题名

氮肥及重金屬對水稻幼苗生長及反射光譜之影響

并列篇名

The effect of nitrogen and heavy metals on reflectance spectra of rice seedlings

DOI

10.6342/NTU201702250

作者

林盈茹

关键词

重金屬 ; 反射光譜 ; 水稻幼苗 ; 氮素 ; 植生指數 ; 遙感探測 ; heavy metal ; reflectance spectra ; rice seedlings ; nitrogen ; vegetation index ; remote sensing

期刊名称

國立臺灣大學農藝學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

黃文達

内容语文

繁體中文

中文摘要

隨著人類活動日益頻繁,土壤中重金屬快速累積,加上重金屬具有不可分解性,使土壤重金屬污染日趨嚴重。由於影響土壤中重金屬有效性之因子及重金屬污染來源眾多,並非土壤重金屬濃度未達管制標準該農地所生產之農作物重金屬含量即符合標準,因此本研究希望能建立即時且非破壞性之監測方式以預估土壤有效性重金屬污染物濃度與植體累積重金屬含量。本研究以水稻 (Oryza sativa L.)幼苗(台南11號TN11及台稉14號TK14)為材料,以50、100及200 ppm之氮素濃度分別與鎳 (0、10、20及40 μM)、鎘 (0、50、100及200 μM)、銅 (0、10、20及40 μM)、鋅 (0、1000、2000及4000 μM)、鉻 (0、100、200及500 μM)及鉛 (0、100、200及500 μM)六種重金屬進行複因子水耕栽培試驗,模擬在田間不同濃度氮肥管理下,土壤溶液中有效性重金屬對水稻幼苗造成之影響,並測定葉片反射光譜,以反射率計算植生指數(vegetation index),計算植生指數與重金屬處理濃度及植生指數與地上部重金屬含量之預測模型。結果顯示受重金屬逆境之植株普遍地上部生長受抑制且在葉片反射光譜上,受重金屬逆境植株在紅光及綠光反射率普遍增加,而在較高濃度氮處理下反射率較氮濃度50 ppm處理組低。此外,675 nm以上之波段中,各重金屬處理組合之反射光譜一次微分波峰在高氮濃度下普遍往長波長方向位移,產生紅光臨界紅移 (red shift of red edge),而受重金屬逆境植株之波峰則普遍往短波長方向位移,產生紅光臨界之藍移 (blue shift of red edge),可做為植株是否受逆境之參考。以常用波段或敏感波段計算之植生指數分別與植體重金屬濃度或重金屬處理濃度間建構線性及多項式模型,其中又以多項式模型較佳且具顯著相關性。因此利用反射光譜計算植生指數,非破壞性預估土壤有效性重金屬污染物濃度與植體累積重金屬含量,可能為有效可行之方法。

英文摘要

Heavy metal Contamination of soils has been a widespread occurrence since anthropogenic activities began. Because heavy metals are non-degradable, their concentrations in soils significantly go beyond regulatory standards. Due to many factors affecting heavy metal availability in the soil, and many sources of heavy metal pollution, heavy metal content in crop may be excessive even though heavy metal concentration in soils meets the regulatory standard. Thus, we would like to create indices using reflectance spectra to perform non-destructive estimation of bioavailable heavy metal concentrations in soils and accumulation concentration in shoots. In this research, hydroponic rice (Oryza sativa L. cv. Tainan 11 and Taiken 14) seedlings were treated with treatment combinations of three nitrogen concentrations (50,100, and 200 ppm) and six heavy metal concentrations (Ni: 0, 10, 20 and 40 μM; Cd: 0, 50, 100 and 200 μM; Cu: 0, 10, 20 and 40 μM; Zn: 0, 1000, 2000 and 4000 μM; Cr: 0, 100, 200 and 500 μM; Pb: 0, 100, 200 and 500 μM) to simulate the effects of heavy metals in soil solution on rice seedlings under different nitrogen management in the field. The reflectance spectra of leaves were recorded and used to calculate vegetation indices to observe the relation between vegetation index and the heavy metal treatment concentration or the relation between vegetation index and heavy metal concentration in shoots. The result indicated that heavy metal stress inhibited shoot length of rice seedlings. In high heavy metal concentration, the reflectivity in green light and red light increased and blue shift of red edge happened at the same time. In addition, the reflectivity in green light and red light decreased in high nitrogen concentration, and red shift of red edge happened at the same time. The linear model and quadratic model were constructed from the relation between heavy metal concentration of shoots and vegetation index or the relation between heavy metal treatment concentration and vegetation index. The result showed that quadratic model has more significant correlation in both sets of variables. Therefore, it appears possible to create indices using reflectance spectra for non-destructive estimation of bioavailable heavy metal concentration in soils and accumulation concentration in shoots.

