题名

米糠粉對高脂飲食小鼠腸道菌相及腸道免疫的影響

并列篇名

Effects of rice bran consumption in high-fat diet fed mice oncommensal microbiota and gut immune responses

DOI

10.6342/NTU201702246

作者

唐佩妤

关键词

米糠 ; 益生菌 ; 腸道菌 ; 腸道淋巴組織 ; 短鏈脂肪酸 ; Rice bran ; probiotics ; gut microbiota ; gut associated lymphoid system ; SCFAs

期刊名称

臺灣大學生化科技學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

林璧鳳

内容语文

繁體中文

中文摘要

研究指出飲食所導致的腸道菌相失衡可能會引起肥胖,且過多的壞菌增殖使內毒素進入全身性循環,可能導致全身性低度發炎。米糠雖富含高度營養價值,但以往多作為飼料,近年來以全食品觀念逐漸被食用。因其所含的可溶性纖維能被腸道共生菌利用,產生短鏈脂肪酸,可能具有免疫調節和抑制發炎的作用。在此,本實驗欲探討米糠是否能改善高脂飲食對小鼠腸道菌群及腸道免疫的影響。首先,實驗一為初步探討在開放性動物飼養環境下,米糠對高脂飲食小鼠的腸道菌群是否有影響,將9~10週齡大的9隻Balb/c公鼠分為高油 (HF) 及高油添加米糠 (HF-RB) 兩組餵飼10週,收集糞便,以PCR增幅16S rDNA序列分析選定的指標菌種。結果顯示HF-RB組的腸道菌群有較低的厚壁菌門、腸桿菌科,較高的擬桿菌門及擬桿菌屬。實驗二進一步探討米糠粉對腸道免疫的影響,為避免腸道菌群差異性過大,以自行交配的方式取得C57BL/6J小鼠,於5週大時分為正常油脂 (NF) 組、高油 (HF) 組、高油添加米糠 (HF-RB) 組、以及高油添加益生菌 (HF-PRO) 組四組,餵飼8週後,確認高脂飲食會減少糞便的比菲德氏菌屬、擬桿菌門及增加腸桿菌科,且HF-RB組及HF-PRO組皆可回復糞便的比菲德氏菌屬及腸桿菌科。與實驗一結果相同,HF-RB組與HF組相比,有顯著較低的厚壁菌門,較高的擬桿菌門及擬桿菌屬。HF-RB組的糞便短鏈脂肪酸顯著高於HF組和HF-PRO組,且血清和糞便葉酸皆顯著高於HF組。免疫相關指標的結果,HF組影響MLN細胞分泌IL-2及TGF-β的能力,而HF-RB組及HF-PRO組皆能回復此現象。綜合以上結果,米糠粉能減低高脂飲食對腸道指標菌群、腸道共生菌代謝物及腸道免疫的影響。

英文摘要

Research demonstrated that diet-induced dysbiosis might play an important role in obesity, overgrowth of pathobionts are involved in obesity-related inflammation due to its cell wall component lipopolysaccharide. Rice bran is rich in valuable nutrients, mostly used as animal feed in the past, become popular nowadays due to prevalence of whole-food consumption concept. Dietary fiber of rice bran can be utilized by gut microbiota to produce SCFAs that have immuno-modulatory and anti-inflammatory effects. Thus, this research aims to investigate whether rice bran can reverse the effects of high-fat diet on gut microbiota and immune responses. Experiment 1 was to explore the effects of rice bran on gut microbiota in the conventional animal facility. Nine to ten-week-old Balb/c mice were fed with either high-fat (HF) diet or HF-diet supplemented with rice bran (HF-RB) for ten weeks, feces were collected and measured by 16S rDNA sequence analysis to amplify target microbiota gene. Results showed that the HF-RB group had lower Firmicutes, Enterobacteriaceae, higher Bactroidetes and Bacteroides compare with the HF group, suggesting the ability of rice bran to modulate gut microbiota., Further experiment 2, C57BL/6J mice were mated in our animal facility to avoid variations of gut microbiota in newborns due to maternal microbial transmission. Five-week-old mice were divided into four groups: normal fat (NF), HF, HF-RB, and HF supplemented with probiotics (HF-PRO) for 8 weeks’ feeding. First, we confirmed that HF-diet reduced fecal Bifidobacteria, Bacteoridetes, and increased Enterobacteriaceae. Both the HF-RB and the HF-PRO groups restored fecal Bifidobacterium and Enterobacteriaceae to the level of the NF group. In consistent with experiment 1, the HF-RB group had lower Firmicutes, and higher Bacteroidetes, Bacteroides compared with the HF group. Fecal SCFAs are significantly higher in the HF-RB group than those in the HF and the HF-PRO groups. Serum and fecal folate are also significantly higher in the HF-RB group. Cytokine secretion ability (IL-2, TGF-β) of isolated MLN cells in the HF-RB group was similar to the NF group. In conclusion, rice bran can lessen the effects of HF-diet on target gut microbiota, gut microbiota metabolites and gut immune responses.

