题名

水氧化催化劑之合成與應用

并列篇名

Synthesis and application of water oxidation catalysts

DOI

10.6342/NTU201704193

作者

童敬維

关键词

水分解 ; 人工光合作用 ; 產氧反應 ; water splitting ; oxygen evolution reaction ; artificial photosynthesis

期刊名称

國立臺灣大學化學系學位論文

卷期/出版年月

2017年

学位类别

博士

导师

陳浩銘

内容语文

英文

中文摘要

本研究著重於人工光合作用材料之合成及與實驗設計,並利用同步輻射X光光源技術對催化劑在進行水分解同時臨場檢測分析,深入了解其反應機制,並加以改良合成之策略,提升催化效能及穩定性,量測條件及材料皆以符合綠色能源的原則下設計。 研究材料的方向分為三個部分,金屬氧化物、有機金屬分子及微米結構吸光材料。相較於有機金屬分子,金屬氧化物在嚴苛的催化環境下有較高的穩定性並較為廣泛應用在電催化系統。我們發展出具有表面活性緩衝層之單晶奈米粒子催化劑,此結構在反覆的氧化還原過程中並不會對其主體造成影響,因此大大提升催化過程中的穩定性,且經過一千小時的連續產氧反應後,其活性僅衰退5個百分比。另一方面,我們發展出具有微米級方格孔洞的導電玻璃,有助於有機金屬分子在高電壓及強鹼的電催環境下進行產氧反應,並藉由臨場X光吸收分析技術觀測其金屬中心的結構變化,而目前結果顯示對於不同配位基組成的有機金屬分子,其反應過程的活性物種有明顯的不同。吸光材料的部分,本實驗室成功合成出微米柱體結構的矽晶圓面板,利用電沉積技術在矽基板表面製備出鎳奈米粒子,且在光催水氧化系統下具有高活性及穩定性。

英文摘要

Our research has focused on the newly developed strategy to improve the activity and stability of artificial photosynthesis materials. The in situ synchrotron X-ray techniques provides a powerful method to the investigation of the truly active species of catalysts during water splitting and can be applied in studying both homogeneous and heterogeneous system. To achieve practical use of large scale renewable energy, abundant and low cost first-low transition metal for water splitting are required. At First, we reported a single-crystal Co3O4 nanocube underlay with an adapting thin CoO layer result in a high-stability electrocatalyst in oxygen evolution reaction. An in-situ X-ray diffraction method is developed to observe the formation of active metal oxyhydroxide phase, and further revealed that CoO thin layer could protect underlay electrocatalyst through reversible transformation to active phase. In the other hand, we also investigated an in-situ X-ray absorption method provide an information of the real active species in the formation from various ligand-based iron complexes during electrocatalysis water oxidation. Third, Ni-dispersed on silicon microwire photoanode by electrodeposition was successfully fabricated, and performed high activity and stability for PEC test.