主题分类 生物資源暨農學院 > 農藝學系
生物農學 > 農業
参考文献
  1. 郭鴻裕、劉滄棽、江志峰。2010。作物 (水稻) 吸收土壤重金屬鎘機制與農產品安全之影響。技術服務,21(3),頁12-14。
    連結:
  2. 劉黔蘭。2002。台灣中部水稻與土壤中鎳之研究。農林學報,51(1),頁57-71。
    連結:
  3. 謝慶芳。1990。土壤中鎘含量與水稻植物體不同部位鎘濃度變化之研究。台中區農業改良場研究彙報,29,頁11-27。
    連結:
  4. Abdel-Ghany, S. E., & Pilon, M. (2008). MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. Journal of Biological Chemistry, 283(23), 15932-15945.
    連結:
  5. Agami, R. A., & Mohamed, G. F. (2013). Exogenous treatment with indole-3-acetic acid and salicylic acid alleviates cadmium toxicity in wheat seedlings. Ecotoxicology and Environmental Safety, 94, 164-171.
    連結:
  6. Agency for Toxic Substances and Disease Registry. (1997). ToxFAQs for Nickel. Retrieved from: www.atsdr.cdc.gov/toxprofiles/tp132.html.
    連結:
  7. Agency for Toxic Substances and Disease Registry. (2004). Toxicological Profile for Copper. Atlanta,GA: U.S. Department of Health and Human Services, Public Health Service. .
    連結:
  8. Agency for Toxic Substances and Disease Registry. (2005). ToxFAQsTM for Zinc. Retrieved from: https://www.atsdr.cdc.gov/toxfaqs/tf.asp?id=301&tid=54.
    連結:
  9. Agency for Toxic Substances and Disease Registry. (2012). Toxicological Profile for Chromium. Atlanta, GA: U.S. Department of Health and Human Services, Public Health Service.
    連結:
  10. Ahmad, I., Akhtar, M. J., Zahir, Z. A., & Jamil, A. (2012). Effect of cadmium on seed germination and seedling growth of four wheat (Triticum aestivum L.) cultivars. Pak. J. Bot, 44(5), 1569-1574.
    連結:
  11. Ahmad, M. S. A., & Ashraf, M. (2011). Essential Roles and Hazardous Effects of Nickel in Plants. Reviews of Environmental Contamination and Toxicology (pp. 125-167). New York, NY: Springer New York.
    連結:
  12. Ahmad, M. S. A., & Ashraf, M. (2012). Essential roles and hazardous effects of nickel in plants Reviews of environmental contamination and toxicology (pp. 125-167). New York, NY: Springer New York.
    連結:
  13. Alayat, A., Souiki, L., Grara, N., Djebar, M. R., Boumedris, Z. E., Benosmane, S. (2014). Effects of cadmium on water content, soluble protein, proline changes and some antioxidant enzymes in wheat (Triticum durum desf.) Leaves. Annual Research & Review in Biology, 4(24), 3835.
    連結:
  14. Ali, S., Farooq, M. A., Yasmeen, T., Hussain, S., Arif, M. S., Abbas, F. (2013). The influence of silicon on barley growth, photosynthesis and ultra-structure under chromium stress. Ecotoxicology and Environmental Safety, 89, 66-72.
    連結:
  15. Anjum, S. A., Ashraf, U., Khan, I., Tanveer, M., Saleem, M. F., & Wang, L. (2016). Aluminum and Chromium Toxicity in Maize: Implications for Agronomic Attributes, Net Photosynthesis, Physio-Biochemical Oscillations, and Metal Accumulation in Different Plant Parts. Water, Air, & Soil Pollution, 227(9), 326.
    連結:
  16. Anjum, S. A., Tanveer, M., Hussain, S., Bao, M., Wang, L., Khan, I. (2015). Cadmium toxicity in Maize (Zea mays L.): consequences on antioxidative systems, reactive oxygen species and cadmium accumulation. Environmental Science and Pollution Research, 22(21), 17022-17030.
    連結:
  17. Ashraf, U., Kanu, A. S., Mo, Z., Hussain, S., Anjum, S. A., Khan, I. (2015). Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environmental Science and Pollution Research, 22(23), 18318-18332.
    連結:
  18. Babula, P., Adam, V., Opatrilova, R., Zehnalek, J., Havel, L., & Kizek, R. (2008). Uncommon heavy metals, metalloids and their plant toxicity: a review. Environmental Chemistry Letters, 6(4), 189-213.
    連結:
  19. Bai, C., Reilly, C. C., & Wood, B. W. (2006). Nickel deficiency disrupts metabolism of ureides, amino acids, and organic acids of young pecan foliage. Plant physiology, 140(2), 433-443.
    連結:
  20. Barceloux, D. G., & Barceloux, D. (1999). Chromium. Journal of Toxicology: Clinical Toxicology, 37(2), 173-194.
    連結:
  21. Bashir, K., Ishimaru, Y., & Nishizawa, N. K. (2012). Molecular mechanisms of zinc uptake and translocation in rice. Plant and soil, 361(1-2), 189-201.
    連結:
  22. Bokor, B., Vaculík, M., Slováková, Ľ., Masarovič, D., & Lux, A. (2014). Silicon does not always mitigate zinc toxicity in maize. Acta Physiologiae Plantarum, 36(3), 733-743.
    連結:
  23. Boluda, R., Andreu, V., Gilabert, M., & Sobrino, P. (1993). Relation between reflectance of rice crop and indices of pollution by heavy metals in soils of Albufera Natural Park (Valencia, Spain). Soil technology, 6(4), 351-363.
    連結:
  24. Bonnet, M., Camares, O., & Veisseire, P. (2000). Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo). Journal of Experimental Botany, 51(346), 945-953.
    連結:
  25. Boussama, N., Ouariti, O., & Ghorbal, M. H. (1999). Changes in growth and nitrogen assimilation in barley seedlings under cadmium stress. Journal of Plant Nutrition, 22(4-5), 731-752.
    連結:
  26. Burzyński, M., & Kłobus, G. (2004). Changes of photosynthetic parameters in cucumber leaves under Cu, Cd, and Pb stress. Photosynthetica, 42(4), 505-510.
    連結:
  27. Cary, E. (1982). Chromium in air, soil and natural waters. Biological and environmental aspects of chromium, 49-64.
    連結:
  28. Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C. (2001). Interactions of chromium with microorganisms and plants. FEMS microbiology reviews, 25(3), 335-347.
    連結:
  29. Chen, C., Huang, D., & Liu, J. (2009). Functions and toxicity of nickel in plants: recent advances and future prospects. CLEAN–Soil, Air, Water, 37(4‐5), 304-313.
    連結:
  30. Chen, W., Yang, X., He, Z., Feng, Y., & Hu, F. (2008). Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn‐efficient and Zn‐inefficient rice genotypes (Oryza sativa) under low zinc stress. Physiologia Plantarum, 132(1), 89-101.
    連結:
  31. Chien, H.-F., & Kao, C. H. (2000). Accumulation of ammonium in rice leaves in response to excess cadmium. Plant Science, 156(1), 111-115.
    連結:
  32. Chien, H.-F., Lin, C. C., Wang, J.-W., Chen, C. T., & Kao, C. H. (2002). Changes in ammonium ion content and glutamine synthetase activity in rice leaves caused by excess cadmium are a consequence of oxidative damage. Plant Growth Regulation, 36(1), 41-47.
    連結:
  33. Das, S. K. (2014). Role of Micronutrient in Rice Cultivation and Management Strategy in Organic Agriculture-A Reappraisal. Agricultural Sciences, 5(9), 765-769.
    連結:
  34. Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtrey, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote sensing of Environment, 74(2), 229-239.
    連結:
  35. Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., Hölzer, R., & Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environmental and Experimental Botany, 52(3), 253-266.
    連結:
  36. Deng, F., Yamaji, N., Xia, J., & Ma, J. F. (2013). A member of the heavy metal P-type ATPase OsHMA5 is involved in xylem loading of copper in rice. Plant physiology, 163(3), 1353-1362.
    連結:
  37. Di Cagno, R., Guidi, L., De Gara, L., & Soldatini, G. (2001). Combined cadmium and ozone treatments affect photosynthesis and ascorbate‐dependent defences in sunflower. New Phytologist, 151(3), 627-636.
    連結:
  38. Elvidge, C. D., & Chen, Z. (1995). Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote sensing of environment, 54(1), 38-48.
    連結:
  39. Eskew, D. L., Welch, R. M., & Norvell, W. A. (1984). Nickel in higher plants further evidence for an essential role. Plant Physiology, 76(3), 691-693.
    連結:
  40. Fabiano, C., Tezotto, T., Favarin, J. L., Polacco, J. C., & Mazzafera, P. (2015). Essentiality of nickel in plants: a role in plant stresses. Frontiers in plant science, 6, 754.
    連結:
  41. Fageria, N. (2001). Adequate and toxic levels of copper and manganese in upland rice, common bean, corn, soybean, and wheat grown on an oxisol. Communications in Soil Science and Plant Analysis, 32(9-10), 1659-1676.
    連結:
  42. Farooq, M. A., Ali, S., Hameed, A., Ishaque, W., Mahmood, K., & Iqbal, Z. (2013). Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicology and Environmental Safety, 96, 242-249.
    連結:
  43. Festa, R. A., & Thiele, D. J. (2011). Copper: an essential metal in biology. Current Biology, 21(21), R877-R883.
    連結:
  44. Filella, I., Serrano, L., Serra, J., & Penuelas, J. (1995). Evaluating wheat nitrogen status with canopy reflectance indices and discriminant analysis. Crop Science, 35(5), 1400-1405.
    連結:
  45. Fritioff, Å., Kautsky, L., & Greger, M. (2005). Influence of temperature and salinity on heavy metal uptake by submersed plants. Environmental Pollution, 133(2), 265-274.
    連結:
  46. Gajewska, E., Drobik, D., Wielanek, M., Sekulska-Nalewajko, J., Gocławski, J., Mazur, J. (2013). Alleviation of nickel toxicity in wheat (Triticum aestivum L.) seedlings by selenium supplementation. Biological Letters, 50(2), 65-78.
    連結:
  47. Gajewska, E., & Sklodowska, M. (2010). Differential effect of equal copper, cadmium and nickel concentration on biochemical reactions in wheat seedlings. Ecotoxicol Environ Saf, 73(5), 996-1003.
    連結:
  48. Gajewska, E., Skłodowska, M., Słaba, M., & Mazur, J. (2006). Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biologia Plantarum, 50(4), 653-659.
    連結:
  49. Gitelson, A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll-a using reflectance spectra: experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology, 22(3), 247-252.
    連結:
  50. Gitelson, A. A., & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher plant leaves. International Journal of Remote Sensing, 18(12), 2691-2697.
    連結:
  51. Gitelson, A. A., Merzlyak, M. N., & Lichtenthaler, H. K. (1996). Detection of red edge position and chlorophyll content by reflectance measurements near 700 nm. Journal of Plant Physiology, 148(3-4), 501-508.
    連結:
  52. Goltsev, V., Kalaji, H., Paunov, M., Bąba, W., Horaczek, T., Mojski, J. (2016). Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus. Russian Journal of Plant Physiology, 63(6), 869-893.
    連結:
  53. Gupta, D., Nicoloso, F., Schetinger, M., Rossato, L., Pereira, L., Castro, G. (2009). Antioxidant defense mechanism in hydroponically grown Zea mays seedlings under moderate lead stress. Journal of Hazardous Materials, 172(1), 479-484.
    連結:
  54. Hänsch, R., & Mendel, R. R. (2009). Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Current Opinion in Plant Biology, 12(3), 259-266.
    連結:
  55. Hao, F., Wang, X., & Chen, J. (2006). Involvement of plasma-membrane NADPH oxidase in nickel-induced oxidative stress in roots of wheat seedlings. Plant Science, 170(1), 151-158.
    連結:
  56. Hawkes, S. J. (1997). What Is a "Heavy Metal"? Journal of Chemical Education, 74(11), 1374.
    連結:
  57. He, J. Y., Ren, Y. F., Zhu, C., Yan, Y. P., & Jiang, D. A. (2008). Effect of Cd on growth, photosynthetic gas exchange, and chlorophyll fluorescence of wild and Cd-sensitive mutant rice. Photosynthetica, 46(3), 466.
    連結:
  58. Horler, D., Barber, J., & Barringer, A. (1980). Effects of heavy metals on the absorbance and reflectance spectra of plants.
    連結:
  59. Horler, D., Dockray, M., & Barber, J. (1983). The red edge of plant leaf reflectance. International Journal of Remote Sensing, 4(2), 273-288.
    連結:
  60. Hsu, Y. T., & Kao, C. H. (2004). Cadmium toxicity is reduced by nitric oxide in rice leaves. Plant Growth Regulation, 42(3), 227-238.
    連結:
  61. Huffman Jr, E. W., & Allaway, W. H. (1973). Chromium in plants. Distribution in tissues, organelles, and extracts and availability of bean leaf chromium to animals. Journal of agricultural and food chemistry, 21(6), 982-986.
    連結:
  62. Irfan, M., Ahmad, A., & Hayat, S. (2014). Effect of cadmium on the growth and antioxidant enzymes in two varieties of Brassica juncea. Saudi Journal of Biological Sciences, 21(2), 125-131.
    連結:
  63. Ishimaru, Y., Bashir, K., & Nishizawa, N. K. (2011). Zn uptake and translocation in rice plants. Rice, 4(1), 21-27.
    連結:
  64. Ishimaru, Y., Masuda, H., Suzuki, M., Bashir, K., Takahashi, M., Nakanishi, H. (2007). Overexpression of the OsZIP4 zinc transporter confers disarrangement of zinc distribution in rice plants. Journal of experimental botany, 58(11), 2909-2915.
    連結:
  65. Ishimaru, Y., Suzuki, M., Kobayashi, T., Takahashi, M., Nakanishi, H., Mori, S. (2005). OsZIP4, a novel zinc-regulated zinc transporter in rice. Journal of Experimental Botany, 56(422), 3207-3214.
    連結:
  66. Islam, F., Yasmeen, T., Riaz, M., Arif, M. S., Ali, S., & Raza, S. H. (2014). Proteus mirabilis alleviates zinc toxicity by preventing oxidative stress in maize (Zea mays) plants. Ecotoxicology and Environmental Safety, 110, 143-152.
    連結:
  67. Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary toxicology, 7(2), 60-72.
    連結:
  68. Jarvis, S., Jones, L., & Hopper, M. (1976). Cadmium uptake from solution by plants and its transport from roots to shoots. Plant and soil, 44(1), 179-191.
    連結:
  69. Jiang, W., Struik, P., Van Keulen, H., Zhao, M., Jin, L., & Stomph, T. (2008). Does increased zinc uptake enhance grain zinc mass concentration in rice? Annals of Applied Biology, 153(1), 135-147.
    連結:
  70. Kancheva, R., Georgiev, G., & Borisova, D. (2015). Spectral reflectance response of crop canopy to abiotic stress.
    連結:
  71. Kaur, G., Singh, H. P., Batish, D. R., & Kohli, R. K. (2013). Lead (Pb)-induced biochemical and ultrastructural changes in wheat (Triticum aestivum) roots. Protoplasma, 250(1), 53-62.
    連結:
  72. Kaur, G., Singh, H. P., Batish, D. R., & Kumar, R. K. (2012). Growth, photosynthetic activity and oxidative stress in wheat (Triticum aestivum) after exposure of lead to soil. Journal of environmental biology, 33(2), 265.
    連結:
  73. Khaliq, A., Ali, S., Hameed, A., Farooq, M. A., Farid, M., Shakoor, M. B. (2016). Silicon alleviates nickel toxicity in cotton seedlings through enhancing growth, photosynthesis, and suppressing Ni uptake and oxidative stress. Archives of Agronomy and Soil Science, 62(5), 633-647.
    連結:
  74. Khan, M. I. R., Nazir, F., Asgher, M., Per, T. S., & Khan, N. A. (2015). Selenium and sulfur influence ethylene formation and alleviate cadmium-induced oxidative stress by improving proline and glutathione production in wheat. Journal of plant physiology, 173, 9-18.
    連結:
  75. Khan, S., Farooq, R., Shahbaz, S., Khan, M. A., & Sadique, M. (2009). Health risk assessment of heavy metals for population via consumption of vegetables. World Appl Sci J, 6(12), 1602-1606.
    連結:
  76. Kim, Y. Y., Yang, Y. Y., & Lee, Y. (2002). Pb and Cd uptake in rice roots. Physiologia Plantarum, 116(3), 368-372.
    連結:
  77. Klaumann, S., Nickolaus, S. D., Fürst, S. H., Starck, S., Schneider, S., Ekkehard Neuhaus, H. (2011). The tonoplast copper transporter COPT5 acts as an exporter and is required for interorgan allocation of copper in Arabidopsis thaliana. New Phytologist, 192(2), 393-404.
    連結:
  78. Kloke, A., Sauerbeck, D. R., & Vetter, H. (1984). The Contamination of Plants and Soils with Heavy Metals and the Transport of Metals in Terrestrial Food Chains. In J. O. Nriagu (Ed.), Changing Metal Cycles and Human Health: Report of the Dahlem Workshop on Changing Metal Cycles and Human Health (pp.113-141). Berlin.
    連結:
  79. Kobayashi, Y., Kuroda, K., Kimura, K., Southron-Francis, J. L., Furuzawa, A., Kimura, K., (2008). Amino acid polymorphisms in strictly conserved domains of a P-type ATPase HMA5 are involved in the mechanism of copper tolerance variation in Arabidopsis. Plant Physiology, 148(2), 969-980.
    連結:
  80. Kooistra, L., Salas, E., Clevers, J., Wehrens, R., Leuven, R., Nienhuis, P. (2004). Exploring field vegetation reflectance as an indicator of soil contamination in river floodplains. Environmental Pollution, 127(2), 281-290.
    連結:
  81. Kumar, P., Tewari, R. K., & Sharma, P. N. (2008). Modulation of copper toxicity-induced oxidative damage by excess supply of iron in maize plants. Plant Cell Reports, 27(2), 399-409.
    連結:
  82. Kumar, P. N., Dushenkov, V., Motto, H., & Raskin, I. (1995). Phytoextraction: the use of plants to remove heavy metals from soils. Environmental science & technology, 29(5), 1232-1238.
    連結:
  83. Lamhamdi, M., Bakrim, A., Aarab, A., Lafont, R., & Sayah, F. (2011). Lead phytotoxicity on wheat (Triticum aestivum L.) seed germination and seedlings growth. Plant biology and pathology, 334(2), 118-126.
    連結:
  84. Lee, S., & An, G. (2009). Over‐expression of OsIRT1 leads to increased iron and zinc accumulations in rice. Plant, cell & environment, 32(4), 408-416.
    連結:
  85. Lee, S., Jeong, H. J., Kim, S. A., Lee, J., Guerinot, M. L., & An, G. (2010). OsZIP5 is a plasma membrane zinc transporter in rice. Plant Molecular Biology, 73(4), 507-517.
    連結:
  86. Lee, S., Kim, S. A., Lee, J., Guerinot, M. L., & An, G. (2010). Zinc deficiency-inducible OsZIP8 encodes a plasma membrane-localized zinc transporter in rice. Molecules and Cells, 29(6), 551-558.
    連結:
  87. Li, F.-L., Yang, C.-M., Syu, C.-H., Lee, D.-Y., Tsuang, B.-J., & Juang, K.-W. (2016). Combined effect of rice genotypes and soil characteristics on iron plaque formation related to Pb uptake by rice in paddy soils. Journal of Soils and Sediments, 16(1), 150-158.
    連結:
  88. Li, F.-l., Yuan, J., & Sheng, G. D. (2012). Altered transfer of heavy metals from soil to Chinese cabbage with film mulching. Ecotoxicology and environmental safety, 77, 1-6.
    連結:
  89. Li, S., Yang, W., Yang, T., Chen, Y., & Ni, W. (2015). Effects of cadmium stress on leaf chlorophyll fluorescence and photosynthesis of Elsholtzia argyi—a cadmium accumulating plant. International journal of phytoremediation, 17(1), 85-92.
    連結:
  90. Li, X., Bu, N., Li, Y., Ma, L., Xin, S., & Zhang, L. (2012). Growth, photosynthesis and antioxidant responses of endophyte infected and non-infected rice under lead stress conditions. Journal of hazardous materials, 213, 55-61.
    連結:
  91. Li, X., Yang, Y., Jia, L., Chen, H., & Wei, X. (2013). Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants. Ecotoxicology and Environmental Safety, 89, 150-157.