主题分类 生命科學院 > 生化科技學系
生物農學 > 生物科學
参考文献
  1. Adebiyi, A. P., Adebiyi, A. O., Ogawa, T., & MuraMot, K. (2008). Purification and characterisation of antioxidative peptides from unfractionated rice bran protein hydrolysates. International Journal of Food Science and Technology, 43(1), 35-43.
    連結:
  2. Arumugam, M., Raes, J., Pelletier, E., Le Paslier, D., Yamada, T., Mende, D. R., et al. (2011). Enterotypes of the human gut microbiome. Nature, 473(7346), 174-180.
    連結:
  3. Bager, P., Wohlfahrt, J., & Westergaard, T. (2008). Caesarean delivery and risk of atopy and allergic disesase: meta-analyses. Clinical and Experimental Allergy, 38(4), 634-642.
    連結:
  4. Bartosch, S., Fite, A., Macfarlane, G. T., & McMurdo, M. E. T. (2004). Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Applied and Environmental Microbiology, 70(6), 3575-3581.
    連結:
  5. Belzer, C., & de Vos, W. M. (2012). Microbes inside--from diversity to function: the case of Akkermansia. ISME J, 6(8), 1449-1458.
    連結:
  6. Bemer, V., & TruffaBachi, P. (1996). T cell activation by concanavalin A in the presence of cyclosporin A: Immunosuppressor withdrawal induces NFATp translocation and interleukin-2 gene transcription. European Journal of Immunology, 26(7), 1481-1488.
    連結:
  7. Bermudez-Brito, M., Munoz-Quezada, S., Gomez-Llorente, C., Matencio, E., Bernal, M. J., Romero, F., et al. (2012). Human intestinal dendritic cells decrease cytokine release against Salmonella infection in the presence of Lactobacillus paracasei upon TLR activation. Plos One, 7(8), e43197.
    連結:
  8. Blobe, G. C., Schiemann, W. P., & Lodish, H. F. (2000). Mechanisms of disease: Role of transforming growth factor beta in human disease. New England Journal of Medicine, 342(18), 1350-1358.
    連結:
  9. Bongaerts, G. P. A., & Severijnen, R. S. V. M. (2005). Preventive and curative effects of probiotics in atopic patients. Medical Hypotheses, 64(6), 1089-1092.
    連結:
  10. Boonla, O., Kukongviriyapan, U., Pakdeechote, P., Kukongviriyapan, V., Pannangpetch, P., & Thawornchinsombut, S. (2015). Peptides-Derived from Thai Rice Bran Improves Endothelial Function in 2K-1C Renovascular Hypertensive Rats. Nutrients, 7(7), 5783-5799.
    連結:
  11. Bouskra, D., Brezillon, C., Berard, M., Werts, C., Varona, R., Boneca, I. G., et al. (2008). Lymphoid tissue genesis induced by commensals through NOD1 regulates intestinal homeostasis. Nature, 456(7221), 507-U534.
    連結:
  12. Brinkworth, G. D., Noakes, M., Clifton, P. M., & Bird, A. R. (2009). Comparative effects of very low-carbohydrate, high-fat and high-carbohydrate, low-fat weight-loss diets on bowel habit and faecal short-chain fatty acids and bacterial populations. British Journal of Nutrition, 101(10), 1493-1502.
    連結:
  13. Brown, K., DeCoffe, D., Molcan, E., & Gibson, D. L. (2012). Diet-Induced Dysbiosis of the Intestinal Microbiota and the Effects on Immunity and Disease (vol 4, pg 1095, 2012). Nutrients, 4(11), 1552-1553.
    連結:
  14. Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D., & Backhed, F. (2015). Crosstalk between Gut Microbiota and Dietary Lipids Aggravates WAT Inflammation through TLR Signaling. Cell Metabolism, 22(4), 658-668.
    連結:
  15. Cani, P. D., Neyrinck, A. M., Fava, F., Knauf, C., Burcelin, R. G., Tuohy, K. M., et al. (2007). Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia, 50(11), 2374-2383.
    連結:
  16. Collado, M. C., Isolauri, E., Salminen, S., & Sanz, Y. (2009). The Impact of Probiotic on Gut Health. Current Drug Metabolism, 10(1), 68-78.
    連結:
  17. Coombes, J. L., Siddiqui, K. R. R., Arancibia-Carcamo, C. V., Hall, J., Sun, C. M., Belkaid, Y., et al. (2007). A functionally specialized population of mucosal CD103(+) DCs induces Foxp3(+) regulatory T cells via a TGF-beta- and retinoic acid-dependent mechanism. Journal of Experimental Medicine, 204(8), 1757-1764.
    連結:
  18. Creely, S. J., McTernan, P. G., Kusminski, C. M., Fisher, F. M., Da Silva, N. F., Khanolkar, M., et al. (2007). Lipopolysaccharide activates an innate immune system response in human adipose tissue in obesity and type 2 diabetes. American Journal of Physiology-Endocrinology and Metabolism, 292(3), E740-E747.
    連結:
  19. Cross, M. L. (2002). Microbes versus microbes: immune signals generated by probiotic lactobacilli and their role in protection against microbial pathogens. Fems Immunology and Medical Microbiology, 34(4), 245-253.
    連結:
  20. De Filippo, C., Cavalieri, D., Di Paola, M., Ramazzotti, M., Poullet, J. B., Massart, S., et al. (2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Academy of Sciences of the United States of America, 107(33), 14691-14696.
    連結:
  21. den Besten, G., van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D. J., & Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325-2340.
    連結:
  22. Derrien, M., Vaughan, E. E., Plugge, C. M., & de Vos, W. M. (2004). Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol, 54(Pt 5), 1469-1476.
    連結:
  23. Desai, M. S., Seekatz, A. M., Koropatkin, N. M., Kamada, N., Hickey, C. A., Wolter, M., et al. (2016). A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen Susceptibility. Cell, 167(5), 1339-+.
    連結:
  24. Ding, S. L., Chi, M. M., Scull, B. P., Rigby, R., Schwerbrock, N. M. J., Magness, S., et al. (2010). High-Fat Diet: Bacteria Interactions Promote Intestinal Inflammation Which Precedes and Correlates with Obesity and Insulin Resistance in Mouse. Plos One, 5(8).
    連結:
  25. Dominguez-Bello, M. G., Costello, E. K., Contreras, M., Magris, M., Hidalgo, G., Fierer, N., et al. (2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences of the United States of America, 107(26), 11971-11975.
    連結:
  26. Everard, A., Lazarevic, V., Derrien, M., Girard, M., Muccioli, G. G., Neyrinck, A. M., et al. (2011). Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice (vol 60, pg 2775, 2011). Diabetes, 60(12), 3307-3307.
    連結:
  27. Fontenot, J. D., Gavin, M. A., & Rudensky, A. Y. (2003). Foxp3 programs the development and function of CD4(+)CD25(+) regulatory T cells. Nature immunology, 4(4), 330-336.
    連結:
  28. Fransen, F., Zagato, E., Mazzini, E., Fosso, B., Manzari, C., El Aidy, S., et al. (2015). BALB/c and C57BL/6 Mice Differ in Polyreactive IgA Abundance, which Impacts the Generation of Antigen-Specific IgA and Microbiota Diversity. Immunity, 43(3), 527-540.
    連結:
  29. Fuller, R. (1989). Probiotics in Man and Animals. Journal of Applied Bacteriology, 66(5), 365-378.
    連結:
  30. Gabert, L., Vors, C., Louche-Pelissier, C., Sauvinet, V., Lambert-Porcheron, S., Drai, J., et al. (2011). C-13 tracer recovery in human stools after digestion of a fat-rich meal labelled with [1,1,1-(13)C3]tripalmitin and [1,1,1-(13)C3]triolein. Rapid Communications in Mass Spectrometry, 25(19), 2697-2703.
