题名

東台灣火山碎屑岩內變形條帶之岩性控制模式

并列篇名

Lithological control on occurrences of deformation band in pyroclastic rocks of eastern Taiwan

DOI

10.6342/NTU201702333

作者

鍾智承

关键词

變形條帶 ; 岩性控制 ; 孔隙率 ; 弧陸碰撞 ; Deformation Bands ; Lithological control ; Porosity ; Arc-continental collision

期刊名称

國立臺灣大學地質科學系學位論文

卷期/出版年月

2017年

学位类别

碩士

导师

盧佳遇

内容语文

繁體中文

中文摘要

變形條帶係形成於近地表多孔隙岩石的板狀脆韌性應變集中構造,能提供斷層在多孔隙岩石中初始發育之資訊並記錄近地表的構造變形歷史。由於變形條帶造成岩石的孔隙率及滲透率降低,因此對於地下水及石油天然氣的流動常有顯著的影響。然而前人研究之變形條帶大多形成於石英砂岩內,少有針對不同岩性中變形條帶的探討。石梯坪地區的變形條帶則提供瞭解火山碎屑岩中變形條帶發育的重要資訊。 石梯坪地區位於海岸山脈中段東側,即呂宋島弧之弧後。海岸山脈地層皆因菲律賓海板塊及歐亞板塊的擠壓而變形。石梯坪地區由成層的火山碎屑岩組成,出露大量變形條帶。依其運動學模式可分為四大類,其發育順序依序為純壓密型條帶(Type 1)、逆衝及背衝壓密剪切型條帶(Type 2)、走向滑移壓密剪切型(Type 3)及正向滑移型(Type 4)。條帶與地層位態的關係顯示褶皺發育前至褶皺後期皆有變形條帶發育。變形條帶及地層位態皆顯示最大主應力方向大致呈東西向,方位角090-100之間。本研究區域的變形條帶以走向滑移的壓密剪切碎裂型變形條帶(Type 3)發育最為廣泛。根據孔隙率變化計算之變形機制分析顯示即便是碎裂型變形條帶,顆粒流作用所導致的孔隙率降低量至少佔63.47%,碎裂化作用最多僅佔36.53%,顯示變形主要以顆粒流作用為主。此外,本研究結合野外量測所得的變形條帶滑移量側向變化及變形條帶在不同地層中的密度分布計算石梯坪地區不同塊體所累積的角應變。計算結果顯示石梯坪單面山區域僅累積0.20度順時針角應變,南單面山區域僅累積1.88度逆時針角應變,南段區域則累積13.05度逆時針角應變。 另一方面本研究整合變形條帶滑移量、厚度、寬度、密度與圍岩的孔隙率、平均粒徑、淘選係數、平均顆粒破裂應力提出岩性控制模式。研究結果顯示變形條帶的發育密度與地層的平均顆粒破裂應力及孔隙率呈正相關,與平均粒徑及淘選係數呈現負相關。此一結果顯示細粒高孔隙率、高平均顆粒破裂應力及低淘選係數之火山碎屑岩可能更容易受到變形條帶的影響而降低滲透率。 由於受到應變分配效應的影響,地層中變形條帶密度與地層中的條帶最大滑移量、最大厚度及最大寬度呈現負相關。另一方面,條帶的最大厚度也與地層的淘選係數及地層平均粒徑呈現正相關,顯示變形條帶的厚度除了受平均粒徑影響,其最大厚度或許也受到地層內最大粒徑所控制,進而使得高淘選係數地層內之條帶厚度增加。此外,變形條帶的最大厚度與平均顆粒破裂應力呈負相關,顯示在應變分配效應的影響下,高平均顆粒破裂應力地層的條帶密度高,進而使得最大寬度下降。 石梯坪地區的變形條帶具有蝕變現象,條帶內部由長石等礦物碎屑及蝕變產物所組成。蝕變之產物根據電子顯微鏡搭配EDS的觀察結果,發現其成分中矽、鈣、鈉的濃度降低,鋁和鐵則相對富集。此一現象也顯示變形條帶發育破裂時連接原先並不相連的孔隙,使變形條帶成為地下水流動的管道,而地下水在流動的過程中將鈉、鉀、鈣等成分溶解帶離變形條帶,留下相對難溶的元素。顯示在條帶形成過程中曾經是流體流動之管道,而條帶發育末期之斷層亦能扮演流體流動管道之角色。若要瞭解條帶對於地下流體流動之影響應結合條帶位態、發育階段、條帶厚度及密度的因素,並非單純仰賴條帶孔隙率及滲透率的降低即可完整解釋其對流場變化的影響。