主题分类 基礎與應用科學 > 化學
理學院 > 化學系
参考文献
  1. Ruijven, B. J.; He, M.; Strand, W. G., Impact of solar panels on global climate. Nature
    連結:
  2. 2. Ashford, D. L.; Gish, M. K.; Vannucci, A. K.; Brennaman, M. K.; Templeton, J. L.; Papanikolas, J. M.; Meyer, T. J., Molecular Chromophore–Catalyst Assemblies for Solar Fuel Applications. Chemical Reviews 2015, 115 (23), 13006-13049.
    連結:
  3. 3. Zhang, Y.-L.; Cao, F., Fine particulate matter (PM2.5) in China at a city level. Scientific Reports 2015, 5, 14884.
    連結:
  4. 4. Yang, Y.; Christakos, G.; Huang, W.; Lin, C.; Fu, P.; Mei, Y., Uncertainty assessment of PM2.5 contamination mapping using spatiotemporal sequential indicator simulations and multi-temporal monitoring data. Scientific Reports 2016, 6, 24335.
    連結:
  5. 5. Hunter, B. M.; Gray, H. B.; Müller, A. M., Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chemical Reviews 2016, 116 (22), 14120-14136.
    連結:
  6. 6. Wickramasinghe, L. D.; Zhou, R.; Zong, R.; Vo, P.; Gagnon, K. J.; Thummel, R. P., Iron Complexes of Square Planar Tetradentate Polypyridyl-Type Ligands as Catalysts for Water Oxidation. Journal of the American Chemical Society 2015, 137 (41), 13260-13263.
    連結:
  7. 8. Fujishima, A.; Honda, K., Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238 (5358), 37-38.
    連結:
  8. 9. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38 (1), 253-278.
    連結:
  9. 10. Ran, J.; Zhang, J.; Yu, J.; Jaroniec, M.; Qiao, S. Z., Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chemical Society Reviews 2014, 43 (22), 7787-7812.
    連結:
  10. 11. Lewis, N. S., Chemical Control of Charge Transfer and Recombination at Semiconductor Photoelectrode Surfaces. Inorganic Chemistry 2005, 44 (20), 6900-6911.
    連結:
  11. 12. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 2014, 43 (22), 7520-7535.
    連結:
  12. 13. Etacheri, V.; Seery, M. K.; Hinder, S. J.; Pillai, S. C., Nanostructured Ti1-xSxO2-yNy Heterojunctions for Efficient Visible-Light-Induced Photocatalysis. Inorganic Chemistry 2012, 51 (13), 7164-7173.
    連結:
  13. 14. Yang, D.; Liu, H.; Zheng, Z.; Yuan, Y.; Zhao, J.-c.; Waclawik, E. R.; Ke, X.; Zhu, H., An Efficient Photocatalyst Structure: TiO2(B) Nanofibers with a Shell of Anatase Nanocrystals. Journal of the American Chemical Society 2009, 131 (49), 17885-17893.
    連結:
  14. 15. Chen, H. M.; Chen, C. K.; Chang, Y.-C.; Tsai, C.-W.; Liu, R.-S.; Hu, S.-F.; Chang, W.-S.; Chen, K.-H., Quantum Dot Monolayer Sensitized ZnO Nanowire-Array Photoelectrodes: True Efficiency for Water Splitting. Angewandte Chemie International Edition 2010, 49 (34), 5966-5969.
    連結:
  15. 16. Chen, H. M.; Chen, C. K.; Tseng, M. L.; Wu, P. C.; Chang, C. M.; Cheng, L.-C.; Huang, H. W.; Chan, T. S.; Huang, D.-W.; Liu, R.-S.; Tsai, D. P., Plasmonic ZnO/Ag Embedded Structures as Collecting Layers for Photogenerating Electrons in Solar Hydrogen Generation Photoelectrodes. Small 2013, 9 (17), 2926-2936.
    連結:
  16. 17. Wang, Z.; Han, J.; Li, Z.; Li, M.; Wang, H.; Zong, X.; Li, C., Moisture-Assisted Preparation of Compact GaN:ZnO Photoanode Toward Efficient Photoelectrochemical Water Oxidation. Advanced Energy Materials 2016, 6 (20), 1600864-n/a.
    連結:
  17. 18. Giocondi, J. L.; Rohrer, G. S., Structure Se nsitivity of Photochemical Oxidation and Reduction Reactions on SrTiO3 Surfaces. Journal of the American Ceramic Society 2003, 86 (7), 1182-1189.
    連結:
  18. 19. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y., Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations. Chemical Society Reviews 2015, 44 (10), 2893-2939.
    連結:
  19. 20. Butler, M. A.; Nasby, R. D.; Quinn, R. K., Tungsten trioxide as an electrode for photoelectrolysis of water. Solid State Communications 1976, 19 (10), 1011-1014.
    連結:
  20. 21. Berak, J. M.; Sienko, M. J., Effect of oxygen-deficiency on electrical transport properties of tungsten trioxide crystals. Journal of Solid State Chemistry 1970, 2 (1), 109-133.
    連結:
  21. 23.Sivula, K.; Le Formal, F.; Grätzel, M., Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem 2011, 4 (4), 432-449.
    連結:
  22. 24. Liu, B.; Aydil, E. S., Growth of Oriented Single-Crystalline Rutile TiO2 Nanorods on Transparent Conducting Substrates for Dye-Sensitized Solar Cells. Journal of the American Chemical Society 2009, 131 (11), 3985-3990.
    連結:
  23. 25. Stodolny, M.; Laniecki, M., Synthesis and characterization of mesoporous Ta2O5–TiO2 photocatalysts for water splitting. Catalysis Today 2009, 142 (3–4), 314-319.
    連結:
  24. 26.Zhen, C.; Chen, R.; Wang, L.; Liu, G.; Cheng, H.-M., Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation. Journal of Materials Chemistry A 2016, 4 (8), 2783-2800.
    連結:
  25. 27. Iwashina, K.; Kudo, A., Rh-Doped SrTiO3 Photocatalyst Electrode Showing Cathodic Photocurrent for Water Splitting under Visible-Light Irradiation. Journal of the American Chemical Society 2011, 133 (34), 13272-13275.
    連結:
  26. 28. Hu, W.; Li, L.; Li, G.; Tang, C.; Sun, L., High-Quality Brookite TiO2 Flowers: Synthesis, Characterization, and Dielectric Performance. Crystal Growth & Design 2009, 9 (8), 3676-3682.
    連結:
  27. 29. Ma, Y.; Wang, X.; Jia, Y.; Chen, X.; Han, H.; Li, C., Titanium Dioxide-Based Nanomaterials for Photocatalytic Fuel Generations. Chemical Reviews 2014, 114 (19), 9987-10043.
    連結:
  28. 30. Kim, T. W.; Choi, K.-S., Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343 (6174), 990-994.
    連結:
  29. 31. Kuang, Y.; Jia, Q.; Nishiyama, H.; Yamada, T.; Kudo, A.; Domen, K., A Front-Illuminated Nanostructured Transparent BiVO4 Photoanode for >2% Efficient Water Splitting. Advanced Energy Materials 2016, 6 (2), 1501645-n/a.
    連結:
  30. 32. Shi, X.; Choi, I. Y.; Zhang, K.; Kwon, J.; Kim, D. Y.; Lee, J. K.; Oh, S. H.; Kim, J. K.; Park, J. H., Efficient photoelectrochemical hydrogen production from bismuth vanadate-decorated tungsten trioxide helix nanostructures. Nature Communications 2014, 5, 4775.
    連結:
  31. 33. Zhao, J.; Guo, Y.; Cai, L.; Li, H.; Wang, K. X.; Cho, I. S.; Lee, C. H.; Fan, S.; Zheng, X., High-Performance Ultrathin BiVO4 Photoanode on Textured Polydimethylsiloxane Substrates for Solar Water Splitting. ACS Energy Letters 2016, 1 (1), 68-75.
    連結:
  32. 34. Seabold, J. A.; Choi, K.-S., Efficient and Stable Photo-Oxidation of Water by a Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen Evolution Catalyst. Journal of the American Chemical Society 2012, 134 (4), 2186-2192.
    連結:
  33. 35. Zhong, D. K.; Choi, S.; Gamelin, D. R., Near-Complete Suppression of Surface Recombination in Solar Photoelectrolysis by “Co-Pi” Catalyst-Modified W:BiVO4. Journal of the American Chemical Society 2011, 133 (45), 18370-18377.
    連結:
  34. 36. Cole, B.; Marsen, B.; Miller, E.; Yan, Y.; To, B.; Jones, K.; Al-Jassim, M., Evaluation of Nitrogen Doping of Tungsten Oxide for Photoelectrochemical Water Splitting. The Journal of Physical Chemistry C 2008, 112 (13), 5213-5220.
    連結:
  35. 37. Waller, M. R.; Townsend, T. K.; Zhao, J.; Sabio, E. M.; Chamousis, R. L.; Browning, N. D.; Osterloh, F. E., Single-Crystal Tungsten Oxide Nanosheets: Photochemical Water Oxidation in the Quantum Confinement Regime. Chemistry of Materials 2012, 24 (4), 698-704.
    連結:
  36. 38. Yao, T.; Chen, R.; Li, J.; Han, J.; Qin, W.; Wang, H.; Shi, J.; Fan, F.; Li, C., Manipulating the Interfacial Energetics of n-type Silicon Photoanode for Efficient Water Oxidation. Journal of the American Chemical Society 2016, 138 (41), 13664-13672.
    連結:
  37. 39. Chen, Y. W.; Prange, J. D.; Dühnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C., Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nature Materials 2011, 10 (7), 539-544.
    連結:
  38. 40. Hwang, Y. J.; Boukai, A.; Yang, P., High Density n-Si/n-TiO2 Core/Shell Nanowire Arrays with Enhanced Photoactivity. Nano Letters 2009, 9 (1), 410-415.
    連結:
  39. 41. Switzer, J. A., The n‐Silicon/Thallium(III) Oxide Heterojunction Photoelectrochemical Solar Cell. Journal of The Electrochemical Society 1986, 133 (4), 722-728.
    連結:
  40. 42. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P., Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. Science 2013, 340 (6128), 60-63.
    連結:
  41. 43. Sun, K.; Shen, S.; Liang, Y.; Burrows, P. E.; Mao, S. S.; Wang, D., Enabling Silicon for Solar-Fuel Production. Chemical Reviews 2014, 114 (17), 8662-8719.
    連結:
  42. 44. Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X., Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy & Environmental Science 2014, 7 (8), 2504-2517.
    連結:
  43. 45. Zhou, X.; Liu, R.; Sun, K.; Papadantonakis, K. M.; Brunschwig, B. S.; Lewis, N. S., 570 mV photovoltage, stabilized n-Si/CoOx heterojunction photoanodes fabricated using atomic layer deposition. Energy & Environmental Science 2016, 9 (3), 892-897.
    連結:
  44. 47. Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H., High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science 2013, 342 (6160), 836-840.
    連結:
  45. 48. Xi, Z.; Yang, D.; Que, D., Texturization of monocrystalline silicon with tribasic sodium phosphate. Solar Energy Materials and Solar Cells 2003, 77 (3), 255-263.
    連結:
  46. 50. Weisse, J. M.; Lee, C. H.; Kim, D. R.; Cai, L.; Rao, P. M.; Zheng, X., Electroassisted Transfer of Vertical Silicon Wire Arrays Using a Sacrificial Porous Silicon Layer. Nano Letters 2013, 13 (9), 4362-4368.
    連結:
  47. 52. Rossi, R. C.; Lewis, N. S., Investigation of the Size-Scaling Behavior of Spatially Nonuniform Barrier Height Contacts to Semiconductor Surfaces Using Ordered Nanometer-Scale Nickel Arrays on Silicon Electrodes. The Journal of Physical Chemistry B 2001, 105 (49), 12303-12318.
    連結:
  48. 53. Fabbri, E.; Habereder, A.; Waltar, K.; Kotz, R.; Schmidt, T. J., Developments and perspectives of oxide-based catalysts for the oxygen evolution reaction. Catalysis Science & Technology 2014, 4 (11), 3800-3821.
    連結:
  49. 54. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society 2015, 137 (13), 4347-4357.
    連結:
  50. 55. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society 2013, 135 (45), 16977-16987.
    連結:
  51. 56. Anantharaj, S.; Ede, S. R.; Sakthikumar, K.; Karthick, K.; Mishra, S.; Kundu, S., Recent Trends and Perspectives in Electrochemical Water Splitting with an Emphasis on Sulfide, Selenide, and Phosphide Catalysts of Fe, Co, and Ni: A Review. ACS Catalysis 2016, 6 (12), 8069-8097.
    連結:
  52. 58. Li, M.; Xiong, Y.; Liu, X.; Bo, X.; Zhang, Y.; Han, C.; Guo, L., Facile synthesis of electrospun MFe2O4 (M = Co, Ni, Cu, Mn) spinel nanofibers with excellent electrocatalytic properties for oxygen evolution and hydrogen peroxide reduction. Nanoscale 2015, 7 (19), 8920-8930.
    連結:
  53. 59. Hirai, S.; Yagi, S.; Seno, A.; Fujioka, M.; Ohno, T.; Matsuda, T., Enhancement of the oxygen evolution reaction in Mn3+-based electrocatalysts: correlation between Jahn-Teller distortion and catalytic activity. RSC Advances 2016, 6 (3), 2019-2023.
    連結:
  54. 60. Corrigan, D. A., The Catalysis of the Oxygen Evolution Reaction by Iron Impurities in Thin Film Nickel Oxide Electrodes. Journal of The Electrochemical Society 1987, 134 (2), 377-384.
    連結:
  55. 61. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W., Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society 2014, 136 (18), 6744-6753.
    連結:
  56. 62. Augustyn, V.; Manthiram, A., Effects of Chemical versus Electrochemical Delithiation on the Oxygen Evolution Reaction Activity of Nickel-Rich Layered LiMO2. The Journal of Physical Chemistry Letters 2015, 6 (19), 3787-3791.
    連結:
  57. 63. Duan, L.; Bozoglian, F.; Mandal, S.; Stewart, B.; Privalov, T.; Llobet, A.; Sun, L., A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nature Chemistry 2012, 4 (5), 418-423.
    連結:
  58. 64. Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W., Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23), 12974-13005.
    連結:
  59. 65. Kärkäs, M. D.; Verho, O.; Johnston, E. V.; Åkermark, B., Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24), 11863-12001.
    連結:
  60. 66. Wu, X.; Li, F.; Zhang, B.; Sun, L., Molecular complexes in water oxidation: Pre-catalysts or real catalysts. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2015, 25, 71-89.
    連結:
  61. 67. Asraf, M. A.; Younus, H. A.; Yusubov, M.; Verpoort, F., Earth-abundant metal complexes as catalysts for water oxidation; is it homogeneous or heterogeneous? Catalysis Science & Technology 2015, 5 (11), 4901-4925.
    連結:
  62. 68. Sheehan, S. W.; Thomsen, J. M.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W.; Schmuttenmaer, C. A., A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nature Communications 2015, 6, 6469.
    連結:
  63. 1. Wang, Z. L., Charazterization of Nanophase Materials. Wiley & Sons: New YorK, 2000.
    連結:
  64. 2. McMullan, D., SCANNING ELECTRON MICROSCOPY. New Jersey, 1993.
    連結:
  65. 3. Callister, Jr. W. D., Materials Science and Engineering and Information. Wiley & Sons: New York, 2003.
    連結:
  66. 4. Grant, J. T.; Briggs, D., Surface Analysis by Auger and X-ray Photoelectron Spectroscopy. IM publications: UK, 2003.
    連結:
  67. 6. Schiff, L. I., Quantum Mechanics. McGraw-Hill: New York, 1968.
    連結:
  68. 7. Andrew, E. R., Nuclear Magnetic Resonance. E. R. Andrew, Cambridge: UK, 2009.
    連結:
  69. 8. Grob, R. L., Barry, E. F.,. Modern Practice of Gas Chromatography (4th Ed.). Wiley & Sons.
    連結:
  70. 1. Dresselhaus, M. S.; Thomas, I. L., Alternative energy technologies. Nature 2001, 414 (6861), 332-337.
    連結:
  71. 2. Gasteiger, H. A.; Markovic, N. M., Just a Dream-or Future Reality? Science 2009, 324 (5923), 48-49.
    連結:
  72. 3. Lefevre, M.; Proietti, E.; Jaouen, F.; Dodelet, J.-P., Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science 2009, 324 (5923), 71-74.
    連結:
  73. 4. Hammarstrom, L.; Hammes-Schiffer, S., Artificial Photosynthesis and Solar Fuels. Accounts Chem Res 2009, 42 (12), 1859-1860.
    連結:
  74. 5. Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B., Efficient photochemical water splitting by a chemically modified n-TiO2 2. Science 2002, 297 (5590), 2243-2245.
    連結:
  75. 6. Nocera, D. G., The Artificial Leaf. Accounts Chem Res 2012, 45 (5), 767-776.
    連結:
  76. 7. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chem Soc Rev 2009, 38 (1), 253-278.