    連結:
  31. Gibson, G. R., & Roberfroid, M. B. (1995). Dietary Modulation of the Human Colonic Microbiota - Introducing the Concept of Prebiotics. Journal of Nutrition, 125(6), 1401-1412.
    連結:
  32. Gnanasambandam, R., & Hettiarachchy, N. S. (1995). Protein-Concentrates from Unstabilized and Stabilized Rice Bran - Preparation and Properties. Journal of Food Science, 60(5), 1066-&.
    連結:
  33. Guo, X., Xia, X., Tang, R., Zhou, J., Zhao, H., & Wang, K. (2008). Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Letters in Applied Microbiology, 47(5), 367-373.
    連結:
  34. Hildebrandt, M. A., Hoffmann, C., Sherrill-Mix, S. A., Keilbaugh, S. A., Hamady, M., Chen, Y. Y., et al. (2009). High-Fat Diet Determines the Composition of the Murine Gut Microbiome Independently of Obesity. Gastroenterology, 137(5), 1716-1724.
    連結:
  35. Hollister, E. B., Gao, C. X., & Versalovic, J. (2014). Compositional and Functional Features of the Gastrointestinal Microbiome and Their Effects on Human Health. Gastroenterology, 146(6), 1449-1458.
    連結:
  36. Hooper, L. V., & Macpherson, A. J. (2010). Immune adaptations that maintain homeostasis with the intestinal microbiota. Nature Reviews Immunology, 10(3), 159-169.
    連結:
  37. Johnson, A. R., Milner, J. J., & Makowski, L. (2012). The inflammation highway: metabolism accelerates inflammatory traffic in obesity. Immunological Reviews, 249, 218-238.
    連結:
  38. Kalliomaki, M., Salminen, S., Arvilommi, H., Kero, P., Koskinen, P., & Isolauri, E. (2001). Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet, 357(9262), 1076-1079.
    連結:
  39. Kannan, A., Hettiarachchy, N., & Narayan, S. (2009). Colon and breast anti-cancer effects of peptide hydrolysates derived from rice bran. The Open Bioactive Compounds Journal, 2(1).
    連結:
  40. Kato, I., Tanaka, K., & Yokokura, T. (1999). Lactic acid bacterium potently induces the production of interleukin-12 and interferon-gamma by mouse splenocytes. International Journal of Immunopharmacology, 21(2), 121-131.
    連結:
  41. Kim, K. A., Gu, W., Lee, I. A., Joh, E. H., & Kim, D. H. (2012). High Fat Diet-Induced Gut Microbiota Exacerbates Inflammation and Obesity in Mice via the TLR4 Signaling Pathway. Plos One, 7(10).
    連結:
  42. Kim, S. M., Rico, C. W., Lee, S. C., & Kang, M. Y. (2010). Modulatory effect of rice bran and phytic acid on glucose metabolism in high fat-fed C57BL/6N mice. Journal of Clinical Biochemistry and Nutrition, 47(1), 12-17.
    連結:
  43. Kuo, S. M., Merhige, P. M., & Hagey, L. R. (2013). The Effect of Dietary Prebiotics and Probiotics on Body Weight, Large Intestine Indices, and Fecal Bile Acid Profile in Wild Type and IL10-/- Mice. Plos One, 8(3).
    連結:
  44. Layton, A., McKay, L., Williams, D., Garrett, V., Gentry, R., & Sayler, G. (2006). Development of Bacteroides 16S rRNA gene TaqMan-based real-time PCR assays for estimation of total, human, and bovine fecal pollution in water. Appl Environ Microbiol, 72(6), 4214-4224.
    連結:
  45. Leser, T. D., & Molbak, L. (2009). Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environmental Microbiology, 11(9), 2194-2206.
    連結:
  46. Leuenberger, N., Pradervand, S., & Wahli, W. (2009). Sumoylated PPAR alpha mediates sex-specific gene repression and protects the liver from estrogen-induced toxicity in mice. Journal of Clinical Investigation, 119(10), 3138-3148.
