题名

大眾捷運交通系統對住宅區房地產價格的影響 ——以臺北市大眾捷運系統為例

并列篇名

The Effect of Mass Rapid Transit on Residential Area Property Value: Evidence from Taipei

DOI

10.6342/NTU201701245

作者

黃龑

关键词

特徵價格法 ; 空間回歸 ; Box-Cox轉換 ; 主成分分析 ; 聚類分析 ; 大眾捷運交通系統 ; 房地產價格 ; Hedonic Price Method ; Spatial Regression ; Box-Cox ; Principle Component Analysis, Cluster Analysis ; Mass Rapid Transit ; Property Value

期刊名称

國立臺灣大學農業經濟學系學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

吳珮瑛

内容语文

繁體中文

中文摘要

大眾捷運交通系統不僅節省了捷運利用者的出行時間和經濟成本,而且也能夠減少道路交通的擁擠程度,極大方便居民出行。捷運的修建促進了社會經濟繁榮與發展,帶來了週邊顯著的房地產增值。過去的研究大多運用傳統特徵價格法分析大眾捷運交通系統對房地產價格的影響,由於房屋價格資料含有空間性和房價異質性,若檢定結果顯著,則應以空間迴歸模型取代最小平方法模型。另外,過去的研究缺乏在特徵價格法上建立充分的處理和分析。因此,為建立一個更準確的迴歸模型估計模式和流程,本文加入Box-Cox變數轉換選擇函數形式;模型中應用主成分分析,建立主成分迴歸,用主成分代替原始解釋變數,分析與特徵價格法應用的一致性;以及運用聚類分析,來進行市場細分,以確定合適的細分市場數目,依細分市場使用空間特徵價格法建立模型。 有鑒於此,本文使用了空間迴歸模型評估台北市大眾捷運交通系統對住宅區房地產價格的影響。從實證結果可知,整體而言,捷運對週邊房地產價值的影響範圍為0~1,500公尺,隨著距離的增加,對於房地產的增值效應逐漸減少。Box-Cox變數轉換驗證了對數線性模型函數形式在本文使用的有效性。主成分分析選擇兩個主成分,第一主成分代表房地產鄰里區位的影響因素;第二主成分代表房地產本身建築結構的影響因素。主成分迴歸模型為達到變數完全獨立不存在資訊交叉的優點,在模型的解釋能力上並沒有喪失太多。在本文中,應用主成分分析有效。聚類分析發現,臺北市房地產存在兩個細分市場,一群表示捷運沿線,在相同鄰里區位下,受房屋類型的影響房價顯著不同,這可能因為該地區不同房屋類型代表不同年代建成的建物類型或者建物類型的功能帶給居民的效用享受差別較大,表示該地區居民對不同房屋類型的偏好不同,也因此願意為不同類型的房屋願意支付顯著不同的房價;另一群表示捷運沿線,在相同鄰里區位下,不受房屋類型的影響,這可能因為該地區不同建屋類型帶給居民的功能效用比較一致,表示該地區居民對不同房屋類型的偏好基本相同,也因此只願意為不同類型的房屋願意支付差不多的的房價。整體市場使用特徵價格法結合空間落遲模型模型來進行估算的金額介於聚類分析中細分市場Cluster0估算金額和聚類分析中細分市場Cluster1估算金額之間;聚類分析中細分市場Cluster0估算金額相對高估,聚類分析中細分市場Cluster1估算金額相對低估。距離最近捷運站1,350公尺的房價總金額介於NT$20,208,307萬~ NT$21,443,887萬。若政府根據大眾捷運系統建設及周邊土地開發計劃申請與審查作業要點,將捷運周邊住宅區房地產創設回饋金額(距離最近捷運站1,350公尺),外部效益予以內部化為捷運建設經費,則可減輕政府財政補貼負擔。若課1個百分點的稅收,則可以得到NT$202,083萬~ NT$214,439萬的稅收收入用於支持捷運建設或相關都市公共建設。