    連結:
  77. 8. Schlapbach, L.; Zuttel, A., Hydrogen-storage materials for mobile applications. Nature 2001, 414 (6861), 353-358.
    連結:
  78. 9. McAlpin, J. G.; Stich, T. A.; Casey, W. H.; Britt, R. D., Comparison of cobalt and manganese in the chemistry of water oxidation. Coordin Chem Rev 2012, 256 (21-22), 2445-2452.
    連結:
  79. 10. Suntivich, J.; May, K. J.; Gasteiger, H. A.; Goodenough, J. B.; Shao-Horn, Y., A Perovskite Oxide Optimized for Oxygen Evolution Catalysis from Molecular Orbital Principles. Science 2011, 334 (6061), 1383-1385.
    連結:
  80. 11. Yeo, B. S.; Bell, A. T., Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen. Journal of the American Chemical Society 2011, 133 (14), 5587-5593.
    連結:
  81. 12. Gorlin, Y.; Lassalle-Kaiser, B.; Benck, J. D.; Gul, S.; Webb, S. M.; Yachandra, V. K.; Yano, J.; Jaramillo, T. F., In Situ X-ray Absorption Spectroscopy Investigation of a Bifunctional Manganese Oxide Catalyst with High Activity for Electrochemical Water Oxidation and Oxygen Reduction. Journal of the American Chemical Society 2013, 135 (23), 8525-8534.
    連結:
  82. 13. Jiao, F.; Frei, H., Nanostructured Cobalt Oxide Clusters in Mesoporous Silica as Efficient Oxygen-Evolving Catalysts. Angew Chem Int Edit 2009, 48 (10), 1841-1844.
    連結:
  83. 14. Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H., High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science 2013, 342 (6160), 836-840.
    連結:
  84. 15. Chen, Y. W.; Prange, J. D.; Duehnen, S.; Park, Y.; Gunji, M.; Chidsey, C. E. D.; McIntyre, P. C., Atomic layer-deposited tunnel oxide stabilizes silicon photoanodes for water oxidation. Nature Materials 2011, 10 (7), 539-544.
    連結:
  85. 16. Smith, R. D. L.; Prévot, M. S.; Fagan, R. D.; Zhang, Z.; Sedach, P. A.; Siu, M. K. J.; Trudel, S.; Berlinguette, C. P., Photochemical Route for Accessing Amorphous Metal Oxide Materials for Water Oxidation Catalysis. Science 2013, 340 (6128), 60-63.
    連結:
  86. 17. Li, Y.; Hasin, P.; Wu, Y., NixCo3-xO4 Nanowire Arrays for Electrocatalytic Oxygen Evolution. Advance Materials 2010, 22 (17), 1926-+.
    連結:
  87. 18. Trotochaud, L.; Ranney, J. K.; Williams, K. N.; Boettcher, S. W., Solution-Cast Metal Oxide Thin Film Electrocatalysts for Oxygen Evolution. Journal of the American Chemical Society 2012, 134 (41), 17253-17261.
    連結:
  88. 19. McCrory, C. C. L.; Jung, S.; Peters, J. C.; Jaramillo, T. F., Benchmarking Heterogeneous Electrocatalysts for the Oxygen Evolution Reaction. Journal of the American Chemical Society 2013, 135 (45), 16977-16987.
    連結:
  89. 20. Smith, R. D. L.; Prevot, M. S.; Fagan, R. D.; Trudel, S.; Berlinguette, C. P., Water Oxidation Catalysis: Electrocatalytic Response to Metal Stoichiometry in Amorphous Metal Oxide Films Containing Iron, Cobalt, and Nickel. Journal of the American Chemical Society 2013, 135 (31), 11580-11586.
    連結:
  90. 21. Kanan, M. W.; Nocera, D. G., In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321 (5892), 1072-1075.
    連結:
  91. 22. Kanan, M. W.; Yano, J.; Surendranath, Y.; Dinca, M.; Yachandra, V. K.; Nocera, D. G., Structure and Valency of a Cobalt-Phosphate Water Oxidation Catalyst Determined by in Situ X-ray Spectroscopy. Journal of the American Chemical Society 2010, 132 (39), 13692-13701.
    連結:
  92. 23. Subbaraman, R.; Tripkovic, D.; Chang, K.-C.; Strmcnik, D.; Paulikas, A. P.; Hirunsit, P.; Chan, M.; Greeley, J.; Stamenkovic, V.; Markovic, N. M., Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nature Materials 2012, 11 (6), 550-557.
    連結:
  93. 24. Trotochaud, L.; Young, S. L.; Ranney, J. K.; Boettcher, S. W., Nickel–Iron Oxyhydroxide Oxygen-Evolution Electrocatalysts: The Role of Intentional and Incidental Iron Incorporation. Journal of the American Chemical Society 2014, 136 (18), 6744-6753.
    連結:
  94. 26. Yin, Q.; Tan, J. M.; Besson, C.; Geletii, Y. V.; Musaev, D. G.; Kuznetsov, A. E.; Luo, Z.; Hardcastle, K. I.; Hill, C. L., A Fast Soluble Carbon-Free Molecular Water Oxidation Catalyst Based on Abundant Metals. Science 2010, 328 (5976), 342-345.
    連結:
  95. 27. Hocking, R. K.; Brimblecombe, R.; Chang, L.-Y.; Singh, A.; Cheah, M. H.; Glover, C.; Casey, W. H.; Spiccia, L., Water-oxidation catalysis by manganese in a geochemical-like cycle. Nature Chemistry 2011, 3 (6), 461-466.
    連結:
  96. 28. Gao, M.-R.; Xu, Y.-F.; Jiang, J.; Zheng, Y.-R.; Yu, S.-H., Water Oxidation Electrocatalyzed by an Efficient Mn3O4/CoSe2 Nanocomposite. Journal of the American Chemical Society 2012, 134 (6), 2930-2933.
    連結:
  97. 29. Min-Rui Gao, X. C., Qiang Gao, Yun-Fei Xu, Ya-Rong Zheng, Jun Jiang, Shu-Hong Yu, Nitrogen-Doped Graphene Supported CoSe2 Nanobelt Composite Catalyst for Efficient Water Oxidation. Acs Nano 2014, 8 (4), 3970.