    連結:
  47. Lilly, D. M., & Stillwell, R. H. (1965). Probiotics - Growth-Promoting Factors Produced by Microorganisms. Science, 147(3659), 747-+.
    連結:
  48. Lundin, A., Bok, C. M., Aronsson, L., Bjorkholm, B., Gustafsson, J. A., Pott, S., et al. (2008). Gut flora, Toll-like receptors and nuclear receptors: a tripartite communication that tunes innate immunity in large intestine. Cellular Microbiology, 10(5), 1093-1103.
    連結:
  49. Lupp, C., Robertson, M. L., Wickham, M. E., Sekirov, I., Champion, O. L., Gaynor, E. C., et al. (2007). Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae (Vol 2, pg 119, 2007). Cell Host & Microbe, 2(3), 204-204.
    連結:
  50. Maassen, C. B. M., van Holten-Neelen, C., Balk, F., den Bak-Glashouwer, J. H., Leer, R. J., Laman, J. D., et al. (2000). Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains. Vaccine, 18(23), 2613-2623.
    連結:
  51. Macfarlane, S., & Macfarlane, G. T. (2003). Regulation of short-chain fatty acid production. Proceedings of the Nutrition Society, 62(1), 67-72.
    連結:
  52. Maeda, H., Fujimoto, C., Haruki, Y., Maeda, T., Kokeguchi, S., Petelin, M., et al. (2003). Quantitative real-time PCR using TaqMan and SYBR Green for Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Prevotella intermedia, tetQ gene and total bacteria. Fems Immunology and Medical Microbiology, 39(1), 81-86.
    連結:
  53. Massey, R. C., Key, P. E., Mallett, A. K., & Rowland, I. R. (1988). An Investigation of the Endogenous Formation of Apparent Total N-Nitroso Compounds in Conventional Microflora and Germ-Free Rats. Food and Chemical Toxicology, 26(7), 595-600.
    連結:
  54. Matsuki, T., Watanabe, K., Fujimoto, J., Takada, T., & Tanaka, R. (2004). Use of 16S rRNA gene-targeted group-specific primers for real-time PCR analysis of predominant bacteria in human feces. Appl Environ Microbiol, 70(12), 7220-7228.
    連結:
  55. Maynard, C. L., Elson, C. O., Hatton, R. D., & Weaver, C. T. (2012). Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489(7415), 231-241.
    連結:
  56. Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., & Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1), 107-118.
    連結:
  57. McFall-Ngai, M. (2007). Adaptive immunity - Care for the community. Nature, 445(7124), 153-153.
    連結:
  58. McGuirk, P., & Mills, K. H. G. (2002). Pathogen-specific regulatory T cells provoke a shift in the Th1/Th2 paradigm in immunity to infectious diseases. Trends in Immunology, 23(9), 450-455.
    連結:
  59. McLaughlin, H. P., Motherway, M. O., Lakshminarayanan, B., Stanton, C., Ross, R. P., Brulc, J., et al. (2015). Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin. International Journal of Food Microbiology, 203, 109-121.
    連結:
  60. Mohan, R., Koebnick, C., Schildt, J., Mueller, M., Radke, M., & Blaut, M. (2008). Effects of Bifidobacterium lactis Bb12 supplementation on body weight, fecal pH, acetate, lactate, calprotectin, and IgA in preterm infants. Pediatric Research, 64(4), 418-422.
    連結:
  61. Moreau, M. C., & Corthier, G. (1988). Effect of the Gastrointestinal Microflora on Induction and Maintenance of Oral Tolerance to Ovalbumin in C3h-Hej Mice. Infection and Immunity, 56(10), 2766-2768.
    連結:
  62. Nagao, F., Nakayama, M., Muto, T., & Okumura, K. (2000). Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the immune system in healthy human subjects. Bioscience, biotechnology, and biochemistry, 64(12), 2706-2708.