英文摘要

Deformation bands are tabular strain localization structures occurring in highly porous rocks. They document progressive deformation, including formation of faults, in porous rocks at near-surface levels. Due to the reduction of porosity and permeability, deformation bands affect the flow of hydrocarbon and groundwater. While most studied deformation bands are in sandstones, their exceptional development is found in a pyroclastics locality in eastern Taiwan which help us understand their development in pyroclastic rocks. The outcrop area, Shitiping, is in the central part of the Coastal Range, the accreted Luzon Arc resulted from South China Sea subduction. Rocks of the Coastal Range including Shitiping were deformed by the active convergence between the Philippines Sea and Eurasian plates. Geology of the Shitiping area consists of layered pyroclastics of mostly tuffaceous sandstone and welded tuff lithologies, and folds and fractures are common. Base on the kinematics, we classified deformation bands in Shitiping into pure compaction band(type 1), thrust and back-thrust type compactional shear band(type 2), strike-slip compactional shear band(type 3) and normal sense shear band(type 4). Altitude relationships with bedding suggest these bands formed pre- or post-folding. All these bands shows that the maximum principle stress axes trend between 090-100. The deformation bands are mostly dextral or sinistral shear compaction bands, and are cataclastic; pure compaction bands, which are disaggregation band, are only found in layers with porosity higher than 30%. Analysis of porosity change between cataclasis band and disaggregation band shows that granular flow has the minimum reduction of porosity for 63.47% of the total reduction of cataclasis bands, indicating that granular flow is the main mechanism of porosity reduction. Combining band density and offset data, we calculate the angular shear of Shitiping area and find that cuesta and southern cuesta accumulate angular shear 0.20 degree clockwisely and 1.88 degree anti-clockwisely while southern part has angular shear 13.08 degree anti-clockwisely. We documented the altitude, deformation style, density, length, offset, and microstructure of the deformation bands as well as the porosity, grain size, sorting coefficient, and the derived mean grain crushing pressure of their host layers. The density of deformation bands seems to be positively related to the mean grain crushing pressure and porosity, and inversely proportional to average grain size and sorting coefficient of host pyroclastic layer. These results imply that permeability in fine-grained pyroclastic rocks with high porosity are more prone to be affected by deformation bands than in coarse-grained rocks. Due to the effect of strain allocation, the band density is negatively correlated to maximum displacement, thickness and width of deformation band. On the other side, maximum thickness of deformation band is positively correlated to sorting coefficient and average grain size of host rock, implying that the maximum band thickness might be controlled by maximum grain size of layers. Besides, maximum band thickness is negatively correlated to mean grain crushing pressure, indicating that strain allocation also plays a role in affecting the relationship between maximum band thickness and mean grain crushing pressure. Crystals in bands are usually highly altered, depleted in Si, Ca, Na and rich in Al and Fe, which may imply that these bands were conduit of underground flow along bands preventing across-band flows. This result shows that in order to understand the effect of deformation bands on underground flow, band altitude, band evolution stages, band thickness and density should be considered.