    連結:
  98. 30. Man, I. C.; Su, H.-Y.; Calle-Vallejo, F.; Hansen, H. A.; Martinez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Norskov, J. K.; Rossmeisl, J., Universality in Oxygen Evolution Electrocatalysis on Oxide Surfaces. Chemcatchem 2011, 3 (7), 1159-1165.
    連結:
  99. 31. Bajdich, M.; Garcia-Mota, M.; Vojvodic, A.; Norskov, J. K.; Bell, A. T., Theoretical Investigation of the Activity of Cobalt Oxides for the Electrochemical Oxidation of Water. Journal of the American Chemical Society 2013, 135 (36), 13521-13530.
    連結:
  100. 32. Zhang, M.; de Respinis, M.; Frei, H., Time-resolved observations of water oxidation intermediates on a cobalt oxide nanoparticle catalyst. Nature Chemistry 2014, 6 (4), 362-367.
    連結:
  101. 34. Hochbaum, A. I.; Yang, P. D., Semiconductor Nanowires for Energy Conversion. Chemical Review 2010, 110 (1), 527-546.
    連結:
  102. 35. Villanueva-Cab, J.; Jang, S. R.; Halverson, A. F.; Zhu, K.; Frank, A. J., Trap-Free Transport in Ordered and Disordered TiO2 Nanostructures. Nano Letters 2014, 14 (5), 2305-9.
    連結:
  103. 36. Wang, Z. L.; Yin, J. S.; Jiang, Y. D., EELS analysis of cation valence states and oxygen vacancies in magnetic oxides. Micron 2000, 31 (5), 571-580.
    連結:
  104. 37. Sun, Y.; Liu, C.; Grauer, D. C.; Yano, J.; Long, J. R.; Yang, P.; Chang, C. J., Electrodeposited Cobalt-Sulfide Catalyst for Electrochemical and Photoelectrochemical Hydrogen Generation from Water. Journal of the American Chemical Society 2013, 135 (47), 17699-17702.
    連結:
  105. 38. Stoerzinger, K. A.; Qiao, L.; Biegalski, M. D.; Shao-Horn, Y., Orientation-Dependent Oxygen Evolution Activities of Rutile IrO2 and RuO2. Journal of Physical Chemistry Letters 2014, 5 (10), 1636-1641.
    連結:
  106. 39. Matsumoto, Y.; Sato, E., Electrocatalytic properties of transition-metal oxides for oxygen evolution reaction. Materials Chemistry Physics 1986, 14 (5), 397-426.
    連結:
  107. 40. Esswein, A. J.; McMurdo, M. J.; Ross, P. N.; Bell, A. T.; Tilley, T. D., Size-Dependent Activity of Co3O4 Nanoparticle Anodes for Alkaline Water Electrolysis. Journal of Physical Chemistry Letters C 2009, 113 (33), 15068-15072.
    連結:
  108. 41. Lee, Y.; Suntivich, J.; May, K. J.; Perry, E. E.; Shao-Horn, Y., Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions. Journal of Physical Chemistry Letters 2012, 3 (3), 399-404.
    連結:
  109. 42. Luo, J.; Im, J. H.; Mayer, M. T.; Schreier, M.; Nazeeruddin, M. K.; Park, N. G.; Tilley, S. D.; Fan, H. J.; Gratzel, M., Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science 2014, 345 (6204), 1593-6.
    連結:
  110. 1. Blakemore, J. D.; Crabtree, R. H.; Brudvig, G. W., Molecular Catalysts for Water Oxidation. Chemical Reviews 2015, 115 (23), 12974-13005.
    連結:
  111. 2. Kärkäs, M. D.; Verho, O.; Johnston, E. V.; Åkermark, B., Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chemical Reviews 2014, 114 (24), 11863-12001.
    連結:
  112. 3. Sheehan, S. W.; Thomsen, J. M.; Hintermair, U.; Crabtree, R. H.; Brudvig, G. W.; Schmuttenmaer, C. A., A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nature Communications 2015, 6, 6469.
    連結:
  113. 5. Asraf, M. A.; Younus, H. A.; Yusubov, M.; Verpoort, F., Earth-abundant metal complexes as catalysts for water oxidation; is it homogeneous or heterogeneous? Catalysis Science & Technology 2015, 5 (11), 4901-4925.
    連結:
  114. 7. Ottenbacher, R. V.; Bryliakov, K. P.; Talsi, E. P., Nonheme Manganese-Catalyzed Asymmetric Oxidation. A Lewis Acid Activation versus Oxygen Rebound Mechanism: Evidence for the “Third Oxidant”. Inorganic Chemistry 2010, 49 (18), 8620-8628.
    連結:
  115. 8. Sheng, X.; Qiao, L.; Qin, Y.; Wang, X.; Wang, F., Highly efficient and quantitative synthesis of a cyclic carbonate by iron complex catalysts. Polyhedron 2014, 74, 129-133.
    連結:
  116. 9. Pandiyan, T.; Guadalupe, H. J.; Cruz, J.; Bernès, S.; Ugalde-Salvdivar, V. M.; González, I., DFT and Experimental Studies of Perchlorate Ion Coordination in cis/trans-Copper(II) Complexes of Tetradentate Pyridyl Ligands. European Journal of Inorganic Chemistry 2008, 2008 (21), 3274-3285.
    連結:
  117. 10. Kumar, A.; Kumar, P.; Joshi, C.; Ponnada, S.; Pathak, A. K.; Ali, A.; Sreedhar, B.; Jain, S. L., A [Fe(bpy)3]2+ grafted graphitic carbon nitride hybrid for visible light assisted oxidative coupling of benzylamines under mild reaction conditions. Green Chemistry 2016, 18 (8), 2514-2521.
    連結:
  118. 11. Munzert, S. M.; Schwarz, G.; Kurth, D. G., Kinetic Studies of the Coordination of Mono- and Ditopic Ligands with First Row Transition Metal Ions. Inorganic Chemistry 2016, 55 (5), 2565-2573.
    連結:
  119. 1. Gust, D.; Moore, T. A.; Moore, A. L., Solar Fuels via Artificial Photosynthesis. Accounts of Chemical Research 2009, 42 (12), 1890-1898.
