题名

具血小板醣蛋白Ib抑制性質之蛇毒C型凝集素Agkistin造成血小板低下機制之探討

并列篇名

The investigation of thrombocytopenia caused by Agkistin, a platelet glycoprotein Ib inhibitor with C-type lectin-like structure

DOI

10.6342/NTU201702327

作者

陳柏榮

关键词

蛇毒C型凝集素 ; 血小板醣蛋白Ib ; agkistin ; 血小板低下 ; 肝清除 ; Ashwell-Morell受體 ; Snake C-type lectin ; glycoprotein Ib ; agkistin ; thrombocytopenia ; liver clearance ; Ashwell-Morell Receptor

期刊名称

臺灣大學藥理學研究所學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

黃德富

内容语文

英文

中文摘要

血小板在止血功能中扮演不可或缺的角色,在一些病理因素之下,異常的血小板活化可能形成具有危險性的血栓。在往年重大疾病中,心肌梗塞與缺血性中風常伴隨著高度致死率。因此,抗血小板藥物常用來預防日常生活或心血管手術後異常血栓的生成。然而,臨床報告指出目前市面的抗血小板用藥具有增加出血的風險,因此在安全性的考量下,能抑制血栓生成且又不容易造成異常出血成為新一代抗血小板藥物的首要指標。血小板醣蛋白Ib在血小板附著與活化上為一關鍵因子,尤其在高剪切速率之下其功能愈加彰顯,因為這種對於剪切速率的選擇性,我們可以預測醣蛋白Ib的拮抗相較於健康血管,在病理情況下的動脈血管能發揮更有針對性的效果。因此,血小板醣蛋白Ib拮抗劑是一個具有前瞻性的發展目標。 近年來,數種拮抗醣蛋白Ib的蛇毒C型凝集素已透過試管試驗以及活體實驗證實其效果。意外的是,注射這類蛇毒C型凝集素進入小動物卻會造成血小板低下症狀的出現,背後的原因仍然在探索中。這篇文章將探討從大陸百步蛇Agkistrodon acutus純化出來的蛇毒C型凝集agkistin,在試管試驗中證實具有抑制醣蛋白Ib造成的血小板凝集,然而,在小鼠尾靜脈注射下卻發現會造成快速且持續的血小板低下症狀。在探討這個機制的過程中,我們評估了各式可能的因子,包含後天免疫、巨噬細胞、細胞凋亡以及肝細胞吞噬等可能性。我們發現agkistin會促使肝細胞透過Ashwell-Morell受體吞噬血小板。先前的文獻曾指出在一些具有拮抗醣蛋白Ib抗體的免疫血小板低下患者中發現其體內的血小板進行去唾液醣酸(sialic acid)後被肝細胞辨認與清除。而這些拮抗醣蛋白Ib的抗體即是造成血小板活化與醣蛋白Ibα次單元去唾液醣酸化的背後推手。然而,我們發現agkistin並不會造成血小板活化或使醣蛋白Ibα去唾液醣酸化,但發現agkistin和Ashwell-Morell受體具有高度結合能力,以及透過金屬依賴性蛋白酶kistomin切除醣蛋白Ibα次單元會抑制agkistin造成的血小板低下。這些結果顯示Ashwell-Morell受體和醣蛋白Ibα次單元在血小板清除的過程中是不可缺的。我們推測agkistin在Ashwell-Morell受體和醣蛋白Ibα次單元間扮演著「橋樑」的要角,加強肝細胞對血小板的辨識與吞噬,惟更多的結構與活性的關聯性需要進一步去釐清。 總言之,我們提出了一個agkistin對於促進肝細胞清除血小板機制的說法,這些成果對於降低出血風險的新穎血小板醣蛋白Ib拮抗劑的研發提供更多可靠的資訊。