英文摘要

Mass Rapid Transit (MRT) helps commuters save time and cost and reduces traffic jams, benefiting citizens. Constructing MRT promotes social and economic prosperity and development and brings property appreciation in the regions nearby. Previous researchers mainly used hedonic price method (HPM) to analyze the impact of MRT to the housing price quantitatively. Due to the two features of housing price, spatial autocorrelation and spatial heterogeneity, using traditional HPM to estimate will lead to bias. In addition, previous studies put little emphasis on analyzing and choosing models. This study (1) uses Box-Cox to find and valid the best functional form of HPM; (2) applies principle component analysis (PCA) to establish regression and then tests the effectiveness of using PCA in modifying the HPM model; (3) uses cluster analysis to optimize the segmentation of the property market and builds HPM models accordingly. The purpose is to improve the accuracy of regression models and recommend a analysis pattern. This study uses the spatial regression model to estimate the effect of MRT in Taipei on property values and conducts an empirical analysis on how to modify models. The results show that (1) generally, MRT brings property appreciation in the proximity ranging from 0 to 1500 meters. The further the region is, the less appreciation impact MRT brings;(2) Linear-log functional form is the best functional form; (3) Two principal components are selected in the regression. The First Principal Component represents he niche advantage of neighborhoods and the Second Principal Component represents the architectural structure. The impact of dummy variable is showcased in the First Principal Component. The Principal Component Analysis shows its strength on keeping variables independent and is still able to be used to explain the effect; (4) According to the results of cluster analysis, there are two market segments in Taipei. In the one segment, the housing price is significantly influenced by the property type, while in the other segment, the property type inserts little impact on the housing price. (5) The property value estimated in the overall market through HPM is between the estimated value of the cluster 0 segment market and that of the cluster 1 segment market; On top of that, the value of the cluster 0 segment market is overestimated, while that of the cluster 1 segment market is underestimated. The total value of the property within 1,350 meters of MRT stations is between NT$ 202,083,070,000 to NT$ 214,438,880,000. If the government establishes a foundation by imposing tax on the surrounding residential real estate (within 1,350 meters of MRT stations), subsidies provided by the government to the MRT can be reduced significantly. By taxing 1 percent, NT$ 2,020,830,700 to NT$ 2,144,388,800 of tax revenue will be generated to support the construction and management of MRT or other infrastructure.