    連結:
  92. Lin, Y.-C., & Kao, C.-H. (2005). Nickel toxicity of rice seedlings: Cell wall peroxidase, lignin, and NiSO4-inhibited root growth. Crop Environ Bioinfo, 2(2), 131-136.
    連結:
  93. Lindblom, S. D., Abdel-Ghany, S., Hanson, B. R., Hwang, S., Terry, N., & Pilon-Smits, E. A. (2006). Constitutive expression of a high-affinity sulfate transporter in Indian mustard affects metal tolerance and accumulation. Journal of environmental quality, 35(3), 726-733.
    連結:
  94. Liu, J., Li, K., Xu, J., Zhang, Z., Ma, T., Lu, X. (2003). Lead toxicity, uptake, and translocation in different rice cultivars. Plant Science, 165(4), 793-802.
    連結:
  95. Liu, J., Ma, X., Wang, M., & Sun, X. (2013). Genotypic differences among rice cultivars in lead accumulation and translocation and the relation with grain Pb levels. Ecotoxicology and Environmental Safety, 90, 35-40.
    連結:
  96. Liu, M., Liu, X., Ding, W., & Wu, L. (2011). Monitoring stress levels on rice with heavy metal pollution from hyperspectral reflectance data using wavelet-fractal analysis. International Journal of Applied Earth Observation and Geoinformation, 13(2), 246-255.
    連結:
  97. Liu, M., Liu, X., Li, M., Fang, M., & Chi, W. (2010). Neural-network model for estimating leaf chlorophyll concentration in rice under stress from heavy metals using four spectral indices. Biosystems Engineering, 106(3), 223-233.
    連結:
  98. Liu, Y., Chen, H., Wu, G., & Wu, X. (2010). Feasibility of estimating heavy metal concentrations in Phragmites australis using laboratory-based hyperspectral data—A case study along Le’an River, China. International Journal of Applied Earth Observation and Geoinformation, 12, 166-170.
    連結:
  99. Llamas, A., Ullrich, C. I., & Sanz, A. (2008). Ni 2+ toxicity in rice: effect on membrane functionality and plant water content. Plant Physiology and Biochemistry, 46(10), 905-910.
    連結:
  100. Lukačová, Z., Švubová, R., Kohanová, J., & Lux, A. (2013). Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regulation, 70(1), 89-103.
    連結:
  101. MacFarlane, G. R. (2003). Chlorophyll a Fluorescence as a Potential Biomarker of Zinc Stress in the Grey Mangrove, Avicennia marina (Forsk.) Vierh. Bulletin of Environmental Contamination and Toxicology, 70(1), 0090-0096.
    連結:
  102. Martínez-Peñalver, A., Graña, E., Reigosa, M. J., & Sánchez-Moreiras, A. M. (2012). The early response of Arabidopsis thaliana to cadmium-and copper-induced stress. Environmental and Experimental Botany, 78, 1-9.
    連結:
  103. Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of experimental botany, 51(345), 659-668.
    連結:
  104. McLaughlin, M. J., Parker, D. R., & Clarke, J. M. (1999). Metals and micronutrients – food safety issues. Field Crops Research, 60(1–2), 143-163.
    連結:
  105. Mei Chun, K., & Kao, C. H. (2004). Antioxidant enzyme activities are upregulated in response to cadmium in sensitive, but not in tolerant, rice (Oryza sativa L.) seedlings. Botanical Bulletin of Academia Sinica, 45.
    連結:
  106. Mishra, D., & Kar, M. (1974). Nickel in plant growth and metabolism. The botanical review, 40(4), 395-452.
    連結:
  107. Miyadate, H., Adachi, S., Hiraizumi, A., Tezuka, K., Nakazawa, N., Kawamoto, T. (2011). OsHMA3, a P1B‐type of ATPase affects root‐to‐shoot cadmium translocation in rice by mediating efflux into vacuoles. New Phytologist, 189(1), 190-199.
    連結:
  108. Morel, M., Crouzet, J., Gravot, A., Auroy, P., Leonhardt, N., Vavasseur, A. (2009). AtHMA3, a P1B-ATPase allowing Cd/Zn/Co/Pb vacuolar storage in Arabidopsis. Plant physiology, 149(2), 894-904.
    連結:
  109. Mostofa, M. G., & Fujita, M. (2013). Salicylic acid alleviates copper toxicity in rice (Oryza sativa L.) seedlings by up-regulating antioxidative and glyoxalase systems. Ecotoxicology, 22(6), 959-973.
    連結:
  110. Mostofa, M. G., Seraj, Z. I., & Fujita, M. (2014). Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. Protoplasma, 251(6), 1373-1386.
    連結:
  111. Moussa, H. R., & El-Gamal, S. M. (2010). Effect of salicylic acid pretreatment on cadmium toxicity in wheat. Biologia Plantarum, 54(2), 315-320.
    連結:
  112. Moya, J. L., Ros, R., & Picazo, I. (1993). Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynthesis Research, 36(2), 75-80.
    連結:
  113. Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8(3), 199-216.
    連結:
  114. Nakanishi, H., Ogawa, I., Ishimaru, Y., Mori, S., & Nishizawa, N. K. (2006). Iron deficiency enhances cadmium uptake and translocation mediated by the Fe2+ transporters OsIRT1 and OsIRT2 in rice. Soil Science and Plant Nutrition, 52(4), 464-469.
    連結:
  115. Nishida, S., Tsuzuki, C., Kato, A., Aisu, A., Yoshida, J., & Mizuno, T. (2011). AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant and Cell Physiology, 52(8), 1433-1442.
    連結:
  116. Ouzounidou, G., & Ilias, I. (2005). Hormone-induced protection of sunflower photosynthetic apparatus against copper toxicity. Biologia Plantarum, 49(2), 223-228.
    連結:
  117. Ouzounidou, G., Moustakas, M., Symeonidis, L., & Karataglis, S. (2005). Response of Wheat Seedlings to Ni Stress: Effects of Supplemental Calcium. Archives of Environmental Contamination and Toxicology, 50(3), 346.
    連結:
  118. Pagliano, C., Raviolo, M., Dalla Vecchia, F., Gabbrielli, R., Gonnelli, C., Rascio, N. (2006). Evidence for PSII donor-side damage and photoinhibition induced by cadmium treatment on rice (Oryza sativa L.). Journal of Photochemistry and Photobiology B: Biology, 84(1), 70-78.
    連結:
  119. Panda, S. K. (2007). Chromium-mediated oxidative stress and ultrastructural changes in root cells of developing rice seedlings. Journal of Plant Physiology, 164(11), 1419-1428.
    連結:
  120. Perfus‐Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32(4), 539-548.
    連結:
  121. Price, J. C., & Bausch, W. C. (1995). Leaf area index estimation from visible and near-infrared reflectance data. Remote Sensing of Environment, 52(1), 55-65.