主题分类 基礎與應用科學 > 地球科學與地質學
理學院 > 地質科學系
参考文献
  1. Antonellini, M. and Aydin, A., 1994. Effect of faulting on fluid flow in porous sandstones: petrophysical properties. AAPG bulletin, 78(3): 355-377.
    連結:
  2. Antonellini, M. and Aydin, A., 1995. Effect of faulting on fluid flow in porous sandstones: geometry and spatial distribution. AAPG bulletin, 79(5): 642-670.
    連結:
  3. Antonellini, M., Aydin, A. and Orr, L., 1999. Outcrop‐Aided Characterization of a Faulted Hydrocarbon Reservoir: Arroyo Grande Oil Field, California, USA. Faults and subsurface fluid flow in the shallow crust: 7-26.
    連結:
  4. Antonellini, M.A. and Pollard, D.D., 1995. . Journal of Structural Geology, 17: 1165-1182.
    連結:
  5. Aydin, A., 1978. Small faults formed as deformation bands in sandstone, Rock Friction and Earthquake Prediction. Springer, pp. 913-930.
    連結:
  6. Aydin, A., 2000. Fractures, faults, and hydrocarbon entrapment, migration and flow. Marine and petroleum geology, 17(7): 797-814.
    連結:
  7. Aydin, A. and Ahmadov, R., 2009. Bed-parallel compaction bands in aeolian sandstone: their identification, characterization and implications. Tectonophysics, 479(3): 277-284.
    連結:
  8. Aydin, A., Borja, R.I. and Eichhubl, P., 2006. Geological and mathematical framework for failure modes in granular rock. Journal of Structural Geology, 28(1): 83-98.
    連結:
  9. Aydin, A. and Johnson, A.M., 1978. Development of faults as zones of deformation bands and as slip surfaces in sandstone, Rock Friction and Earthquake Prediction. Springer, pp. 931-942.
    連結:
  10. Aydin, A. and Johnson, A.M., 1983. Analysis of faulting in porous sandstones. Journal of Structural Geology, 5(1): 19-31.
    連結:
  11. Bésuelle, P., 2001. Evolution of strain localisation with stress in a sandstone: brittle and semi-brittle regimes. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(1-2): 101-106.
    連結:
  12. Barrier, E. and Angelier, J., 1986. Active collision in eastern Taiwan: the Coastal Range. Tectonophysics, 125(1-3): 39-72.
    連結:
  13. Beach, A., Brown, J.L., Welbon, A.I., McCallum, J.E., Brockbank, P. and Knott, S., 1997. Characteristics of fault zones in sandstones from NW England: application to fault transmissibility. Geological Society, London, Special Publications, 124(1): 315-324.
    連結:
  14. Becker, R., 1987. The effect of porosity distribution on ductile failure. Journal of the Mechanics and Physics of Solids, 35(5): 577-599.
    連結:
  15. Borja, R.I. and Aydin, A., 2004. Computational modeling of deformation bands in granular media. I. Geological and mathematical framework. Computer Methods in Applied Mechanics and Engineering, 193(27-29): 2667-2698.
    連結:
  16. Bourcier, R., Koss, D., Smelser, R. and Richmond, O., 1986. The influence of porosity on the deformation and fracture of alloys. Acta Metallurgica, 34(12): 2443-2453.
    連結:
  17. Caine, J.S., Evans, J.P. and Forster, C.B., 1996. Fault zone architecture and permeability structure. Geology, 24(11): 1025-1028.
    連結:
  18. Cashman, S. and Cashman, K., 2000. Cataclasis and deformation-band formation in unconsolidated marine terrace sand, Humboldt County, California. Geology, 28(2): 111-114.
    連結:
  19. Chai, B.H.T., 1972. Structural and tectonic evolution of Taiwan. American Journal of Science, 272: 389-422.
    連結:
  20. Chang, C.-P., Chang, T.-Y., Angelier, J., Kao, H., Lee, J.-C. and Yu, S.-B., 2003. Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data. Earth and Planetary Science Letters, 214(1): 115-127.