英文摘要

Platelets act as an indispensable role in hemostasis. Abnormal activation of platelets may lead to formation of threatening thrombus under pathological conditions. Myocardial infarction and ischemic stroke are in high lethal rates each year. Therefore, several antiplatelet agents are indicated for preventing abnormal thrombus formation in daily life or after coronary surgery. However, current anti-platelet agents have the risk of bleeding. For safety issue, thrombus prevention with lower bleeding risk is the concerning issue of new generation antiplatelet agents. Platelet glycoprotein Ib is a key receptor in platelet adhesion, and activation during vascular injury with the immobilized vWF, especially under high shear stress. Therefore, the blockade of GPIb-mediated platelet activation would interfere more with platelet deposition in diseased arteries, than in healthy blood vessels, thus preventing thrombosis without affecting significantly physiologic hemostasis. Recently, several snake C-type lectins (snaclecs) have been reported to inhibit platelet GPIb both in vitro and in vivo. Surprisingly, intravenous injection of these snaclecs causes thrombocytopenia in small animals. The causative reasons are still under investigation. This report focuses on agkistin, a snaclec purified from venom of China Agkistrodon acutus, inhibits GPIb-mediated platelet agglutination in vitro. However, it induces a rapid and sustained thrombocytopenia upon intravenous injection to mice. To figure out the mechanism of the induced thrombocytopenia, we evaluated the causative factors including adaptive immune system, macrophage, apoptosis, and hepatocyte etc. Our results demonstrated that agkistin could promote the platelet ingestion by hepatocytes through their Ashwell-Morell Receptor (AMR). Previous studies indicated that hepatocytes recognize and internalize desialylated platelets in several immune thrombocytopenia (ITP) patients with anti-GPIbα antibodies. Additionally, these anti-GPIbα antibodies could lead to platelet activation and loss of sialic acid on GPIbα, leading to consequent clearance by hepatocytes. However, in case of agkistin, this snaclec neither activates platelet nor causes desialylation in vitro. Further, we found that agkistin has high-binding affinity to AMR and the cleavage of GPIbα by metalloproteinase kistomin would attenuate the platelet clearance. These results indicate that both GPIbα and AMR are essential factor in the agkistin-induced thrombocytopenia. We hypothesize that agkistin might play a role as the “bridge” between GPIbα and AMR, which promotes the recognition and ingestion by hepatocytes. Nevertheless, structure-activity relationships remain to be elucidated. Taken together, we provide a possible mechanism of hepatocyte in causing agkistin-induced thrombocytopenia in mice. These researches provide helpful information for designing novel GPIb-antagonists in minimizing the thrombocytopenia risk.