    連結:
  122. Printz, B., Lutts, S., Hausman, J.-F., & Sergeant, K. (2016). Copper Trafficking in Plants and Its Implication on Cell Wall Dynamics. Frontiers in plant science, 7.
    連結:
  123. Qiu, B., Zeng, F., Cai, S., Wu, X., Haider, S. I., Wu, F. (2013). Alleviation of chromium toxicity in rice seedlings by applying exogenous glutathione. Journal of Plant Physiology, 170(8), 772-779.
    連結:
  124. R Benatti, M., Yookongkaew, N., Meetam, M., Guo, W. J., Punyasuk, N., AbuQamar, S. (2014). Metallothionein deficiency impacts copper accumulation and redistribution in leaves and seeds of Arabidopsis. New Phytologist, 202(3), 940-951.
    連結:
  125. Rajpoot, R., Rani, A., Srivastava, R. K., Pandey, P., & Dubey, R. S. (2016). Terminalia arjuna bark extract alleviates nickel toxicity by suppressing its uptake and modulating antioxidative defence in rice seedlings. Protoplasma, 253(6), 1449-1462.
    連結:
  126. Ramesh, S. A., Shin, R., Eide, D. J., & Schachtman, D. P. (2003). Differential metal selectivity and gene expression of two zinc transporters from rice. Plant Physiology, 133(1), 126-134.
    連結:
  127. Ramzani, P. M. A., Khan, W.-u.-D., Iqbal, M., Kausar, S., Ali, S., Rizwan, M. (2016). Effect of different amendments on rice (Oryza sativa L.) growth, yield, nutrient uptake and grain quality in Ni-contaminated soil. Environmental Science and Pollution Research, 23(18), 18585-18595.
    連結:
  128. Rehman, M. Z.-u., Rizwan, M., Ali, S., Fatima, N., Yousaf, B., Naeem, A. (2016). Contrasting effects of biochar, compost and farm manure on alleviation of nickel toxicity in maize (Zea mays L.) in relation to plant growth, photosynthesis and metal uptake. Ecotoxicology and Environmental Safety, 133, 218-225.
    連結:
  129. Ryan, B. M., Kirby, J. K., Degryse, F., Harris, H., McLaughlin, M. J., & Scheiderich, K. (2013). Copper speciation and isotopic fractionation in plants: uptake and translocation mechanisms. New Phytologist, 199(2), 367-378.
    連結:
  130. Sagardoy, R., Morales, F., López‐Millán, A. F., Abadía, A., & Abadía, J. (2009). Effects of zinc toxicity on sugar beet (Beta vulgaris L.) plants grown in hydroponics. Plant biology, 11(3), 339-350.
    連結:
  131. Sarret, G., Balesdent, J., Bouziri, L., Garnier, J.-M., Marcus, M. A., Geoffroy, N. (2004). Zn speciation in the organic horizon of a contaminated soil by micro-X-ray fluorescence, micro-and powder-EXAFS spectroscopy, and isotopic dilution. Environmental science & technology, 38(10), 2792-2801.
    連結:
  132. Sasaki, A., Yamaji, N., Yokosho, K., & Ma, J. F. (2012). Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. The Plant Cell, 24(5), 2155-2167.
    連結:
  133. Satoh-Nagasawa, N., Mori, M., Nakazawa, N., Kawamoto, T., Nagato, Y., Sakurai, K. (2012). Mutations in rice (Oryza sativa) heavy metal ATPase 2 (OsHMA2) restrict the translocation of zinc and cadmium. Plant and Cell Physiology, 53(1), 213-224.
    連結:
  134. Schaaf, G., Honsbein, A., Meda, A. R., Kirchner, S., Wipf, D., & von Wirén, N. (2006). AtIREG2 encodes a tonoplast transport protein involved in iron-dependent nickel detoxification in Arabidopsis thaliana roots. Journal of Biological Chemistry, 281(35), 25532-25540.
    連結:
  135. Schuerger, A. C., Capelle, G. A., Di Benedetto, J. A., Mao, C., Thai, C. N., Evans, M. D. (2003). Comparison of two hyperspectral imaging and two laser-induced fluorescence instruments for the detection of zinc stress and chlorophyll concentration in bahia grass (Paspalum notatum Flugge.). Remote sensing of environment, 84(4), 572-588.
    連結:
  136. Sengar, R. S., Gautam, M., Sengar, R. S., Garg, S. K., Sengar, K., & Chaudhary, R. (2008). Lead stress effects on physiobiochemical activities of higher plants. Reviews of Environmental Contamination and Toxicology (Vol. 196, pp.73-93). New York, NY: Springer.
    連結:
  137. Seregin, I., & Kozhevnikova, A. (2006). Physiological role of nickel and its toxic effects on higher plants. Russian Journal of Plant Physiology, 53(2), 257-277.
    連結:
  138. Seregin, I., Shpigun, L., & Ivanov, V. (2004). Distribution and toxic effects of cadmium and lead on maize roots. Russian Journal of Plant Physiology, 51(4), 525-533.
    連結:
  139. Shah, K., Kumar, R. G., Verma, S., & Dubey, R. S. (2001). Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science, 161(6), 1135-1144.
    連結:
  140. Sharma, D. C., Sharma, C. P., & Tripathi, R. D. (2003). Phytotoxic lesions of chromium in maize. Chemosphere, 51(1), 63-68.
    連結:
  141. Shaw, J. (1989). Heavy metal tolerance in plants: evolutionary aspects. Boca Raton, FL: CRC Press.
    連結:
  142. Shimo, H., Ishimaru, Y., An, G., Yamakawa, T., Nakanishi, H., & Nishizawa, N. K. (2011). Low cadmium (LCD), a novel gene related to cadmium tolerance and accumulation in rice. Journal of experimental botany, 62(15), 5727-5734.
    連結:
  143. Singh, R., Gautam, N., Mishra, A., & Gupta, R. (2011). Heavy metals and living systems: an overview. Indian journal of pharmacology, 43(3), 246.
    連結:
  144. Singh, S., Srivastava, P. K., Kumar, D., Tripathi, D. K., Chauhan, D. K., & Prasad, S. M. (2015). Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatalysis and Agricultural Biotechnology, 4(3), 286-295.
    連結:
  145. Song, A., Li, P., Li, Z., Fan, F., Nikolic, M., & Liang, Y. (2011). The alleviation of zinc toxicity by silicon is related to zinc transport and antioxidative reactions in rice. Plant and Soil, 344(1-2), 319-333.
    連結:
  146. Sridhar, B. M., Han, F., Diehl, S., Monts, D., & Su, Y. (2007). Spectral reflectance and leaf internal structure changes of barley plants due to phytoextraction of zinc and cadmium. International Journal of Remote Sensing, 28(5), 1041-1054.
    連結:
  147. Sridhar, M. B., Han, F., Diehl, S., Monts, D., & Su, Y. (2007). Monitoring the effects of arsenic and chromium accumulation in Chinese brake fern (Pteris vittata). International journal of remote sensing, 28(5), 1055-1067.
    連結:
  148. Srivastava, R. K., Pandey, P., Rajpoot, R., Rani, A., & Dubey, R. S. (2014). Cadmium and lead interactive effects on oxidative stress and antioxidative responses in rice seedlings. Protoplasma, 251(5), 1047-1065.
    連結:
  149. Stomph, T. J., Jiang, W., Van Der Putten, P. E., & Struik, P. C. (2014). Zinc allocation and re-allocation in rice. Frontiers in plant science, 5, 56-67.
    連結:
  150. Subrahmanyam, D. (2008). Effects of chromium toxicity on leaf photosynthetic characteristics and oxidative changes in wheat (Triticum aestivum L.). Photosynthetica, 46(3), 339.
    連結:
  151. Takahashi, R., Ishimaru, Y., Nakanishi, H., & Nishizawa, N. K. (2011). Role of the iron transporter OsNRAMP1 in cadmium uptake and accumulation in rice. Plant signaling & behavior, 6(11), 1813-1816.
    連結:
  152. Takahashi, R., Ishimaru, Y., Shimo, H., Ogo, Y., Senoura, T., Nishizawa, N. K. (2012). The OsHMA2 transporter is involved in root‐to‐shoot translocation of Zn and Cd in rice. Plant, cell & environment, 35(11), 1948-1957.
    連結:
  153. Takkar, P. N., & Mann, M. S. (1978). Toxic levels of soil and plant zinc for maize and wheat. Plant and Soil, 49(3), 667-669.
    連結:
  154. Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A Review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011.
    連結:
  155. Thakur, S., Singh, L., Zularisam, A. W., Sakinah, M., & Din, M. F. M. (2017). Lead induced oxidative stress and alteration in the activities of antioxidative enzymes in rice shoots. Biologia Plantarum, 61(3), 595-598.
    連結:
  156. Thounaojam, T. C., Panda, P., Mazumdar, P., Kumar, D., Sharma, G. D., Sahoo, L., (2012). Excess copper induced oxidative stress and response of antioxidants in rice. Plant Physiology and Biochemistry, 53, 33-39.
    連結:
  157. Uraguchi, S., & Fujiwara, T. (2012). Cadmium transport and tolerance in rice: perspectives for reducing grain cadmium accumulation. Rice, 5(1), 5.
    連結:
  158. Uraguchi, S., Kamiya, T., Sakamoto, T., Kasai, K., Sato, Y., Nagamura, Y. (2011). Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proceedings of the National Academy of Sciences, 108(52), 20959-20964.
    連結:
  159. Vázquez, M. D., Poschenrieder, C., & Barcelo, J. (1987). Chromium VI induced structural and ultrastructural changes in bush bean plants (Phaseolus vulgaris L.). Annals of Botany, 59(4), 427-438.
    連結:
  160. Verma, S., & Dubey, R. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164(4), 645-655.
    連結:
  161. Wang, M., Zou, J., Duan, X., Jiang, W., & Liu, D. (2007). Cadmium accumulation and its effects on metal uptake in maize (Zea mays L.). Bioresource Technology, 98(1), 82-88.
    連結:
  162. Wang, S.-L. C., Yong-Kuai;Cao, Zhi-Quan;Tzen, Jason. (2012). The Scientific Progresses of Responsive Mechanism to Cadmium Stress in Plant and Their Applications: A Review. 農林學報, 61(4), 351-367.
    連結:
  163. Wang, S., Wang, F., & Gao, S. (2015). Foliar application with nano-silicon alleviates Cd toxicity in rice seedlings. Environmental Science and Pollution Research, 22(4), 2837-2845.
    連結:
  164. Wang, Y., Jiang, X., Li, K., Wu, M., Zhang, R., Zhang, L. (2014). Photosynthetic responses of Oryza sativa L. seedlings to cadmium stress: physiological, biochemical and ultrastructural analyses. Biometals, 27(2), 389-401.
    連結:
  165. Wierzbicka, M. (1987). Lead accumulation and its translocation barriers in roots of Allium cepa L.—autoradiographic and ultrastructural studies. Plant, Cell & Environment, 10(1), 17-26.
    連結:
  166. Xu, J., Yang, L., Wang, Z., Dong, G., Huang, J., & Wang, Y. (2006). Toxicity of copper on rice growth and accumulation of copper in rice grain in copper contaminated soil. Chemosphere, 62(4), 602-607.
    連結:
  167. Yamaji, N., Xia, J., Mitani-Ueno, N., Yokosho, K., & Ma, J. F. (2013). Preferential delivery of zinc to developing tissues in rice is mediated by P-type heavy metal ATPase OsHMA2. Plant physiology, 162(2), 927-939.
    連結:
  168. Yang, X., Huang, J., Jiang, Y., & Zhang, H.-S. (2009). Cloning and functional identification of two members of the ZIP (Zrt, Irt-like protein) gene family in rice (Oryza sativa L.). Molecular biology reports, 36(2), 281-287.
    連結:
  169. Yannarelli, G. G., Fernandez-Alvarez, A. J., Santa-Cruz, D. M., & Tomaro, M. L. (2007). Glutathione reductase activity and isoforms in leaves and roots of wheat plants subjected to cadmium stress. Phytochemistry, 68(4), 505-512.
    連結:
  170. Ye, Z., Baker, A., Wong, M., & Willis, A. (1997). Zinc, lead and cadmium tolerance, uptake and accumulation by Typha latifolia. New Phytologist, 136(3), 469-480.
    連結:
  171. Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145-156.
    連結:
  172. Yruela, I. (2009). Copper in plants: acquisition, transport and interactions. Functional Plant Biology, 36(5), 409-430.
    連結:
  173. Yuan, M., Li, X., Xiao, J., & Wang, S. (2011). Molecular and functional analyses of COPT/Ctr-type copper transporter-like gene family in rice. BMC plant biology, 11(1), 69.
    連結:
  174. Zayed, A., Lytle, C. M., Qian, J.-H., & Terry, N. (1998). Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta, 206(2), 293-299.
    連結:
  175. Zeng, F., Ali, S., Zhang, H., Ouyang, Y., Qiu, B., Wu, F. (2011). The influence of pH and organic matter content in paddy soil on heavy metal availability and their uptake by rice plants. Environmental Pollution, 159(1), 84-91.
    連結:
  176. Zhang, H., Hu, L. Y., Li, P., Hu, K. D., Jiang, C. X., & Luo, J. P. (2010). Hydrogen sulfide alleviated chromium toxicity in wheat. Biologia Plantarum, 54(4), 743-747.
    連結:
  177. Zheng, L., Yamaji, N., Yokosho, K., & Ma, J. F. (2012). YSL16 is a phloem-localized transporter of the copper-nicotianamine complex that is responsible for copper distribution in rice. The Plant Cell, 24(9), 3767-3782.
    連結:
  178. 王珂、沈掌泉、王人潮。1999。植物營養脅迫與光譜特性。國土資源遥感,1(1),頁1-4。
  179. 仲曉春、戴其根、何理、陳京都、孫成明、高輝。2012。不同濃度鎘脅迫下水稻冠層光譜特徵及其預測評價。農業環境科學學報,31(3),頁448-454。
  180. 任红艷。2008。寶山礦區農田土壤—水稻系统重金屬污染的遙感監測。南京農業大學。
