英文摘要
|
High-tech factory should ensure structural safety during strong earthquakes and control the impact of environmental vibration to make the process equipment operate normally. In this paper, a new type of seismic energy dissipation device: lever viscoelastic wall damper (LVEW) which consists of a velocity-dependent damper and a displacement-dependent damper had been developed for the first time. It’s able to improve the efficiency of energy dissipation during weak earthquakes and has corresponding mechanism for different level of earthquakes. First, for weak earthquake (e.g., below design basis earthquake level), the viscoelastic damper is subjected to a interstory displacement amplified by lever to dissipate seismic energy. Second, for strong earthquake (e.g., above design basis earthquake level and equal to maximum considered earthquake level), the viscoelastic damper is restricted by stopper in order to avoid larger deformation and permanent damage. Meanwhile the friction device slide to dissipate seismic energy. The main purpose of this paper is to derive a series of formula from viscoelastic component to whole device. Next, we designed two full-scale specimens according to theoretical formula and conducted a dynamic and static test to validate its performances. The test results shown that the device operated as expected. In addition, the gap between pivot and blot hole had a great influence on efficiency of energy dissipation, thus the hysteresis energy and amplification factor of displacement were both decreased. To solve above problems, we modified some design detail in specimen 2, then its efficiency improved observably.
In order to evaluate the seismic performances and effects of lever viscoelastic wall damper (LVEW) in actual buildings, a high-tech factory in Tainan, Taiwan and a high-rise building in Hsinchu, Taiwan were selected and modeled by PISA3D with installing of LVEW and typical viscoelastic wall damper (VEW). Also, vibration monitoring was conducted in high-tech factory to obtain its dynamic response under earthquake excitation and make sure model’s reliability. Furthermore, from nonlinear dynamic time history analysis, LVEW and VEW both provided well seismic effects in reduction of maximum interstory drift, residual interstory drift and maximum story acceleration of original frames only if both devices have the same maximum force. However, it is to be observed that LVEW used much fewer viscoelastic material than VEW to achieve same effect.
|
参考文献
|
-
1. American Concrete Institute, & International Organization for Standardization. (2014). Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary. American Concrete Institute.
連結:
-
2. American Institute of Steel Construction. (2010). Specification for Structural Steel Buildings (ANSI/AISC 360-10). American Institute of Steel Construction.
連結:
-
4. Amick, H., Gendreau, M., Busch, T., & Gordon, C. (2005). Evolving Criteria for Research Facilities: Vibration. In Proc. SPIE ,Vol. 5933, No. 593303, pp. 1-13.
連結:
-
5. Chang, K. C., Chen, S. J., & Lai, M. L. (1996). Inelastic Behavior of Steel Frames with Added Viscoelastic Dampers. Journal of Structural Engineering, 122(10), 1178-1186.
連結:
-
6. Chang, K. C., Soong, T. T., Oh, S. T., & Lai, M. L. (1995). Seismic Behavior of Steel Frame with Added Viscoelastic Dampers. Journal of structural engineering, 121(10), 1418-1426.
連結:
-
7. Chou, C. C., Tsuang, S., Chen, Y. H., & Chang L. M. (2016). Lever Viscoelastic Damping Wall Assembly. New Zealand Patent No. 628246, Accepted on Feb 04, 2016).
連結:
-
8. Chou, C. C., Tsuang, S., Chen, Y. H., & Chang L. M. (2016). Lever Viscoelastic Damping Wall Assembly. USA Patent No. US 9316014 B2, Accepted on April 19, 2016).
連結:
-
9. Constantinou, M. C., Tsopelas, P., Hammel, W., & Sigaher, A. N. (2001). Toggle-Brace-Damper Seismic Energy Dissipation Systems. Journal of Structural Engineering, 127(2), 105-112.
連結:
-
10. Dowell, O. K., Seible, F., & Wilson, E. L. (1998). Pivot Hysteresis Model for Reinforced Concrete members. ACI Structural Journal, 95, 607-617.
連結:
-
11. Dynamic Isolation Systems, Inc. (2016). Viscous Wall Dampers - Guidelines for Modeling. Dynamic Isolation Systems, Inc., USA.
連結:
-
12. Gordon, C. G. (1991). Generic criteria for vibration-sensitive equipment. In Proc. SPIE ,Vol. 1619, pp. 71-85.
連結:
-
15. Karthik, M. M., & Mander, J. B. (2010). Stress-block Parameters for Unconfined and Confined Concrete Based on a Unified Stress-strain Model. Journal of Structural Engineering, 137(2), 270-273.
連結:
-
16. Lin, R. C., Liang, Z., Soong, T. T., Zhang, R. H., & Mahmoodi, P. (1991). An Experimental Study on Seismic Behaviour of Viscoelastically Damped Structures. Engineering Structures, 13(1), 75-84.