    連結:
  21. Chemenda, A.I., Ballas, G. and Soliva, R., 2014. Impact of a multilayer structure on initiation and evolution of strain localization in porous rocks: Field observations and numerical modeling. Tectonophysics, 631: 29-36.
    連結:
  22. Du Bernard, X., Eichhubl, P. and Aydin, A., 2002. Dilation bands: A new form of localized failure in granular media. Geophysical Research Letters, 29(24).
    連結:
  23. Eichhubl, P., Hooker, J.N. and Laubach, S.E., 2010. Pure and shear-enhanced compaction bands in Aztec Sandstone. Journal of Structural Geology, 32(12): 1873-1886.
    連結:
  24. Fisher, Q. and Knipe, R., 2001. The permeability of faults within siliciclastic petroleum reservoirs of the North Sea and Norwegian Continental Shelf. Marine and Petroleum Geology, 18(10): 1063-1081.
    連結:
  25. Folk, R.L. and Ward, W.C., 1957. Brazos River bar: a study in the significance of grain size parameters. Journal of Sedimentary Research, 27(1).
    連結:
  26. Fossen, H. and Bale, A., 2007. Deformation bands and their influence on fluid flow. AAPG Bulletin, 91(12): 1685-1700.
    連結:
  27. Fossen, H. and Hesthammer, J., 1997. Geometric analysis and scaling relations of deformation bands inporous sandstone. Journal of Structural Geology, 19: 1749-1493.
    連結:
  28. Fossen, H., Schultz, R.A. and Torabi, A., 2011. Conditions and implications for compaction band formation in the Navajo Sandstone, Utah. Journal of Structural Geology, 33(10): 1477-1490.
    連結:
  29. Friedman, M. and Logan, J., 1973. Lüders' bands in experimentally deformed sandstone and limestone. Geological Society of America Bulletin, 84(4): 1465-1476.
    連結:
  30. Gibson, R.G., 1998. Physical character and fluid-flow properties of sandstone-derived fault zones. Geological Society, London, Special Publications, 127(1): 83-97.
    連結:
  31. Hesthammer, J., Bjorkum, P.A. and Watts, L., 2002. The effect of temperature on sealing capacity of faults in sandstone reservoirs: Examples from the Gullfaks and Gullfaks Sor fields, North Sea. AAPG bulletin, 86(10).
    連結:
  32. Hesthammer, J. and Fossen, H., 2000. Uncertainties associated with fault sealing analysis. Petroleum Geoscience, 6(1): 37-45.
    連結:
  33. Heynekamp, M.R., Goodwin, L.B., Mozley, P.S. and Haneberg, W.C., 1999. Controls on Fault‐Zone Architecture in Poorly Lithified Sediments, Rio Grande Rift, New Mexico: Implications for Fault‐Zone Permeability and Fluid Flow. Faults and subsurface fluid flow in the shallow crust: 27-49.
    連結:
  34. Hill, R., 1989. Analysis of deformation bands in the Aztec Sandstone. Valley of Fire State Park, Nevada [MS thesis]: Las Vegas, University of Nevada, 1.
    連結:
  35. Holcomb, D., Rudnicki, J.W., Issen, K.A. and Sternlof, K., 2007. Compaction localization in the Earth and the laboratory: state of the research and research directions. Acta Geotechnica, 2(1): 1-15.
    連結:
  36. Issen, K.A., 2002. The influence of constitutive models on localization conditions for porous rock. Engineering Fracture Mechanics, 69(17): 1891-1906.
    連結:
  37. Jamison, W.R. and Stearns, D.W., 1982. Tectonic deformation of Wingate Sandstone, Colorado National Monument. AAPG Bulletin, 66(12): 2584-2608.
    連結:
  38. Jeng, F.-S., Weng, M.-C., Lin, M. and Huang, T., 2004. Influence of petrographic parameters on geotechnical properties of tertiary sandstones from Taiwan. Engineering Geology, 73(1): 71-91.
    連結:
  39. Johansen, T.E.S. and Fossen, H., 2008. Internal geometry of fault damage zones in interbedded siliciclastic sediments. Geological Society, London, Special Publications, 299(1): 35-56.
    連結:
  40. Khan, A.S., Xiang, Y. and Huang, S., 1991. Behavior of Berea sandstone under confining pressure part I: yield and failure surfaces, and nonlinear elastic response. International journal of plasticity, 7(6): 607-624.
    連結:
  41. Knipe, R., Fisher, Q., Jones, G., Clennell, M., Farmer, A., Harrison, A., Kidd, B., McAllister, E., Porter, J. and White, E., 1997. Fault seal analysis: successful methodologies, application and future directions. Norwegian Petroleum Society Special Publications, 7: 15-38.
    連結:
  42. Kong, M., Bhattacharya, R.N., James, C. and Basu, A., 2005. A statistical approach to estimate the 3D size distribution of spheres from 2D size distributions. Geological Society of America Bulletin, 117(1-2): 244-249.
    連結:
  43. Lai, Y.-M., Song, S.-R., Lo, C.-H., Lin, T.-H., Chu, M.-F. and Chung, S.-L., 2017. Age, geochemical and isotopic variations in volcanic rocks from the Coastal Range of Taiwan: Implications for magma generation in the Northern Luzon Arc. Lithos, 272: 92-115.
    連結:
  44. Lee, T.-Q., Kissel, C., Barrier, E., Laj, C. and Chi, W.-R., 1991. Paleomagnetic evidence for a diachronic clockwise rotation of the Coastal Range, eastern Taiwan. Earth and Planetary Science Letters, 104(2-4): 245-257.
    連結:
  45. Leveille, G.P., Knipe, R., More, C., Ellis, D., Dudley, G., Jones, G., Fisher, Q.J. and Allinson, G., 1997. Compartmentalization of Rotliegendes gas reservoirs by sealing faults, Jupiter Fields area, southern North Sea. Geological Society, London, Special Publications, 123(1): 87-104.
    連結:
  46. Lin, M.-L., Jeng, F., Tsai, L. and Huang, T., 2005. Wetting weakening of tertiary sandstones—microscopic mechanism. Environmental Geology, 48(2): 265-275.
    連結:
  47. Lothe, A., Gabrielsen, R., Hagen, N.B. and Larsen, B., 2002. An experimental study of the texture of deformation bands: effects on the porosity and permeability of sandstones. Petroleum Geoscience, 8(3): 195-207.
    連結:
  48. Mair, K., Frye, K.M. and Marone, C., 2002. Influence of grain characteristics on the friction of granular shear zones. Journal of Geophysical Research: Solid Earth, 107(B10).
    連結:
  49. Martin, W.D., Putman, B.J. and Kaye, N.B., 2013. Using image analysis to measure the porosity distribution of a porous pavement. Construction and Building Materials, 48: 210-217.
    連結:
  50. Mollema, P. and Antonellini, M., 1996. Compaction bands: a structural analog for anti-mode I cracks in aeolian sandstone. Tectonophysics, 267(1): 209-228.
    連結:
  51. Okubo, C.H. and Schultz, R.A., 2006. Near-tip stress rotation and the development of deformation band stepover geometries in mode II. Geological Society of America Bulletin, 118(3-4): 343-348.
    連結:
  52. Olsson, W.A., 1999. Theoretical and experimental investigation of compaction bands in porous rock. Journal of Geophysical Research: Solid Earth, 104(B4): 7219-7228.
    連結:
  53. Olsson, W.A., 2000. Origin of Lüders' bands in deformed rock. Journal of Geophysical Research: Solid Earth, 105(B3): 5931-5938.
    連結:
  54. Olsson, W.A., 2001. Quasistatic propagation of compaction fronts in porous rock. Mechanics of Materials, 33(11): 659-668.
    連結:
  55. Parnell, J., Watt, G.R., Middleton, D., Kelly, J. and Baron, M., 2004. Deformation band control on hydrocarbon migration. Journal of Sedimentary Research, 74(4): 552-560.
