12, pp. 816–820, Dec. 2005.
連結:
-
[36] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” CoRR, vol. abs/1409.1556, pp. 1–14, Sep. 2014
連結:
-
ArXiv:1711.02213 [cs.LG], 2017.
連結:
-
[42] X. Han, D. Zhou, S. Wang, S. Kimura, “CNN-MERP: An FPGA-Based Memory-Efficient Reconfigurable Processor for Forward and Backward Propagation of Convolutional Neural Networks,” ArXiv: 1703.07348 [cs.LG], 2017.
連結:
-
[3] M. Bojarski et al. (2016). “End to end learning for self-driving cars.” [Online]. Available: https://arxiv.org/abs/1604.07316
-
[5] https://whatsthebigdata.com/2017/01/12/deep-learning-at-google/
-
[6] https://seekingalpha.com/article/3983127-googles-tensor-processing -unit-ai-market-shifting
-
[8] T. Chen, Z. Du, N. Sun, J. Wang, C. Wu, Y. Chen, and O. Temam, “DianNao: a small-footprint high-throughput accelerator for ubiquitous machine-learning,” ACM SIGARCH Comput. Archit. News, vol. 42, no. 1, Apr. 2014, pp. 269–284.
-
[13] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen. “Cambricon-X: An Accelerator for Sparse Neural Networks,” in Proc. of 49th Annual IEEE/ACM International Symposium on MICRO, Oct. 2016.
-
[14] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos. “Cnvlutin: Ineffectual-Neuron-Free Deep Convolutional Neural Network Computing,” in Proc. of the International Symposium on Computer Architecture (ISCA), June 2016, pp. 1-13.
-
[15] A. Parashar, M. Rhu, A. Mukkara, A. Puglielli, R. Venkatesan, B. Khailany, J. Emer, S. W. Keckler, and W. J. Dally. 2017. “SCNN: An Accelerator for Compressed-sparse Convolutional Neural Networks,” in Proc. of the 44th Annual International Symposium on Computer Architecture (ISCA '17). ACM, New York, NY, USA, pp. 27-40.
-
[16] D. Lin, S. Talathi, V. S. Annapureddy, “Fixed Point Quantization of Deep Convolutional Networks,” ArXiv:1511.06393 [cs.LG], 2016.
-
[17] E. Denton, W. Zaremba, J. Bruna, Y. LeCun, R. Fergus, “Exploiting linear structure within convolutional networks for efficient evaluation,” ArXiv:1404.0736 [cs.CV], 2014.
-
[18] S. Han, J. Pool, J. Tran, and W. J. Dally. “Learning Both Weights and Connections for Efficient Neural Networks,” in Proc. of the International Conference on Neural Information Processing Systems (NIPS), December 2015, pp. 1135-1143.
-
[19] S. Han, H. Mao, W. J. Dally, “Deep Compression: Compressing Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding,” ArXiv:1510.00149v5 [cs.CV], 2015.
-
[21] M. Courbariaux, Y. Bengio, J. David, “BinaryConnect: Training Deep Neural Networks with binary weights during propagations.” ArXiv:1511.00363v3 [cs.LG], 2015.
-
[22] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, Y. Bengio, “Quantized neural networks: training neural networks with low precision weights and activation,” ArXiv:1609.07061v1 [cs.NE], 2016.
-
[23] F. Li, B. Zhang, B. Liu, “Ternary Weight Networks.” ArXiv:1605.04711v2 [cs.CV], 2016.
-
[24] Sigmoid. https://sebastianraschka.com/faq/docs/logisticregr-neuralnet.html
-
[25] V. Nair and G. E. Hinton. “Rectified linear units improve restricted boltzmann machines,” in Proc. of 27th International Conference on Machine Learning, 2010.
-
[26] Batch gradient descent. https://www.coursera.org/learn/machine-learning/lecture/9zJUs/mini-batch-gradient-descent
-
[27] Stochastic gradient descent. http://ufldl.stanford.edu/tutorial/supervised/OptimizationStochasticGradientDescent/
-
[28] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, pp. 436–444, May 2015.
-
[31] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama, and T. Darrell, “Caffe: Convolutional architecture for fast feature embedding,” in Proc. of the ACM International Conference on Multimedia, 2014, pp. 675–678.
-
[32] NVIDIA cuDNN. https://developer.nvidia.com/cudnn, 2016.
-
[33] MNIST. http://yann.lecun.com/exdb/mnist/
-
[34] CIFAR-10. https://www.cs.toronto.edu/~kriz/cifar.html
-
[35] ImageNet. http://image-net.org, 2016.
-
[37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proc. of IEEE Conf. on Comput. Vis. Pattern Recognit. (CVPR), 2016.
-
[38] S. Ioffe, C. Szegedy, “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift,” ArXiv:1502.03167v3 [cs.LG], 2015.
-
[39] U. Köster, T. Webb, X. Wang, M. Nassar, A. Bansal, W. Constable, O. Elibol, S. Hall, L, Hornof, A. Khosrowshahi, C. Kloss, R. Pai, N. Rao, “Flexpoint: An Adaptive Numerical Format for Efficient Training of Deep Neural Networks,”
-
[40] A. Neelakantan , L. Vilnis, Quoc V. Le, I. Sutskever, L. Kaiser, K. Kurach, J. Martens. “Adding Gradient Noise Improves Learning for Very Deep Networks,” ArXiv:1511.06807 [stat.ML], 2015.
-
[41] W. Zhao, H. Fu, W. Luk, T. Yu, S. Wang, B. Feng, Y. Ma, G. Yang, “F-CNN: An FPGA-based Framework for Training Convolutional Neural Networks,” in Proc. of IEEE Conf. on Application-specific Systems, Architectures and Processors, London, UK, July 2016.
-
[43] Z. Yuan, Y. Liu, J. Yue, J. Li, H. Yang, “CORAL: Coarse-grained Reconfigurable Architecture for ConvoLutional Neural Networks,” in Proc. of IEEE Conf. on International Symposium on Low Power Electronics and Design, Taipei, Taiwan, July 2017.
-
[44] https://towardsdatascience.com/neural-network-architectures-156e5bad51ba
|