主题分类 醫藥衛生 > 藥理醫學
醫學院 > 藥理學研究所
参考文献
  1. 1. Davi, G. and C. Patrono, Platelet activation and atherothrombosis. N Engl J Med, 2007. 357(24): p. 2482-94.
    連結:
  2. 2. Ruggeri, Z.M., Platelets in atherothrombosis. Nat Med, 2002. 8(11): p. 1227-34.
    連結:
  3. 3. Furie, B. and B.C. Furie, Mechanisms of thrombus formation. N Engl J Med, 2008. 359(9): p. 938-49.
    連結:
  4. 4. Wang, G.R., Y. Zhu, P.V. Halushka, T.M. Lincoln, and M.E. Mendelsohn, Mechanism of platelet inhibition by nitric oxide: in vivo phosphorylation of thromboxane receptor by cyclic GMP-dependent protein kinase. Proc Natl Acad Sci U S A, 1998. 95(9): p. 4888-93.
    連結:
  5. 5. Hofmann, F., The biology of cyclic GMP-dependent protein kinases. J Biol Chem, 2005. 280(1): p. 1-4.
    連結:
  6. 6. Swieringa, F., M.J. Kuijpers, J.W. Heemskerk, and P.E. van der Meijden, Targeting platelet receptor function in thrombus formation: the risk of bleeding. Blood Rev, 2014. 28(1): p. 9-21.
    連結:
  7. 7. Mackman, N., Triggers, targets and treatments for thrombosis. Nature, 2008. 451(7181): p. 914-8.
    連結:
  8. 8. Franchi, F. and D.J. Angiolillo, Novel antiplatelet agents in acute coronary syndrome. Nat Rev Cardiol, 2015. 12(1): p. 30-47.
    連結:
  9. 9. Ruggeri, Z.M. and G.L. Mendolicchio, Adhesion mechanisms in platelet function. Circ Res, 2007. 100(12): p. 1673-85.
    連結:
  10. 10. Golebiewska, E.M. and A.W. Poole, Platelet secretion: From haemostasis to wound healing and beyond. Blood Rev, 2015. 29(3): p. 153-62.
    連結:
  11. 11. Bergmeier, W. and R.O. Hynes, Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harb Perspect Biol, 2012. 4(2).
    連結:
  12. 12. Morrell, C.N., A.A. Aggrey, L.M. Chapman, and K.L. Modjeski, Emerging roles for platelets as immune and inflammatory cells. Blood, 2014. 123(18): p. 2759-67.
    連結:
  13. 13. Gawaz, M., H. Langer, and A.E. May, Platelets in inflammation and atherogenesis. J Clin Invest, 2005. 115(12): p. 3378-84.
    連結:
  14. 14. Lievens, D. and P. von Hundelshausen, Platelets in atherosclerosis. Thromb Haemost, 2011. 106(5): p. 827-38.
    連結:
  15. 15. Gay, L.J. and B. Felding-Habermann, Contribution of platelets to tumour metastasis. Nat Rev Cancer, 2011. 11(2): p. 123-34.
    連結:
  16. 16. Sabrkhany, S., A.W. Griffioen, and M.G. Oude Egbrink, The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta, 2011. 1815(2): p. 189-96.
    連結:
  17. 17. Walsh, T.G., P. Metharom, and M.C. Berndt, The functional role of platelets in the regulation of angiogenesis. Platelets, 2015. 26(3): p. 199-211.
    連結:
  18. 18. Ruggeri, Z.M., Platelet adhesion under flow. Microcirculation, 2009. 16(1): p. 58-83.
    連結:
  19. 19. Li, Z., M.K. Delaney, K.A. O'Brien, and X. Du, Signaling during platelet adhesion and activation. Arterioscler Thromb Vasc Biol, 2010. 30(12): p. 2341-9.
    連結:
  20. 20. Aoudjit, F. and K. Vuori, Integrin signaling in cancer cell survival and chemoresistance. Chemother Res Pract, 2012. 2012: p. 283181.
    連結:
  21. 21. Hall, C.L., J. Dai, K.L. van Golen, E.T. Keller, and M.W. Long, Type I collagen receptor (alpha 2 beta 1) signaling promotes the growth of human prostate cancer cells within the bone. Cancer Res, 2006. 66(17): p. 8648-54.
    連結:
  22. 22. Malanchi, I., A. Santamaria-Martinez, E. Susanto, H. Peng, H.A. Lehr, J.F. Delaloye, and J. Huelsken, Interactions between cancer stem cells and their niche govern metastatic colonization. Nature, 2011. 481(7379): p. 85-9.
    連結:
  23. 24. Ruggeri, Z.M., The role of von Willebrand factor in thrombus formation. Thromb Res, 2007. 120 Suppl 1: p. S5-9.
    連結:
  24. 25. Stegner, D. and B. Nieswandt, Platelet receptor signaling in thrombus formation. J Mol Med (Berl), 2011. 89(2): p. 109-21.
    連結:
  25. 26. Jung, S.M., M. Moroi, K. Soejima, T. Nakagaki, Y. Miura, M.C. Berndt, E.E. Gardiner, J.M. Howes, N. Pugh, D. Bihan, S.P. Watson, and R.W. Farndale, Constitutive dimerization of glycoprotein VI (GPVI) in resting platelets is essential for binding to collagen and activation in flowing blood. J Biol Chem, 2012. 287(35): p. 30000-13.
    連結:
  26. 27. Moroi, A.J. and S.P. Watson, Impact of the PI3-kinase/Akt pathway on ITAM and hemITAM receptors: haemostasis, platelet activation and antithrombotic therapy. Biochem Pharmacol, 2015. 94(3): p. 186-94.
    連結:
  27. 28. Nieswandt, B. and S.P. Watson, Platelet-collagen interaction: is GPVI the central receptor? Blood, 2003. 102(2): p. 449-61.
    連結:
  28. 29. Gilio, K., I.C. Munnix, P. Mangin, J.M. Cosemans, M.A. Feijge, P.E. van der Meijden, S. Olieslagers, M.B. Chrzanowska-Wodnicka, R. Lillian, S. Schoenwaelder, S. Koyasu, S.O. Sage, S.P. Jackson, and J.W. Heemskerk, Non-redundant roles of phosphoinositide 3-kinase isoforms alpha and beta in glycoprotein VI-induced platelet signaling and thrombus formation. J Biol Chem, 2009. 284(49): p. 33750-62.
    連結:
  29. 30. Tomlinson, M.G., S.D. Calaminus, O. Berlanga, J.M. Auger, T. Bori-Sanz, L. Meyaard, and S.P. Watson, Collagen promotes sustained glycoprotein VI signaling in platelets and cell lines. J Thromb Haemost, 2007. 5(11): p. 2274-83.
    連結:
  30. 31. Chung, C.H., L.C. Au, and T.F. Huang, Molecular cloning and sequence analysis of aggretin, a collagen-like platelet aggregation inducer. Biochem Biophys Res Commun, 1999. 263(3): p. 723-7.
    連結:
  31. 33. Navarro-Nunez, L., S.A. Langan, G.B. Nash, and S.P. Watson, The physiological and pathophysiological roles of platelet CLEC-2. Thromb Haemost, 2013. 109(6): p. 991-8.
    連結:
  32. 34. Watson, S.P., J.M. Herbert, and A.Y. Pollitt, GPVI and CLEC-2 in hemostasis and vascular integrity. J Thromb Haemost, 2010. 8(7): p. 1456-67.
    連結:
  33. 35. Offermanns, S., Activation of platelet function through G protein-coupled receptors. Circ Res, 2006. 99(12): p. 1293-304.
    連結:
  34. 36. Shattil, S.J. and P.J. Newman, Integrins: dynamic scaffolds for adhesion and signaling in platelets. Blood, 2004. 104(6): p. 1606-15.
    連結:
  35. 37. Bennett, J.S., Structure and function of the platelet integrin alphaIIbbeta3. J Clin Invest, 2005. 115(12): p. 3363-9.
    連結:
  36. 38. Greinacher, A., A. Pecci, S. Kunishima, K. Althaus, P. Nurden, C.L. Balduini, and T. Bakchoul, Diagnosis of inherited platelet disorders on a blood smear: a tool to facilitate worldwide diagnosis of platelet disorders. J Thromb Haemost, 2017.
    連結:
  37. 39. Jackson, S.P., Arterial thrombosis--insidious, unpredictable and deadly. Nat Med, 2011. 17(11): p. 1423-36.