主题分类 生物資源暨農學院 > 農業經濟學系
生物農學 > 農業
社會科學 > 經濟學
参考文献
  1. 洪得洋,1998。「捷運系統與道路寬度對房屋價格之影響」,國立政治大學碩士論文。
    連結:
  2. Adair, Alastair, Stanley McGreal, Austin Smith, James Cooper, and Tim Ryley, 2000. “House Prices and Accessibility: The Testing of Relationships within the Belfast Urban Area,” Housing Studies. 15(5): 699-716.
    連結:
  3. Adair, Alastair, Berry N. Jim, and Stanley McGreal, 1996. “Hedonic Modelling, Housing Submarkets and Residential Valuation,” Journal of Property Research. 13(1): 67-83.
    連結:
  4. Bajic, Vladimir, 1983. “The Effects of a New Subway Line on Housing Prices in Metropolitan Toronto,” Urban Studies. 20(2): 147-158.
    連結:
  5. Baldassare, Mark, Robert Knight, and Sherrill Swan, 1979. “Urban Service and Environmental Stressor The Impact of the Bay Area Rapid Transit System (BART) on Residential Mobility,” Environment and Behavior. 11(4): 435-450.
    連結:
  6. Basu, Sabyasachi and Thomas G. Thibodeau, 1998. “Analysis of Spatial Autocorrelation in House Prices,” The Journal of Real Estate Finance and Economics. 17(1): 61-85.
    連結:
  7. Bell, Kathleen P. and Nancy E. Bockstael, 2000. “Applying the Generalized-moments Estimation Approach to Spatial Problems Involving Micro-level Data,” Review of Economics and Statistics. 82(1): 72-82.
    連結:
  8. Bowes, David R. and Keith R. Ihlanfeldt, 2001. “Identifying the Impacts of Rail Transit Stations on Residential Property Values,” Journal of Urban Economics. 50(1): 1-25.
    連結:
  9. Brinckerhoff, Parsons, 2001. “The Effect of Rail Transit on Property Values: a Summary of Studies,” Cleveland,.Ohio:NEORail. (Mimeographed.)
    連結:
  10. Can, Ayse, 1992. “Specification and Estimation of Hedonic Housing Price Models,” Regional Science and Urban Economics. 22(3): 453-474.
    連結:
  11. Cassel, Eric and Robert Mendelsohn, 1985. “The Choice of Functional Forms for Hedonic Price Equations: Comment,” Journal of Urban Economics. 18(2): 135-142.
    連結:
  12. Cervero, Robert and Michael Duncan, 2002b. “Transit's Value-added Effects: Light and Commuter Rail services and commercial land values,” Journal of the Transportation Research Board. 18(5): 8-15.
    連結:
  13. Chen, An-ming, 2006. “Housing Project Hedonic Price Model Based on Principal Components Analysis,” Journal of Chongqing University (Natural Science Edition). 6, 10-36.
    連結:
  14. Cropper, Maureen L., Leland B. Deck, & Kenenth E. McConnell, 1988. “On the Choice of Funtional Form for Hedonic Price Functions,” The Review of Economics and Statistics.70(4): 668-675.
    連結:
  15. Daniels, Charles B., 1975. “The Influence of Racial Segregation on Housing Prices,” Journal of Urban Economics. 2(2): 105-122.
    連結:
  16. Dewees, Danald N., 1976. “The Effect of a Subway on Residential Property Values in Toronto,” Journal of Urban Economics. 3(4): 357-369.
    連結:
  17. Dubin, Robin A., 1988. “Estimation of Regression Coefficients in the Presence of Spatially Autocorrelated Error Terms,” The Review of Economics and Statistics. 70(3): 466-474.
    連結:
  18. Edmonds, Radcliffe G., 1984. “A Theoretical Basis for Hedonic Regression: A Research Primer,” Real Estate Economics. 12(1): 72-85.
    連結:
  19. Fletcher, Mike, Paul Gallimore, and Jean Mangan, 2000. “Heteroscedasticity in Hedonic House Price Models,” Journal of Property Research. 17(2): 93-108.
    連結:
  20. Forsyth, F. G., 1973. “Review: Price Indexes and Quality Change. Studies in New Methods of Measurement. by Zvi Griliches,” Journal of the Royal Statistical Society. Series A (General). 136(1): 113-115.
    連結:
  21. Freeman III, A. M., 1981. “Hedonic Prices, Property Values and Measuring Environmental Benefits: A Survey of theIssues,” in Measurement in Public Choice, pp. 13-32. Edited by Steinar Strom. London: Palgrave Macmillan,UK.
    連結:
  22. Goodman, Allen C., 1978. “Hedonic Prices, Price Indices and Housing Markets,” Journal of Urban Economics. 5(4): 471-484.
    連結:
  23. Goodman, Allen C. and Thomas G. Thibodeau, 1998. “Housing Market Segmentation,” Journal of Housing Economics. 7(2): 121-143.
    連結:
  24. Goodman, Allen C., and Thomas G. Thibodeau, 2003. “Housing Market Segmentation and Hedonic Prediction Accuracy,’’ Journal of Housing Economics. 12(3): 181-201.
    連結:
  25. Goodman, Allen C., and Thomas G. Thibodeau, 2007. “The Spatial Proximity of Metropolitan Area Housing Submarkets,’’ Real Estate Economics. 35(2): 209-232.
    連結:
  26. Halstead, John M., Rachel A. Bouvier, and Bruce E. Hansen, 1997. “On the Issue of Functional Form Choice in Hedonic Price Functions: further evidence,” Environmental Management. 21(5): 759-765.
    連結:
  27. Halvorsen, Robert and Henry O. Pollakowski, 1981. “Choice of Functional Form for Hedonic Price Equations,” Journal of Urban Economics. 10(1): 37-49.
    連結:
  28. Henneberry, J. (1998). Transport investment and house prices. Journal of Property Valuation and Investment, 16(2): 144-158.
    連結:
  29. Hewitt, Christopher M. and W. E. Hewitt, 2012. “The Effect of Proximity to Urban Rail on Housing Prices in Ottawa,” Journal of Public Transportation. 15(4): 43-65.
    連結:
  30. Hotelling, Harold, 1933. “Analysis of a Complex of Statistical Variables into Principal Components,” Journal of Educational Psychology, 24(6): 417-441.
    連結:
  31. Huh, Serim and Seung-Jun Kwak, 1997. “The Choice of Functional Form and Variables in the Hedonic Price Model in Seoul,” Urban Studies. 34(7): 989-998.
    連結:
  32. Kain, John F. and John M. Quigley, 1970. “Measuring the Value of Housing Quality,” Journal of the American statistical association. 65(330): 532-548.
    連結:
  33. Kim, Chong Won, Tim T. Phipps, and Luc Anselin, 2003. “Measuring the Benefits of Air Quality Improvement: A Spatial Hedonic Approach,” Journal of environmental economics and management. 45(1): 24-39.
    連結:
  34. Knaap, Gerrit J., Chengr Ding, and Lewis D. Hopkins, 2001. “Do Plans Matter? The Effects of Light Rail Plans on Land Values in Station Areas,” Journal of Planning Education and Research. 21(1): 32-39.
    連結:
  35. Lancaster, Kelvin J., 1966. “A New Approach to Consumer Theory,” The journal of political economy. 15(6): 132-157.
    連結:
  36. LeSage, James P., 2008. “An Introduction to Spatial Econometrics,” Revue Deconomie Industrielle. 26(3): 19-44.
    連結:
  37. Lewis-Workman, Steven and Daniel Brod, 1997. “Measuring the Neighborhood Benefits of Rail Transit Accessibility,” Journal of the Transportation Research Board. 1576: 147-153.
    連結:
  38. Maurer, Raimond, Martin Pitzer, and Steffen Sebastian, 2004. “Hedonic Price Indices for the Paris Housing Market,” Allgemeines Statistisches Archiv. 88(3): 303-326.
    連結:
  39. MacQueen, James, 1967. “Some Methods for Classification and Analysis of Multivariate Bbservations,” Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. 1(14): 281-297.
    連結:
  40. Michaels, R. Gregory & V. Kerry Smith, 1990. “Market Segmentation and Valuing Amenities with Hedonic Models: The Case of Hazardous Waste Sites,” Journal of Urban Economics. 28(2): 223-242.
    連結:
  41. Ridker, Ronald G. and John A. Henning, 1967. “The Determinants of Residential Property Values with Special Reference to Air Pollution,” The Review of Economics and Statistics. 35(7): 246-257.
    連結:
  42. Rosen, Sherwin, 1974. “Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition,” Journal of Political Economy. 82(1): 34-55.
    連結:
  43. Smersh, Greg T. and Marc T. Smith, 2000. “Accessibility Changes and Urban House Price Appreciation: A Constrained Optimization Approach to Determining Distance Effects,” Journal of Housing Economics. 9(3): 187-196.
    連結:
  44. Theebe, Marcel A., 2004. “Planes, Trains, and Automobiles: The Impact of Traffic Noise on House Prices,” The Journal of Real Estate Finance and Economics. 28(2-3): 209-234.
    連結:
  45. Thrift, Nigel J., 1983. “On the Determination of Social Action in Space and Time,” Environment and Planning D: Society and Space. 1(1): 23-57.
    連結:
  46. Tse, Raymond Y. and Peter E. Love, 2000. “Measuring Residential Property Values in Hong Kong,” Property Management. 18(5): 366-374.
    連結:
  47. Waugh, Frederick V., 1928. “Quality Factors Influencing Vegetable Prices,” Journal of Farm Economics. 10(2): 185-196.
    連結:
  48. Webber, Melvin M., 1976. “The BART Experience : What have We Learned?,” The Public Interest. 45: 79-108.
    連結:
  49. Wilhelmsson, Mats, 2002. “Household Expenditure Patterns for Housing Attributes: A Linear Expenditure System with Hedonic Prices,” Journal of Housing Economics. 11(1): 75-93.
    連結:
  50. 丁振國,2003。「軌道交通與城市土地利用研究」,南京農業大學博士論文。
  51. 內政部,2016。「不動產交易實價查詢服務網」。臺北:內政部。取自 http://lvr.land.moi.gov.tw/homePage.action。(2016/11/02)。
  52. 內政部,2016。「都市計劃法臺灣省實施細則」。臺北:內政部營建署。取自 http://www.cpami.gov.tw/chinese/index.php?option=com_content&view=article&id=10712&Itemid=57。(2017/6/17)。
  53. 王寧、李慧民、譚嘯、鐘興潤,2010。「基於因子與聚類分析的中國大城市房地產業發展評價」,『西安建築科技大學學報』,42卷,4期,590-603。
  54. 王霞、朱道林、張鳴明,2004。「城市軌道交通對房地產價格的影響——以北京市輕軌 13 號線為例」,『城市問題』,6期,39-42。
  55. 中华人民共和國國家发展和改革委员会,2016。「交易时间網」。北京:中华人民共和國國家发展和改革委员会。取自http://www.ndrc.gov.cn/ypsp/201609/t201609
  56. 22_819280.html。(2016/10/5)。
  57. 田衛民,2011。「新建軌道交通對沿線住宅價格的影響研究——以武漢市地鐵 2 號線為例」,華中師範大學碩士論文。
  58. 石軍、熊苡,2003。「多元統計,聚類分析法在自然資源開發中的應用」,『山東理工大學學報: 自然科學版』,17卷,1期,81-83。
  59. 交通部,2012。「大眾捷運系統建設及周邊土地開發計畫申請與審查作業要點」。台北:交通部。取自https://www.mvdis.gov.tw/webMvdisLaw/LawContent.aspx?
  60. LawID=I0038001。(2017/5/10)。
  61. 何劍華、鄭思齊,2004。「新建地鐵能提升住宅價格嗎?——以北京地鐵 13 號線為例」,『城市開發: 物業管理』,6期,36-38。
  62. 李斌、郭劍毅,2005。「聚類分析在客戶關係管理中的研究與應用」,『電腦工程與設計』,6卷,2期,540-542。
  63. 財政部,2012。「租稅增額財源機制作業流程及分工」。台北:財政部。取自http://ws.ndc.gov.tw/Download.ashx?u=LzAwMS9hZG1pbmlzdHJhdG9yLzEwL3JlbGZpbGUvNTU2Ni83MTc0LzI1YjMyMGUxLTY5NzctNDFlMC04MDVjLTdlMGU2N2Q2YzcyMS5wZGY%3D&n=56ef56iF5aKe6aGN6LKh5rqQ5qmf5Yi25L2c5qWt5rWB56iL5Y%2BK5YiG5belLS3osqHmlL%2Fpg6jos6bnqIXnvbIucGRm&icon=..pdf。(2017/5/10)。