    連結:
  63. Nilsson, N. E., Kotarsky, K., Owman, C., & Olde, B. (2003). Identification of a free fatty acid receptor, FFA(2)R, expressed on leukocytes and activated by short-chain fatty acids. Biochemical and Biophysical Research Communications, 303(4), 1047-1052.
    連結:
  64. Noverr, M. C., & Huffnagel, G. B. (2004). Does the microbiota regulate immune responses outside the gut? Trends in Microbiology, 12(12), 562-568.
    連結:
  65. Ouwehand, A. C., Nermes, M., Collado, M. C., Rautonen, N., Salminen, S., & Isolauri, E. (2009). Specific probiotics alleviate allergic rhinitis during the birch pollen season. World J Gastroenterol, 15(26), 3261-3268.
    連結:
  66. Packey, C. D., & Sartor, R. B. (2009). Commensal bacteria, traditional and opportunistic pathogens, dysbiosis and bacterial killing in inflammatory bowel diseases. Current Opinion in Infectious Diseases, 22(3), 292-301.
    連結:
  67. Park, Lee, K.-W., & Choi, H.-D. (2017). Rice bran constituents: immunomodulatory and therapeutic activities. Food & Function, 8(3), 935-943.
    連結:
  68. Park, H. Y., Lee, K. W., & Choi, H. D. (2017). Rice bran constituents: immunomodulatory and therapeutic activities. Food & Function, 8(3), 935-943.
    連結:
  69. Peters, J. M., Cattley, R. C., & Gonzalez, F. J. (1997). Role of PPAR alpha in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator Wy-14,643. Carcinogenesis, 18(11), 2029-2033.
    連結:
  70. Png, C. W., Linden, S. K., Gilshenan, K. S., Zoetendal, E. G., McSweeney, C. S., Sly, L. I., et al. (2010). Mucolytic Bacteria With Increased Prevalence in IBD Mucosa Augment In Vitro Utilization of Mucin by Other Bacteria. American Journal of Gastroenterology, 105(11), 2420-2428.
    連結:
  71. Pokusaeva, K., Fitzgerald, G. F., & van Sinderen, D. (2011). Carbohydrate metabolism in Bifidobacteria. Genes and Nutrition, 6(3), 285-306.
    連結:
  72. Quivy, V., & Van Lint, C. (2004). Regulation at multiple levels of NF-kappa B-mediated transactivation by protein acetylation. Biochemical Pharmacology, 68(6), 1221-1229.
    連結:
  73. Qureshi, A. A., Sami, S. A., Salser, W. A., & Khan, F. A. (2002). Dose-dependent suppression of serum cholesterol by tocotrienol-rich fraction (TRF 25) of rice bran in hypercholesterolemic humans. Atherosclerosis, 161(1), 199-207.
    連結:
  74. Roller, M., Rechkemmer, G., & Watzl, B. (2004). Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. Journal of Nutrition, 134(1), 153-156.
    連結:
  75. Ronis, M. J., Badeaux, J., Chen, Y., & Badger, T. M. (2010). Rice protein isolate improves lipid and glucose homeostasis in rats fed high fat/high cholesterol diets. Experimental Biology and Medicine, 235(9), 1102-1113.
    連結:
  76. Rossi, M., Amaretti, A., & Raimondi, S. (2011). Folate Production by Probiotic Bacteria. Nutrients, 3(1), 118-134.
    連結:
  77. Round, J. L., & Mazmanian, S. K. (2010). Inducible Foxp(3+) regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proceedings of the National Academy of Sciences of the United States of America, 107(27), 12204-12209.
    連結:
  78. Santacruz, A., Collado, M. C., Garcia-Valdes, L., Segura, M. T., Martin-Lagos, J. A., Anjos, T., et al. (2010). Gut microbiota composition is associated with body weight, weight gain and biochemical parameters in pregnant women. British Journal of Nutrition, 104(1), 83-92.
    連結:
  79. Santacruz, A., Marcos, A., Warnberg, J., Marti, A., Martin-Matillas, M., Campoy, C., et al. (2009). Interplay Between Weight Loss and Gut Microbiota Composition in Overweight Adolescents. Obesity, 17(10), 1906-1915.
    連結:
  80. Saunders, R. (1985). Rice bran: composition and potential food uses. Food Reviews International, 1(3), 465-495.
    連結:
  81. Schmidt, A., Eriksson, M., Shang, M. M., Weyd, H., & Tegner, J. (2016). Comparative Analysis of Protocols to Induce Human CD4+Foxp3+Regulatory T Cells by Combinations of IL-2, TGF-beta, Retinoic Acid, Rapamycin and Butyrate. Plos One, 11(2).
    連結:
  82. Schwiertz, A., Taras, D., Schafer, K., Beijer, S., Bos, N. A., Donus, C., et al. (2010). Microbiota and SCFA in Lean and Overweight Healthy Subjects. Obesity, 18(1), 190-195.
    連結:
  83. Smits, H. H., Engering, A., van der Kleij, D., de Jong, E. C., Schipper, K., van Capel, T. M. M., et al. (2005). Selective probiotic bacteria induce IL-10-producing regulatory T cells in vitro by modulating dendritic cell function through dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin. Journal of Allergy and Clinical Immunology, 115(6), 1260-1267.
    連結:
  84. Sonoyama, K., Ogasawara, T., Goto, H., Yoshida, T., Takemura, N., Fujiwara, R., et al. (2010). Comparison of gut microbiota and allergic reactions in BALB/c mice fed different cultivars of rice. British Journal of Nutrition, 103(2), 218-226.
    連結:
  85. Turnbaugh, P. J., Baeckhed, F., Fulton, L., & Gordon, J. I. (2008). Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host & Microbe, 3(4), 213-223.
    連結:
  86. Turnbaugh, P. J., Ley, R. E., Mahowald, M. A., Magrini, V., Mardis, E. R., & Gordon, J. I. (2006). An obesity-associated gut microbiome with increased capacity for energy harvest. Nature, 444(7122), 1027-1031.
    連結:
  87. Turnbaugh, P. J., Ridaura, V. K., Faith, J. J., Rey, F. E., Knight, R., & Gordon, J. I. (2009). The Effect of Diet on the Human Gut Microbiome: A Metagenomic Analysis in Humanized Gnotobiotic Mice. Science Translational Medicine, 1(6).
    連結:
  88. Wallace, F. A., Miles, E. A., Evans, C., Stock, T. E., Yaqoob, P., & Calder, P. C. (2001). Dietary fatty acids influence the production of Th1-but not Th2-type cytokines. Journal of leukocyte biology, 69(3), 449-457.
    連結:
  89. Walter, J., Hertel, C., Tannock, G. W., Lis, C. M., Munro, K., & Hammes, W. P. (2001). Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Applied and Environmental Microbiology, 67(6), 2578-2585.
    連結:
  90. Weiner, H. L. (1997). Oral tolerance: Immune mechanisms and treatment of autoimmune diseases. Immunology Today, 18(7), 335-343.
    連結:
  91. Wong, J. M. W., de Souza, R., Kendall, C. W. C., Emam, A., & Jenkins, D. J. A. (2006). Colonic health: Fermentation and short chain fatty acids. Journal of Clinical Gastroenterology, 40(3), 235-243.
    連結:
  92. Yadav, H., Quijano, C., Kamaraju, A. K., Gavrilova, O., Malek, R., Chen, W., et al. (2011). Protection from obesity and diabetes by blockade of TGF-β/Smad3 signaling. Cell Metabolism, 14(1), 67-79.
    連結:
  93. Yang, Y. B., Smith, D. L., Keating, K. D., Allison, D. B., & Nagy, T. R. (2014). Variations in Body Weight, Food Intake and Body Composition after Long-Term High-Fat Diet Feeding in C57BL/6J Mice. Obesity, 22(10), 2147-2155.
    連結:
  94. Zeng, H., Lazarova, D. L., & Bordonaro, M. (2014). Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World journal of gastrointestinal oncology, 6(2), 41.