    連結:
  38. 40. Yost, G.W. and S.R. Steinhubl, Monitoring and Reversal of Anticoagulation and Antiplatelets. Interv Cardiol Clin, 2013. 2(4): p. 643-663.
    連結:
  39. 41. Fanaroff, A.C. and S.V. Rao, Antiplatelet Therapy in Percutaneous Coronary Intervention. Interv Cardiol Clin, 2016. 5(2): p. 221-237.
    連結:
  40. 42. Metharom, P., M.C. Berndt, R.I. Baker, and R.K. Andrews, Current state and novel approaches of antiplatelet therapy. Arterioscler Thromb Vasc Biol, 2015. 35(6): p. 1327-38.
    連結:
  41. 43. Xu, X.R., N. Carrim, M.A. Neves, T. McKeown, T.W. Stratton, R.M. Coelho, X. Lei, P. Chen, J. Xu, X. Dai, B.X. Li, and H. Ni, Platelets and platelet adhesion molecules: novel mechanisms of thrombosis and anti-thrombotic therapies. Thromb J, 2016. 14(Suppl 1): p. 29.
    連結:
  42. 44. Wang, Y., Y. Wang, X. Zhao, L. Liu, D. Wang, C. Wang, C. Wang, H. Li, X. Meng, L. Cui, J. Jia, Q. Dong, A. Xu, J. Zeng, Y. Li, Z. Wang, H. Xia, S.C. Johnston, and C. Investigators, Clopidogrel with aspirin in acute minor stroke or transient ischemic attack. N Engl J Med, 2013. 369(1): p. 11-9.
    連結:
  43. 45. Huang, T.F., C.C. Hsu, and Y.J. Kuo, Anti-thrombotic agents derived from snake venom proteins. Thromb J, 2016. 14(Suppl 1): p. 18.
    連結:
  44. 47. Huang, T.F., J.C. Holt, E.P. Kirby, and S. Niewiarowski, Trigramin: primary structure and its inhibition of von Willebrand factor binding to glycoprotein IIb/IIIa complex on human platelets. Biochemistry, 1989. 28(2): p. 661-6.
    連結:
  45. 48. Huang, T.F. and C. Ouyang, Action mechanism of the potent platelet aggregation inhibitor from Trimeresurus gramineus snake venom. Thromb Res, 1984. 33(2): p. 125-38.
    連結:
  46. 49. Cook, J.J., T.F. Huang, B. Rucinski, M. Strzyzewski, R.F. Tuma, J.A. Williams, and S. Niewiarowski, Inhibition of platelet hemostatic plug formation by trigramin, a novel RGD-peptide. Am J Physiol, 1989. 256(4 Pt 2): p. H1038-43.
    連結:
  47. 50. Armstrong, P.C. and K. Peter, GPIIb/IIIa inhibitors: from bench to bedside and back to bench again. Thromb Haemost, 2012. 107(5): p. 808-14.
    連結:
  48. 51. Kleinschnitz, C., M. Pozgajova, M. Pham, M. Bendszus, B. Nieswandt, and G. Stoll, Targeting platelets in acute experimental stroke: impact of glycoprotein Ib, VI, and IIb/IIIa blockade on infarct size, functional outcome, and intracranial bleeding. Circulation, 2007. 115(17): p. 2323-30.
    連結:
  49. 52. Stoll, G., C. Kleinschnitz, and B. Nieswandt, Molecular mechanisms of thrombus formation in ischemic stroke: novel insights and targets for treatment. Blood, 2008. 112(9): p. 3555-62.
    連結:
  50. 53. Shen, B., X. Zhao, K.A. O'Brien, A. Stojanovic-Terpo, M.K. Delaney, K. Kim, J. Cho, S.C. Lam, and X. Du, A directional switch of integrin signalling and a new anti-thrombotic strategy. Nature, 2013. 503(7474): p. 131-5.
    連結:
  51. 54. Luo, S.Z., X. Mo, V. Afshar-Kharghan, S. Srinivasan, J.A. Lopez, and R. Li, Glycoprotein Ibalpha forms disulfide bonds with 2 glycoprotein Ibbeta subunits in the resting platelet. Blood, 2007. 109(2): p. 603-9.
    連結:
  52. 55. Berndt, M.C. and R.K. Andrews, Bernard-Soulier syndrome. Haematologica, 2011. 96(3): p. 355-9.
    連結:
  53. 56. Huizinga, E.G., S. Tsuji, R.A. Romijn, M.E. Schiphorst, P.G. de Groot, J.J. Sixma, and P. Gros, Structures of glycoprotein Ibalpha and its complex with von Willebrand factor A1 domain. Science, 2002. 297(5584): p. 1176-9.
    連結:
  54. 57. Gresele, P. and S. Momi, Inhibitors of the interaction between von Willebrand factor and platelet GPIb/IX/V. Handb Exp Pharmacol, 2012(210): p. 287-309.
    連結:
  55. 58. Romo, G.M., J.F. Dong, A.J. Schade, E.E. Gardiner, G.S. Kansas, C.Q. Li, L.V. McIntire, M.C. Berndt, and J.A. Lopez, The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med, 1999. 190(6): p. 803-14.
    連結:
  56. 59. Simon, D.I., Z. Chen, H. Xu, C.Q. Li, J. Dong, L.V. McIntire, C.M. Ballantyne, L. Zhang, M.I. Furman, M.C. Berndt, and J.A. Lopez, Platelet glycoprotein ibalpha is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med, 2000. 192(2): p. 193-204.
    連結:
  57. 60. Clemetson, K.J., Snaclecs (snake C-type lectins) that inhibit or activate platelets by binding to receptors. Toxicon, 2010. 56(7): p. 1236-1246.
    連結:
  58. 61. Morita, T., Structures and functions of snake venom CLPs (C-type lectin-like proteins) with anticoagulant-, procoagulant-, and platelet-modulating activities. Toxicon, 2005. 45(8): p. 1099-114.
    連結:
  59. 62. Navdaev, A., H. Subramanian, A. Petunin, K.J. Clemetson, S. Gambaryan, and U. Walter, Echicetin coated polystyrene beads: a novel tool to investigate GPIb-specific platelet activation and aggregation. PLoS One, 2014. 9(4): p. e93569.
    連結:
  60. 63. Ogawa, T., T. Chijiwa, N. Oda-Ueda, and M. Ohno, Molecular diversity and accelerated evolution of C-type lectin-like proteins from snake venom. Toxicon, 2005. 45(1): p. 1-14.
    連結:
  61. 65. Navdaev, A., D. Dormann, J.M. Clemetson, and K.J. Clemetson, Echicetin, a GPIb-binding snake C-type lectin from Echis carinatus, also contains a binding site for IgMkappa responsible for platelet agglutination in plasma and inducing signal transduction. Blood, 2001. 97(8): p. 2333-41.
    連結:
  62. 66. Xu, G., H. Ulrichts, S. Vauterin, S.F. De Meyer, H. Deckmyn, M. Teng, and L. Niu, How does agkicetin-C bind on platelet glycoprotein Ibalpha and achieve its platelet effects? Toxicon, 2005. 45(5): p. 561-70.
    連結:
  63. 67. Grozovsky, R., S. Giannini, H. Falet, and K.M. Hoffmeister, Regulating billions of blood platelets: glycans and beyond. Blood, 2015. 126(16): p. 1877-84.
    連結:
  64. 68. Cines, D.B., J.B. Bussel, H.A. Liebman, and E.T. Luning Prak, The ITP syndrome: pathogenic and clinical diversity. Blood, 2009. 113(26): p. 6511-21.
    連結:
  65. 69. McMillan, R., The pathogenesis of chronic immune thrombocytopenic purpura. Semin Hematol, 2007. 44(4 Suppl 5): p. S3-S11.
    連結:
  66. 70. Sorensen, A.L., V. Rumjantseva, S. Nayeb-Hashemi, H. Clausen, J.H. Hartwig, H.H. Wandall, and K.M. Hoffmeister, Role of sialic acid for platelet life span: exposure of beta-galactose results in the rapid clearance of platelets from the circulation by asialoglycoprotein receptor-expressing liver macrophages and hepatocytes. Blood, 2009. 114(8): p. 1645-54.
    連結:
  67. 72. Grozovsky, R., A.J. Begonja, K. Liu, G. Visner, J.H. Hartwig, H. Falet, and K.M. Hoffmeister, The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med, 2015. 21(1): p. 47-54.