  64. 陳峰、吳奇兵,2006。「軌道交通對房地產增值的定量研究」。『城市軌道交通研究』,9卷,3期,12-17。
  65. 國家發展委員會,2012。「NGIS 國土資訊網」。臺北:國家發展委員會。取自 http://ngis.nat.gov.tw/3_3_2.aspx。(2017/1/10)。
  66. 董藩、丁宏、趙安平,2009。「通勤成本與軌道交通周邊房價的空間分佈——以北京地鐵五號線周邊住宅市場為例的實證分析」,『北京師範大學學報: 社會科學版』,4期,137-143。
  67. 賈生華、溫海珍,2004。「房地產特徵價格模型的理論發展及其應用」,『外國經濟與管理』,5期,42-44。
  68. 溫海珍,2005 。「城市住宅的特徵價格: 理論與實證研究」,浙江大學博士論文。
  69. 葉霞飛、蔡蔚,2002。「城市軌道交通開發利益的計算方法」,『同濟大學學報: 自然科學版』,30卷,4期,431-436。
  70. 鄭捷奮,2004。「城市軌道交通與周邊房地產價值關係研究」,清華大學博士論文。
  71. 臺北大眾捷運股份有限公司,2016。「捷運大事紀統計資料網」。台北:臺北大眾捷運股份有限公司。取自http://www.metro.taipei/ct.asp?xItem=1315947&CtNode
  72. =70064&mp=122035。(2016/11/15)。
  73. 臺北市政府圖資共通平臺,2015。「臺北市政府圖資中心查詢服務網」。臺北:臺北市政府。取自http://gis.tpgos.taipei.gov.tw/tpsoa/WS_query.cfm。(2016/12/10)。
  74. 臺北市政府資料開放平臺,2016。「臺北市公開資料查詢網」。臺北:臺北市資訊局。取自http://data.taipei/。(2017/1/10)。
  75. 劉貴文、彭燕,2007。「軌道交通對住宅房地產價值的影響——以重慶市為例」,『城市問題』,1期,65-69。
  76. 顏志偉、簡文彥、賴宗裕、陳芊灼、蘇偉強、黃千倚,2012。「臺北都會區大眾捷運系統周邊土地整體開發計畫之探討」,『捷運技術半年刊』。46期,143-160。
  77. Armstrong Junior and Joseph Robert, 1994. “Impacts of Commuter Rail Service as Reflected in Single-Family Residential Property Values,” Transportation Research Record. 72(2): 88-98.
  78. Cervero, Robert and Michael Duncan, 2002a. “Land Value Impacts of Rail Transit Services in San Diego County,” paper presented at National Association of Realtors Urban Land Institute. Santa Clara. June.
  79. Court, Andrew, 1939. “Hedonic Price Indexes with Automobile Examples,” The Dynamics of the Automobile Demand. 25(1): 1-25.
  80. Dubin, Robin A., 1998. “Predicting House Prices Using Multiple Listings Data,” The Journal of Real Estate Finance and Economics. 17(1): 35-59.
  81. Haas, George C., 1922. “A Statistical Analysis of Farm Sales in Blue Earth County, Minnesota, as a Basis for Farm Land Appraisal,” Minnesota: Department of Applied Economics, University of Minnesota. (Mimeographed.)
  82. Huang, Zhexue, 1998. “Extensions to the K-means Algorithm for Clustering Large Data Sets with Categorical Values,” Data Mining and Knowledge Discovery, 2(3): 283-304.
  83. Lee, H. Y., 1997. “Accessibility and Land Use Changes Around Subway Stations: Case Study of Kun Dae Yeok,” Korean Journal of Geography. 32(1): 69-90.
  84. Leishman, Chris, 2001. “House Building and Product Differentiation: An Hedonic Pprice Approach,” Journal of Housing and the Built Environment. 16(2): 131-152.
  85. Pearson, Karl, 1901. “Principal Components Analysis,” The London, Edinburgh and Dublin Philosophical Magazine and Journal. 6(2): 566.
  86. Smith, J. J., 2001. “Does Public Transit Raise Site Values around its Stops Enough to Pay for Itself (Were the Value Captured),” paper presented at Victoria Transport Policy Institute. Victoria. June 12.
  87. Strand, Jon, and Mette Vagnes, 2001. “The Relationship between Property Values and Railroad Proximity: A Study Based on Hedonic Prices and Real Estate Brokers' Appraisals,” Transportation. 28(2): 137-156.
  88. Won, J. M. and K. B. Son, 1993. “Land Price Impact of Subway,” Papers and Proceedings of Capital Region Development Institute. pp. 35-47. Seoul University Capital Region Development Institute.