    連結:
  56. Paterson, M.S. and Wong, T.-f., 2005. Experimental rock deformation-the brittle field. Springer Science & Business Media.
    連結:
  57. Pittman, E.D., 1981. Effect of fault-related granulation on porosity and permeability of quartz sandstones, Simpson Group (Ordovician), Oklahoma. AAPG Bulletin, 65(11): 2381-2387.
    連結:
  58. Pollard, D.D. and Aydin, A., 1988. Progress in understanding jointing over the past century. Geological Society of America Bulletin, 100(8): 1181-1204.
    連結:
  59. Rawling, G.C. and Goodwin, L.B., 2003. Cataclasis and particulate flow in faulted, poorly lithified sediments. Journal of Structural Geology, 25(3): 317-331.
    連結:
  60. Rotevatn, A., Torabi, A., Fossen, H. and Braathen, A., 2008. Slipped deformation bands: A new type of cataclastic deformation bands in Western Sinai, Suez rift, Egypt. Journal of Structural Geology, 30(11): 1317-1331.
    連結:
  61. Rotevatn, A., Tveranger, J., Howell, J.A. and Fossen, H., 2009. Dynamic investigation of the effect of a relay ramp on simulated fluid flow: geocellular modelling of the Delicate Arch Ramp, Utah. Petroleum Geoscience, 15(1): 45-58.
    連結:
  62. Ru, K. and Piggot, J.D., 1986. Episodic rifting and subsidence in the South China Sea. AAPG Bull., 70: 1136-1155.
    連結:
  63. Sample, J.C., Woods, S., Bender, E. and Loveall, M., 2006. Relationship between deformation bands and petroleum migration in an exhumed reservoir rock, Los Angeles Basin, California, USA. Geofluids, 6(2): 105-112.
    連結:
  64. Schultz, R. and Siddharthan, R., 2005. A general framework for the occurrence and faulting of deformation bands in porous granular rocks. Tectonophysics, 411(1): 1-18.
    連結:
  65. Schultz, R.A., 2009. Scaling and paleodepth of compaction bands, Nevada and Utah. Journal of Geophysical Research: Solid Earth, 114(B3).
    連結:
  66. Schultz, R.A., Okubo, C.H. and Fossen, H., 2010. Porosity and grain size controls on compaction band formation in Jurassic Navajo Sandstone. Geophysical Research Letters, 37(22): n/a-n/a.
    連結:
  67. Seno, T., 1977. The instantaneous rotation vector of the Philippine Sea plate relative to the Eurasian plate. Tectonophysics, 42(2-4): 209-226.
    連結:
  68. Shipton, Z., Evans, J. and Thompson, L., 2005. The geometry and thickness of deformation-band fault core and its influence on sealing characteristics of deformation-band fault zones.
    連結:
  69. Shipton, Z.K., Evans, J.P., Robeson, K.R., Forster, C.B. and Snelgrove, S., 2002. Structural heterogeneity and permeability in faulted eolian sandstone: Implications for subsurface modeling of faults. AAPG bulletin, 86(5): 863-883.
    連結:
  70. Soliva, R., Schultz, R.A., Ballas, G., Taboada, A., Wibberley, C., Saillet, E. and Benedicto, A., 2013. A model of strain localization in porous sandstone as a function of tectonic setting, burial and material properties; new insight from Provence (southern France). Journal of Structural Geology, 49: 50-63.
    連結:
  71. Song, S.-R. and Lo, H.-J., 2002. Lithofacies of volcanic rocks in the central Coastal Range, eastern Taiwan: implications for island arc evolution. Journal of Asian Earth Sciences, 21(1): 23-38.
    連結:
  72. Sternlof, K.R., Rudnicki, J.W. and Pollard, D.D., 2005. Anticrack inclusion model for compaction bands in sandstone. Journal of Geophysical Research: Solid Earth, 110(B11).
    連結:
  73. Taylor, W. and Pollard, D.D., 2000. Estimation of in situ permeability of deformation bands in porous sandstone, Valley of Fire, Nevada. Water Resources Research, 36(9): 2595-2606.