    連結:
  68. 73. Kaplan, C., Toddy for chilled platelets? Blood, 2012. 119(5): p. 1100-2.
    連結:
  69. 74. Jansen, A.J., E.C. Josefsson, V. Rumjantseva, Q.P. Liu, H. Falet, W. Bergmeier, S.M. Cifuni, R. Sackstein, U.H. von Andrian, D.D. Wagner, J.H. Hartwig, and K.M. Hoffmeister, Desialylation accelerates platelet clearance after refrigeration and initiates GPIbalpha metalloproteinase-mediated cleavage in mice. Blood, 2012. 119(5): p. 1263-73.
    連結:
  70. 75. Kinlough-Rathbone, R.L., D.W. Perry, M.L. Rand, and M.A. Packham, Responses to aggregating agents after cleavage of GPIb of human platelets by the O-sialoglycoprotein endoprotease from Pasteurella haemolytica- potential surrogates for Bernard-Soulier platelets? Thromb Res, 2000. 99(2): p. 165-72.
    連結:
  71. 76. Li, R., K.M. Hoffmeister, and H. Falet, Glycans and the platelet life cycle. Platelets, 2016. 27(6): p. 505-11.
    連結:
  72. 77. Grewal, P.K., The Ashwell-Morell receptor. Methods Enzymol, 2010. 479: p. 223-41.
    連結:
  73. 78. Hoffmeister, K.M., The role of lectins and glycans in platelet clearance. J Thromb Haemost, 2011. 9 Suppl 1: p. 35-43.
    連結:
  74. 79. Park, E.I., S.M. Manzella, and J.U. Baenziger, Rapid clearance of sialylated glycoproteins by the asialoglycoprotein receptor. J Biol Chem, 2003. 278(7): p. 4597-602.
    連結:
  75. 80. Kile, B.T., Aging platelets stimulate TPO production. Nat Med, 2015. 21(1): p. 11-2.
    連結:
  76. 81. Josefsson, E.C., H.H. Gebhard, T.P. Stossel, J.H. Hartwig, and K.M. Hoffmeister, The macrophage alphaMbeta2 integrin alphaM lectin domain mediates the phagocytosis of chilled platelets. J Biol Chem, 2005. 280(18): p. 18025-32.
    連結:
  77. 84. Yeh, C.H., M.C. Chang, H.C. Peng, and T.F. Huang, Pharmacological characterization and antithrombotic effect of agkistin, a platelet glycoprotein Ib antagonist. Br J Pharmacol, 2001. 132(4): p. 843-50.
    連結:
  78. 85. Yin, H., J. Liu, Z. Li, M.C. Berndt, C.A. Lowell, and X. Du, Src family tyrosine kinase Lyn mediates VWF/GPIb-IX-induced platelet activation via the cGMP signaling pathway. Blood, 2008. 112(4): p. 1139-46.
    連結:
  79. 86. Hsu, C.C., W.B. Wu, and T.F. Huang, A snake venom metalloproteinase, kistomin, cleaves platelet glycoprotein VI and impairs platelet functions. J Thromb Haemost, 2008. 6(9): p. 1578-85.
    連結:
  80. 87. Hsu, C.C., W.B. Wu, Y.H. Chang, H.L. Kuo, and T.F. Huang, Antithrombotic effect of a protein-type I class snake venom metalloproteinase, kistomin, is mediated by affecting glycoprotein Ib-von Willebrand factor interaction. Mol Pharmacol, 2007. 72(4): p. 984-92.
    連結:
  81. 88. Leytin, V., D.J. Allen, S. Mykhaylov, E. Lyubimov, and J. Freedman, Thrombin-triggered platelet apoptosis. J Thromb Haemost, 2006. 4(12): p. 2656-63.
    連結:
  82. 89. Bergmeier, W., C.L. Piffath, T. Goerge, S.M. Cifuni, Z.M. Ruggeri, J. Ware, and D.D. Wagner, The role of platelet adhesion receptor GPIbalpha far exceeds that of its main ligand, von Willebrand factor, in arterial thrombosis. Proc Natl Acad Sci U S A, 2006. 103(45): p. 16900-5.
    連結:
  83. 90. Wang, W.J., Q.D. Ling, M.Y. Liau, and T.F. Huang, A tetrameric glycoprotein Ib-binding protein, agglucetin, from Formosan pit viper: structure and interaction with human platelets. Thromb Haemost, 2003. 90(3): p. 465-75.
    連結:
  84. 91. Gao, C., B. Boylan, D. Bougie, J.C. Gill, J. Birenbaum, D.K. Newman, R.H. Aster, and P.J. Newman, Eptifibatide-induced thrombocytopenia and thrombosis in humans require FcgammaRIIa and the integrin beta3 cytoplasmic domain. J Clin Invest, 2009. 119(3): p. 504-11.
    連結:
  85. 92. D'Souza, A.A. and P.V. Devarajan, Asialoglycoprotein receptor mediated hepatocyte targeting - strategies and applications. J Control Release, 2015. 203: p. 126-39.
    連結:
  86. 93. Lei, X., A. Reheman, Y. Hou, H. Zhou, Y. Wang, A.H. Marshall, C. Liang, X. Dai, B.X. Li, K. Vanhoorelbeke, and H. Ni, Anfibatide, a novel GPIb complex antagonist, inhibits platelet adhesion and thrombus formation in vitro and in vivo in murine models of thrombosis. Thromb Haemost, 2014. 111(2): p. 279-89.
    連結:
  87. 94. Zheng, L., Y. Mao, M.S. Abdelgawwad, N.K. Kocher, M. Li, X. Dai, B. Li, and X.L. Zheng, Therapeutic efficacy of the platelet glycoprotein Ib antagonist anfibatide in murine models of thrombotic thrombocytopenic purpura. Blood Adv, 2016. 1: p. 75-83.
    連結:
  88. 23. Yoshimura, K., K.F. Meckel, L.S. Laird, C.Y. Chia, J.J. Park, K.L. Olino, R. Tsunedomi, T. Harada, N. Iizuka, S. Hazama, Y. Kato, J.W. Keller, J.M. Thompson, F. Chang, L.H. Romer, A. Jain, C. Iacobuzio-Donahue, M. Oka, D.M. Pardoll, and R.D. Schulick, Integrin alpha2 mediates selective metastasis to the liver. Cancer Res, 2009. 69(18): p. 7320-8.
  89. 32. Suzuki-Inoue, K., G.L. Fuller, A. Garcia, J.A. Eble, S. Pohlmann, O. Inoue, T.K. Gartner, S.C. Hughan, A.C. Pearce, G.D. Laing, R.D. Theakston, E. Schweighoffer, N. Zitzmann, T. Morita, V.L. Tybulewicz, Y. Ozaki, and S.P. Watson, A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood, 2006. 107(2): p. 542-9.
  90. 46. Huang, T.F., J.C. Holt, H. Lukasiewicz, and S. Niewiarowski, Trigramin. A low molecular weight peptide inhibiting fibrinogen interaction with platelet receptors expressed on glycoprotein IIb-IIIa complex. J Biol Chem, 1987. 262(33): p. 16157-63.
  91. 64. Peng, M., W. Lu, L. Beviglia, S. Niewiarowski, and E.P. Kirby, Echicetin: a snake venom protein that inhibits binding of von Willebrand factor and alboaggregins to platelet glycoprotein Ib. Blood, 1993. 81(9): p. 2321-8.
  92. 71. Hoffmeister, K.M., T.W. Felbinger, H. Falet, C.V. Denis, W. Bergmeier, T.N. Mayadas, U.H. von Andrian, D.D. Wagner, T.P. Stossel, and J.H. Hartwig, The clearance mechanism of chilled blood platelets. Cell, 2003. 112(1): p. 87-97.
  93. 82. Li, J., D.E. van der Wal, G. Zhu, M. Xu, I. Yougbare, L. Ma, B. Vadasz, N. Carrim, R. Grozovsky, M. Ruan, L. Zhu, Q. Zeng, L. Tao, Z.M. Zhai, J. Peng, M. Hou, V. Leytin, J. Freedman, K.M. Hoffmeister, and H. Ni, Desialylation is a mechanism of Fc-independent platelet clearance and a therapeutic target in immune thrombocytopenia. Nat Commun, 2015. 6: p. 7737.
  94. 83. van der Wal, D.E., V.X. Du, K.S. Lo, J.T. Rasmussen, S. Verhoef, and J.W. Akkerman, Platelet apoptosis by cold-induced glycoprotein Ibalpha clustering. J Thromb Haemost, 2010. 8(11): p. 2554-62.