    連結:
  95. Zheng, S. G., Wang, J. H., Wang, P., Gray, J. D., & Horwitz, D. A. (2007). IL-2 is essential for TGF-beta to convert naive CD4(+)CD25(-) cells to CD25(+)Foxp3(+) regulatory T cells and for expansion of these cells. Journal of Immunology, 178(4), 2018-2027.
    連結:
  96. Zimmer, J., Lange, B., Frick, J. S., Sauer, H., Zimmermann, K., Schwiertz, A., et al. (2012). A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. European Journal of Clinical Nutrition, 66(1), 53-60.
    連結:
  97. 黃子倩 (2013) 營養素及飲食因子對腸道免疫系統的影響。國立台灣大學生化科技研究所碩士論文。
  98. Amar, J., Burcelin, R., Ruidavets, J. B., Cani, P. D., Fauvel, J., Alessi, M. C., et al. (2008). Energy intake is associated with endotoxemia in apparently healthy men. American Journal of Clinical Nutrition, 87(5), 1219-1223.
  99. Backhed, F., Ding, H., Wang, T., Hooper, L. V., Koh, G. Y., Nagy, A., et al. (2004). The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America, 101(44), 15718-15723.
  100. Cummings, J. (1997). Carbohydrate and protein digestion: The substrate available for fermentation. The Large Intestine in Nutrition and Disease; Danone Institute: Brussels, Belgium, 15-42.
  101. Falk, P. G., Hooper, L. V., Midtvedt, T., & Gordon, J. I. (1998). Creating and maintaining the gastrointestinal ecosystem: What we know and need to know from gnotobiology. Microbiology and Molecular Biology Reviews, 62(4), 1157-+.
  102. Gorbach, S. L. (1986). Function of the Normal Human Microflora. Scandinavian Journal of Infectious Diseases, 17-30.
  103. Huang, J. S., Bousvaros, A., Lee, J. W., Diaz, A., & Davidson, E. J. (2002). Efficacy of probiotic use in acute diarrhea in children - A meta-analysis. Digestive Diseases and Sciences, 47(11), 2625-2634.
  104. Inagaki, H., Suzuki, K., Nomoto, K., & Yoshikai, Y. (1996). Increased susceptibility to primary infection with Listeria monocytogenes in germfree mice may be due to lack of accumulation of L-selectin(+) CD44(+) T cells in sites of inflammation. Infection and Immunity, 64(8), 3280-3287.
  105. Jandhyala, S. M., Talukdar, R., Subramanyam, C., Vuyyuru, H., Sasikala, M., & Reddy, D. N. (2015). Role of the normal gut microbiota. World Journal of Gastroenterology, 21(29), 8787-8803.
  106. Roberfroid, M., Gibson, G. R., Hoyles, L., McCartney, A. L., Rastall, R., Rowland, I., et al. (2010). Prebiotic effects: metabolic and health benefits. British Journal of Nutrition, 104, S1-S63.
  107. Sakaguchi, S., Sakaguchi, N., Asano, M., Itoh, M., & Toda, M. (1995). Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. The Journal of Immunology, 155(3), 1151-1164.
  108. Scott, K. P., Gratz, S. W., Sheridan, P. O., Flint, H. J., & Duncan, S. H. (2013). The influence of diet on the gut microbiota. Pharmacological Research, 69(1), 52-60.
  109. Turnbaugh, P. J., Hamady, M., Yatsunenko, T., Cantarel, B. L., Duncan, A., Ley, R. E., et al. (2009). A core gut microbiome in obese and lean twins. Nature, 457(7228), 480-U487.
  110. Vaahtovuo, J., Munukka, E., Korkeamaki, M., Luukkainen, R., & Toivanen, P. (2008). Fecal microbiota in early rheumatoid arthritis. Journal of Rheumatology, 35(8), 1500-1505.
  111. Yoshioka, H., Iseki, K., & Fujita, K. (1983). Development and Differences of Intestinal Flora in the Neonatal-Period in Breast-Fed and Bottle-Fed Infants. Pediatrics, 72(3), 317-321.