  181. 任红艷、應大方、潘劍君、邱冬生。2008。鉛污染水稻的冠層高光譜特徵研究。 地球信息科學,10(3),頁314-319。
  182. 朱葉青、屈永華、劉素红、陳聖波。2014。重金属銅污染植被光譜響應特徵研究。 遙感學報,18(2),頁335-352。
  183. 行政院環保署。2017。土壤及地下水污染整治網。取自https://sgw.epa.gov.tw/ContaminatedSitesMap/Default.aspx?SituationType=Control_Bulletin。
  184. 行政院環境保護署。2014。銅 (Copper,Cu)。宣導手冊-認識生活環境中毒性物質。
  185. 李花粉、張福鎖、李春儉、毛達如。1998。根分泌物對根記重金屬動態的影響。環境科學學報,18(2),頁199-203。
  186. 李高飛、胡光道。2010。鉛鋅礦區馬尾松波譜特徵與微量元素相關性分析。河南師範大學學報:自然科學版,38(6),頁84-86.
  187. 李蜜、劉湘南、劉美玲。2010。基於模糊神經網絡的水稻農田重金屬汙染水平高光譜預測模型。環境科學學報,(10),頁2108-2115。
  188. 呂杰、劉湘南。2012。利用支持向量機構建水稻镉含量高光谱預測模型。應用科學學報,30(1),頁105-110。
  189. 周超。2016。植被重金屬含量高光譜遙感反演方法研究(博士論文)。吉林大學。
  190. 林浩潭。2003。土壤汙染偵測與防治。有機作物管理與監測技術研習會專刊,頁18-28。
  191. 林婷、劉湘南、譚正。2011。基於 ICA 和高光譜指數的水稻 Zn 污染監測模型。國土資源遙感,2,頁012。
  192. 物質安全資料表。2000。鋅粉。取自 http://www.ee.ncu.edu.tw/aboutee/docs/data/%A6M%AE%60%AA%AB%BD%E8%A6M%AE%60%BC%C6%BE%DA%B8%EA%B0T%B8%EA%AE%C6%AEw/DATA/MSDS/FISO0997.PDF。
  193. 修麗娜、劉湘南、劉美玲。2011。鎘污染水稻高光譜診斷分析與建模。光譜學與光譜分析,31(1),頁192-196。
  194. 徐加寬、王志强, 、楊連新、董桂春、吳越、黄建曄。2005。土壤鉻含量對水稻生長發育和產量形成的影響。揚州大學學報:農業與生命科學版,26(4),頁61-66。
  195. 許明晃、黃文達、楊志維、蔡養正、張新軒、楊棋明。2003。甘藷葉片反射光譜分析與色素含量之遙測估算。中華農藝,13,頁99-110。
  196. 國家衛生研究院。2013a。鉛 Lead。取自http://nehrc.nhri.org.tw/toxic/toxfaqs/LEAD20131118.pdf.。
  197. 國家衛生研究院。2013b。鉻 Chromium。取自http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=49.。
  198. 國家衛生研究院。2013c。鋅 Zinc。取自http://nehrc.nhri.org.tw/toxic/toxfaq_detail.php?id=89.。
  199. 陳尊賢。2003。第三章、土壤重金屬濃度及其上食用作物之關聯性。土壤污染管制標準規定之探討,行政院環保署委託計畫 (EPA-91-H103-02-150)。
  200. 陳樹元、徐和寶、謝明云。1995。銅,砷在水稻一土壤體系中的遷移及其對水稻影響的研究。農村生態環境,11(3),頁15-18。
  201. 楊可明、史鋼强、魏華鋒、孫陽陽、劉飛。2015。重金屬銅脅迫玉米葉片的光譜響應特徵。貴州農業科學,43(6),22-26。
  202. 楊秀梅、陳保冬、朱永官、王冬梅、王幼珊。2008。叢枝菌根真菌(Glomus intraradices)對銅污染土壤上玉米生長的影響。生態學報,28(3),頁1052-1058。
  203. 葉佳珉、鄭百佑、徐貴新、張尊國。2013。以稻米鎘標準評析台灣農地水稻適栽性。環保簡訊,23。
  204. 葉琮裕。2002。重金屬污染農地整治。工程污染防治。
  205. 虞銀江、廖海兵、陳文榮、田生科、楊肖娥。2012。水稻吸收,運輸鋅及其籽粒富集鋅的機制。中國水稻科學,26(3),頁365-372。
  206. 農業藥物毒物試驗所。民98年11月20日。水稻不會吸收鉻、砷而累積於稻米中對人體產生毒害。農業新聞。取自http://www.coa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=3542).
  207. 劉美玲、劉湘南、李婷、修麗娜。2010。水稻鋅污染脅迫的光譜奇異性分析。農業工程學報,(3),頁191-197。
  208. 鄭小林、彭克勤、胡篤敬。2000。水稻對65Zn吸收和分配的比较研究。核農學報, 14(4),頁241-245。
  209. 趙汀、王安建、夏江周、劉素红。2010。洎水河流域重金属污染區五節芒葉片光譜特徵響應研究。國土資源遙感,2,頁49-54。
  210. Aly, A. A., & Mohamed, A. A. (2012). The impact of copper ion on growth, thiol compounds and lipid peroxidation in two maize cultivars (Zea mays L.) grown in vitro. Australian Journal of Crop Science, 6(3), 541.
  211. Baker, D., & Senef, J. (1995). Chapter 8: Copper. Heavy metals in soils. Glasgow, Blackie Academic and Professional.
  212. Chaney, R. L., Mielke, H. W., & Sterrett, S. B. (1989). Speciation, mobility and bioavailability of soil lead. Environ. Geochem. Health, 11, 105-129.
  213. Cohu, C. M., & Pilon, M. (2010). Cell biology of copper. Cell biology of metals and nutrients (pp. 55-74): Springer.
  214. Ermler, U., Grabarse, W., Shima, S., Goubeaud, M., & Thauer, R. K. (1998). Active sites of transition-metal enzymes with a focus on nickel. Current opinion in structural biology, 8(6), 749-758.
  215. Ghasemi, f., Heidari, R., Jamei, R., & Poorakbar, L. (2015). Investigation of nickel toxicity effect on different aspects of photosynthesis and growth in maize seedlings. Jsci, 15(1), 1-7.
  216. Godzik, B. (1993). Heavy metals content in plants from zinc dumps and reference areas. Polish Botanical Studies(05).
  217. Hafeez, B., Khanif, Y., & Saleem, M. (2013). Role of zinc in plant nutrition—a review. American journal of experimental Agriculture, 3(2), 374-391.
  218. Jin, M., Liu, X.-n., & Li, T.-y. (2011). Diagnostic models research for Cd stress of rice based on canopy multi-dimensional spectra. China Environmental Science, 1, 032.
  219. Kovačević, G., Kastori, R., & Merkulov, L. J. (1999). Dry Matter and Leaf Structure in Young Wheat Plants as Affected by Cadmium, Lead, and Nickel. Biologia Plantarum, 42(1), 119-123.
  220. Lillesand, T., Kiefer, R. W., & Chipman, J. (2014). Remote sensing and image interpretation. New York, NY: John Wiley & Sons.
  221. Plant, R., Munk, D., Roberts, B., Vargas, R., Rains, D., Travis, R. (2000). Relationships between remotely sensed reflectance data and cotton growth and yield. Transactions of the ASAE-American Society of Agricultural Engineers, 43(3), 535-546.
  222. Roháček, K. (2002). Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships. Photosynthetica, 40(1), 13-29.
  223. Sahai, B., & Dadhwal, V. (1990). Remote sensing in agriculture. Technology blending and agrarian prosperity (pp.83-93). New Delhi, India: Malhotra Publishing House.
  224. Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International, 31(5), 739-753.
  225. Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian journal of plant physiology, 17(1), 35-52.
  226. Sinclair, S. A., & Krämer, U. (2012). The zinc homeostasis network of land plants. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1823(9), 1553-1567.
  227. Singh, H. P., Mahajan, P., Kaur, S., Batish, D. R., & Kohli, R. K. (2013). Chromium toxicity and tolerance in plants. Environmental chemistry letters, 11(3), 229-254.
  228. Ueno, D., Yamaji, N., Kono, I., Huang, C. F., Ando, T., Yano, M. (2010). Gene limiting cadmium accumulation in rice. Proceedings of the National Academy of Sciences, 107(38), 16500-16505.
  229. Yan, L., Xin-rong, L., Ming-zhu, H., Yan-gui, S., & Fan-jiang, Z. (2011). Influence of different concentration Ni and Cu on the photosynthesis and chlorophyll fluorescence characteristics of Peganum harmala. Yingyong Shengtai Xuebao, 22(4).
  230. Zeng, F.-r., Zhao, F.-s., Qiu, B.-y., Ouyang, Y.-n., Wu, F.-b., & Zhang, G.-p. (2011). Alleviation of Chromium Toxicity by Silicon Addition in Rice Plants. Agricultural Sciences in China, 10(8), 1188-1196.
  231. Zou, J., Yu, K., Zhang, Z., Jiang, W., & Liu, D. (2009). Antioxidant response system and chlorophyll fluorescence in chromium (VI)-treated Zea mays L. seedlings. Acta Biologica Cracoviensia Series Botanica, 51(1), 23-33.