    連結:
  74. Teng, L., S., 1990a. Tectonic evolution of late Cenozoic arc-continent collision in Taiwan. AAPG Bulletin, 74: 1004-1005.
    連結:
  75. Teng, L.S., 1990b. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183: 57-77.
    連結:
  76. Wang, P. and Chen, S., 2015. Cretaceous volcanic reservoirs and their exploration in the Songliao Basin, northeast China. AAPG Bulletin, 99(3): 499-523.
    連結:
  77. Wilson, J.E., Goodwin, L.B. and Lewis, C.J., 2003. Deformation bands in nonwelded ignimbrites: Petrophysical controls on fault-zone deformation and evidence of preferential fluid flow. Geology, 31(10): 837-840.
    連結:
  78. Wong, T.-f. and Baud, P., 2012. The brittle-ductile transition in porous rock: A review. Journal of Structural Geology, 44: 25-53.
    連結:
  79. Wong, T.-f., David, C. and Zhu, W., 1997. The transition from brittle faulting to cataclastic flow in porous sandstones: Mechanical deformation. Journal of Geophysical Research: Solid Earth, 102(B2): 3009-3025.
    連結:
  80. Wong, T.-f., Szeto, H. and Zhang, J., 1992. Effect of loading path and porosity on the failure mode of porous rocks. Appl. Mech. Rev, 45(8): 281-293.
    連結:
  81. Zhang, J., Wong, T.-F. and Davis, D.M., 1990. Micromechanics of pressure-induced grain crushing in porous rocks. Journal of Geophysical Research, 95(B1): 341.
    連結:
  82. Zhu, W. and Wong, T.-f., 1997. The transition from brittle faulting to cataclastic flow: Permeability evolution. Journal of Geophysical Research: Solid Earth, 102(B2): 3027-3041.
    連結:
  83. 林詩婷,2015。台灣東部石梯坪地區變形條帶之研究;Study of deformation bands in Shihtiping, eastern Taiwan,國立中央大學。
    連結:
  84. Chen, W.S. and Wang, Y., 1988. Development of deep-sea fan systems in Coastal Range basin, eastern Taiwan. Acta Geologica Taiwanica 26: 37-66.
  85. Fossen, H., Schultz, R.A., Shipton, Z.K. and Mair, K., 2007. Deformation bands in sandstone: a review. Journal of the Geological Society, 164(4): 755-769.
  86. Gabrielsen, R. and Koestler, A.G., 1987. Description and structural implications of fractures in late Jurassic sandstones of the Troll Field, northern North Sea. Norsk Geologisk Tidsskrift, 67(4): 371-381.
  87. Guéguen, Y. and Fortin, J., 2005. Mécanique des roches en géologie: des processus microscopiques au comportement macroscopique, Colloque “Microstructure et Propriétés des Matériaux”. ENPC.
  88. Huang, C.-Y., Yuan, P., B. and Teng, L., S., 1988. Paleontology of the Kangkou Limestone in the middle Coastal Range, eastern Taiwan. Acta Geologica Taiwanica: 133-160.
  89. Knipe, R., 1992. Faulting processes and fault seal. Structural and tectonic modelling and its application to petroleum geology: 325-342.
  90. Lu, C.Y. and Hsu, K.J., 1992. Tectonic evolution of the Taiwan Mountain Belt. Petroleum Geology of Taiwan, 27: 21-46.
  91. Lu, C.Y., K.J.Chang, J.Malavieille, Y.C.Chan, C.P.Chan, C.P.Chang and J.C.Lee, 2001. Structural Evolution of the Southeastern Central Range. WESTERN PACIFIC EARTH SCIENCES, 1(2): 213-226.
  92. Song, S.-R. and Lo, H.-J., 1987. Volcanic rocks of the coastal range of Taiwan as the products of submarine eruption: the evidence from Loho area. Yánjiū bàogào-Guólì Táiwān dàxué. Lǐxuéyuàn dìzhìxué xì(25): 97-109.
  93. Teng, L.S., 1987. Stratigraphic records of the late Cenozoic Penglai Orogeny of Taiwan. Acta Geologica Taiwanica, 25: 205-224.
  94. 宋聖榮,1990。臺灣東部海岸山脈中段火山岩研究與北呂宋火山島弧的演變,國立臺灣大學地質科學研究所博士論文,共 257 頁。