連結:
-
17. Reinhorn, A. M., Kunnath, S. K., & Valles-Mattox, R. (1996). IDARC 2D Version 4.0: User’s Manual. Department of Civil Engineering, State University of New York at Buffalo.
連結:
-
18. Sharma, A., Eligehausen, R., & Reddy, G. R. (2013). Pivot Hysteresis Model Parameters for Reinforced Concrete Columns, Joints, and Structures. ACI Structural Journal, 110(2), 217.
連結:
-
20. Wu, Z., & Huang, N. E. (2009). Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method. Advances in adaptive data analysis, 1(01), 1-41.
連結:
-
21. Zhang, R. H., & Soong, T. T. (1992). Seismic Design of Viscoelastic Dampers for Structural Applications. Journal of Structural Engineering, 118(5), 1375-1392.
連結:
-
22. Zhang, R. H., Soong, T. T., & Mahmoodi, P. (1989). Seismic Response of Steel Frame Structures with Added Viscoelastic Dampers. Earthquake Engineering & Structural Dynamics, 18(3), 389-396.
連結:
-
30. 凌郁婷 (2016) 「雙核心自復位斜撐與夾型挫屈束制斜撐於臺灣實際高層建築之耐震行為:非線性動力歷時分析與斜撐耐震試驗」碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。
連結:
-
33. 莊宗諺 (2010) 「應用VE Damper控制高科技廠房結構地震反應之研究」碩士論文指導教授:陳永祥,國立臺灣大學土木工程學系。
連結:
-
35. 黃世建,林永健,蔡仁傑,曾建創,涂耀賢,蕭輔沛 (2016) 「鋼筋混凝土開孔牆受剪破壞之側力位移曲線預測」結構工程,31(3),82-103。
連結:
-
36. 蔡仁傑 (2015) 「鋼筋混凝土開孔牆之側力位移曲線預測」碩士論文指導教授:黃世建,國立臺灣大學土木工程學系。
連結:
-
37. 蔡佳恩 (2013) 「精密儀器之石英砂隔振平台微振動特性研究」碩士論文指導教授:周中哲,國立臺灣大學土木工程學系。
連結:
-
3. American Society of Civil Engineers. (2010). Minimum Design Loads for Buildings and Other Structures (Vol. 7). American Society of Civil Engineers.
-
13. Huang, M. L. Wu, S. R. Long, S. S. Shen, W. D. Qu, P. Gloersen, and K. L. Fan (1998). The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis. In Proceedings of the Royal Society of London A: mathematical, physical and engineering sciences, Vol. 454, No. 1971, pp. 903-995).
-
14. Imbsen, C. C. (2002). XTRACT Software, Cross Section Analysis Program for Structural Engineers. Imbsen and Associates.
-
19. Tsai, K. C., & Lin, B. Z. (2003). User Manual for the Platform and Visualization of Inelastic Structural Analysis of 3D Systems PISA3D and VISA3D. Center for Earthquake Engineering Research, National Taiwan University, Report No. CEER/R92-07.
-
23. 石井正人,北村春幸,和田章,笠井和彦 (2000)「粘弾性型制振部材付き架構のモデル化に関する検討」日本建築学会構造系論文集,65(531),55-62。
-
24. 李森柟 (2001) 「壁式黏彈性阻尼器於建築結構之應用」碩士論文指導教授:張國鎮,國立臺灣大學土木工程學系。
-
25. 周中哲,曾冠霖,陳永祥,張陸滿 (2015) 「レバー式粘弾性振動吸収装置」日本發明專利(公開日:2015.07.27,公開番号:2015-135175)。
-
26. 周中哲,曾冠霖,陳永祥,張陸滿 (2015)「制震裝置」中國發明專利(公布日:2015.07.22,公布号:CN 104790548 A)。
-
27. 周中哲,曾冠霖,陳永祥,張陸滿 (2017)「制震裝置」中華民國發明專利(公告日:2017.02.21,證書號數:I571550)。
-
28. 林柏州 (2003) 「物件導向非線性靜動態三維結構分析程式之研發」碩士論文指導教授:蔡克銓,國立臺灣大學土木工程學系。
-
29. 建築物耐震設計規範,中華民國內政部營建署,中華民國100年。
-
31. 張國鎮,黃震興,蘇晴茂 (2014) 「結構消能減震控制及隔震設計」全華圖書股份有限公司。
-
32. 混凝土結構設計規範,中華民國內政部營建署,中華民國100年。
-
34. 森俊之,大和ハウス工業株式会社 (2000) 「制振構造」日本發明專利(公開日:2000.10.24,公開番号:2000-297556)。
-
38. 鋼結構極限設計法規範,中華民國內政部營建署,中華民國99年。
|