    連結:
  120. 2. Lewis, N. S., Research opportunities to advance solar energy utilization. Science 2016, 351 (6271).
    連結:
  121. 4. Chen, H. M.; Chen, C. K.; Liu, R.-S.; Zhang, L.; Zhang, J.; Wilkinson, D. P., Nano-architecture and material designs for water splitting photoelectrodes. Chemical Society Reviews 2012, 41 (17), 5654-5671.
    連結:
  122. 5. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 2014, 43 (22), 7520-7535.
    連結:
  123. 6. Lin, S.-C.; Hsu, C.-S.; Chiu, S.-Y.; Liao, T.-Y.; Chen, H. M., Edgeless Ag–Pt Bimetallic Nanocages: In Situ Monitor Plasmon-Induced Suppression of Hydrogen Peroxide Formation. Journal of the American Chemical Society 2017, 139 (6), 2224-2233.
    連結:
  124. 7. Suen, N.-T.; Hung, S.-F.; Quan, Q.; Zhang, N.; Xu, Y.-J.; Chen, H. M., Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives. Chemical Society Reviews 2017, 46 (2), 337-365.
    連結:
  125. 8. McCrory, C. C. L.; Jung, S.; Ferrer, I. M.; Chatman, S. M.; Peters, J. C.; Jaramillo, T. F., Benchmarking Hydrogen Evolving Reaction and Oxygen Evolving Reaction Electrocatalysts for Solar Water Splitting Devices. Journal of the American Chemical Society 2015, 137 (13), 4347-4357.
    連結:
  126. 9. Hsu, C.-S.; Suen, N.-T.; Hsu, Y.-Y.; Lin, H.-Y.; Tung, C.-W.; Liao, Y.-F.; Chan, T.-S.; Sheu, H.-S.; Chen, S.-Y.; Chen, H. M., Valence- and element-dependent water oxidation behaviors: in situ X-ray diffraction, absorption and electrochemical impedance spectroscopies. Physical Chemistry Chemical Physics 2017, 19 (13), 8681-8693.
    連結:
  127. 10. Yu, Y.; Zhang, Z.; Yin, X.; Kvit, A.; Liao, Q.; Kang, Z.; Yan, X.; Zhang, Y.; Wang, X., Enhanced photoelectrochemical efficiency and stability using a conformal TiO2 film on a black silicon photoanode. 2017, 2, 17045.
    連結:
  128. 11. Tung, C.-W.; Hsu, Y.-Y.; Shen, Y.-P.; Zheng, Y.; Chan, T.-S.; Sheu, H.-S.; Cheng, Y.-C.; Chen, H. M., Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution. 2015, 6, 8106.
    連結:
  129. 12. Wang, H.-Y.; Hung, S.-F.; Chen, H.-Y.; Chan, T.-S.; Chen, H. M.; Liu, B., In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. Journal of the American Chemical Society 2016, 138 (1), 36-39.
    連結:
  130. 14. Schneider, J.; Matsuoka, M.; Takeuchi, M.; Zhang, J.; Horiuchi, Y.; Anpo, M.; Bahnemann, D. W., Understanding TiO2 Photocatalysis: Mechanisms and Materials. Chemical Reviews 2014, 114 (19), 9919-9986.
    連結:
  131. 15. Wilhelm, S. M.; Yun, K. S.; Ballenger, L. W.; Hackerman, N., Semiconductor Properties of Iron Oxide Electrodes. Journal of The Electrochemical Society 1979, 126 (3), 419-424.
    連結:
  132. 16. Jang, J.-W.; Du, C.; Ye, Y.; Lin, Y.; Yao, X.; Thorne, J.; Liu, E.; McMahon, G.; Zhu, J.; Javey, A.; Guo, J.; Wang, D., Enabling unassisted solar water splitting by iron oxide and silicon. 2015, 6, 7447.
    連結:
  133. 17. Hong, S. J.; Lee, S.; Jang, J. S.; Lee, J. S., Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy & Environmental Science 2011, 4 (5), 1781-1787.
    連結:
  134. 18. Kim, T. W.; Choi, K.-S., Nanoporous BiVO4 Photoanodes with Dual-Layer Oxygen Evolution Catalysts for Solar Water Splitting. Science 2014, 343 (6174), 990-994.
    連結:
  135. 19. Hale, G. M.; Querry, M. R., Optical Constants of Water in the 200-nm to 200-μm Wavelength Region. Appl. Opt. 1973, 12 (3), 555-563.
    連結:
  136. 20. Reece, S. Y.; Hamel, J. A.; Sung, K.; Jarvi, T. D.; Esswein, A. J.; Pijpers, J. J. H.; Nocera, D. G., Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts. Science 2011, 334 (6056), 645-648.
    連結:
  137. 21. Sun, K.; Shen, S.; Liang, Y.; Burrows, P. E.; Mao, S. S.; Wang, D., Enabling Silicon for Solar-Fuel Production. Chemical Reviews 2014, 114 (17), 8662-8719.
    連結:
  138. 22. Liu, R.; Zheng, Z.; Spurgeon, J.; Yang, X., Enhanced photoelectrochemical water-splitting performance of semiconductors by surface passivation layers. Energy & Environmental Science 2014, 7 (8), 2504-2517.
    連結:
  139. 23. Kenney, M. J.; Gong, M.; Li, Y.; Wu, J. Z.; Feng, J.; Lanza, M.; Dai, H., High-Performance Silicon Photoanodes Passivated with Ultrathin Nickel Films for Water Oxidation. Science 2013, 342 (6160), 836-840.
    連結:
  140. 24. Yu, X.; Yang, P.; Chen, S.; Zhang, M.; Shi, G., NiFe Alloy Protected Silicon Photoanode for Efficient Water Splitting. Advanced Energy Materials 2017, 7 (6), 1601805-n/a.
    連結:
  141. 25. Laskowski, F. A. L.; Nellist, M. R.; Venkatkarthick, R.; Boettcher, S. W., Junction behavior of n-Si photoanodes protected by thin Ni elucidated from dual working electrode photoelectrochemistry. Energy & Environmental Science 2017, 10 (2), 570-579.
    連結:
  142. 26. Scheuermann, A. G.; Lawrence, J. P.; Kemp, K. W.; Ito, T.; Walsh, A.; Chidsey, C. E. D.; Hurley, P. K.; McIntyre, P. C., Design principles for maximizing photovoltage in metal-oxide-protected water-splitting photoanodes. Nature Materials 2016, 15 (1), 99-105.
    連結:
  143. 27. O’Connor, R.; Bogan, J.; Fleck, N.; McCoy, A.; Walsh, L. A.; Byrne, C.; Casey, P.; Hughes, G., Growth and characterization of thin manganese oxide corrosion barrier layers for silicon photoanode protection during water oxidation. Solar Energy Materials and Solar Cells 2015, 136, 64-69.
    連結:
  144. 29. Hu, S.; Shaner, M. R.; Beardslee, J. A.; Lichterman, M.; Brunschwig, B. S.; Lewis, N. S., Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 2014, 344 (6187), 1005-1009.
    連結:
  145. 30. Hill, J. C.; Landers, A. T.; Switzer, J. A., An electrodeposited inhomogeneous metal-insulator-semiconductor junction for efficient photoelectrochemical water oxidation. Nature Materials 2015, 14 (11), 1150-1155.
    連結:
  146. 31. Kim, H. J.; Kearney, K. L.; Le, L. H.; Pekarek, R. T.; Rose, M. J., Platinum-Enhanced Electron Transfer and Surface Passivation through Ultrathin Film Aluminum Oxide (Al2O3) on Si(111)–CH3 Photoelectrodes. ACS Applied Materials & Interfaces 2015, 7 (16), 8572-8584.
    連結:
  147. 32. Lin, F.; Boettcher, S. W., Adaptive semiconductor/electrocatalyst junctions in water-splitting photoanodes. Nature Materials 2014, 13 (1), 81-86.
    連結:
  148. 34. Cai, Q.; Hong, W.; Jian, C.; Li, J.; Liu, W., Impact of Silicon Resistivity on the Performance of Silicon Photoanode for Efficient Water Oxidation Reaction. ACS Catalysis 2017, 7 (5), 3277-3283.
    連結:
  149. 35. Yang, J.; Cooper, J. K.; Toma, F. M.; Walczak, K. A.; Favaro, M.; Beeman, J. W.; Hess, L. H.; Wang, C.; Zhu, C.; Gul, S.; Yano, J.; Kisielowski, C.; Schwartzberg, A.; Sharp, I. D., A multifunctional biphasic water splitting catalyst tailored for integration with high-performance semiconductor photoanodes. Nature Materials 2017, 16 (3), 335-341.
    連結:
  150. 36. Loget, G.; Fabre, B.; Fryars, S.; Mériadec, C.; Ababou-Girard, S., Dispersed Ni Nanoparticles Stabilize Silicon Photoanodes for Efficient and Inexpensive Sunlight-Assisted Water Oxidation. ACS Energy Letters 2017, 2 (3), 569-573.
    連結:
  151. 37. Xu, G.; Xu, Z.; Shi, Z.; Pei, L.; Yan, S.; Gu, Z.; Zou, Z., Silicon Photoanodes Partially Covered by Ni@Ni(OH)2 Core–Shell Particles for Photoelectrochemical Water Oxidation. ChemSusChem 2017, 10 (14), 2897-2903.
    連結:
  152. 38. Seung Wook, R.; Jaehong, Y.; Hyoung-Seok, M.; Bonggeun, S.; Hyungjun, K.; Han-Bo-Ram, L., Atomic layer deposition of 1D and 2D nickel nanostructures on graphite. Nanotechnology 2017, 28 (11), 115301.
    連結:
  153. 39. Kim, W.-H.; Lee, H.-B.-R.; Heo, K.; Lee, Y. K.; Chung, T.-M.; Kim, C. G.; Hong, S.; Heo, J.; Kim, H., Atomic Layer Deposition of Ni Thin Films and Application to Area-Selective Deposition. Journal of The Electrochemical Society 2011, 158 (1), D1-D5.
    連結:
  154. 41. Warren, E. L.; Atwater, H. A.; Lewis, N. S., Silicon Microwire Arrays for Solar Energy-Conversion Applications. The Journal of Physical Chemistry C 2014, 118 (2), 747-759.
    連結:
  155. 42. Seo, K.; Yu, Y. J.; Duane, P.; Zhu, W.; Park, H.; Wober, M.; Crozier, K. B., Si Microwire Solar Cells: Improved Efficiency with a Conformal SiO2 Layer. ACS Nano 2013, 7 (6), 5539-5545.
    連結:
  156. 43. Shaner, M. R.; Hu, S.; Sun, K.; Lewis, N. S., Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2. Energy & Environmental Science 2015, 8 (1), 203-207.
    連結:
  157. Chaoter 1.
  158. 1. Hu, A.; Levis, S.; Meehl, G. A.; Han, W.; Washington, W. M.; Oleson, K. W.; van
  159. Clim. Change 2016, 6 (3), 290-294.
  160. 7. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chemical Reviews 2010, 110 (11), 6446-6473.
  161. 22. Jang, J.-W.; Du, C.; Ye, Y.; Lin, Y.; Yao, X.; Thorne, J.; Liu, E.; McMahon, G.; Zhu, J.; Javey, A.; Guo, J.; Wang, D., Enabling unassisted solar water splitting by iron oxide and silicon. Nature Communications 2015, 6, 7447.
  162. 46. Sun, K.; Park, N.; Sun, Z.; Zhou, J.; Wang, J.; Pang, X.; Shen, S.; Noh, S. Y.; Jing, Y.; Jin, S.; Yu, P. K. L.; Wang, D., Nickel oxide functionalized silicon for efficient photo-oxidation of water. Energy & Environmental Science 2012, 5 (7), 7872-7877.
  163. 49. Kelzenberg, M. D.; Boettcher, S. W.; Petykiewicz, J. A.; Turner-Evans, D. B.; Putnam, M. C.; Warren, E. L.; Spurgeon, J. M.; Briggs, R. M.; Lewis, N. S.; Atwater, H. A., Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. Nature Materials 2010, 9 (3), 239-244.
  164. 51. Seo, K.; Wober, M.; Steinvurzel, P.; Schonbrun, E.; Dan, Y.; Ellenbogen, T.; Crozier, K. B., Multicolored Vertical Silicon Nanowires. Nano Letters 2011, 11 (4), 1851-1856.
  165. 57. Chen, J. Y. C.; Serov, A.; Atanassov, P.; Stahl, S. S., Well-Defined NiFeAlO4 Inverse Spinel As Efficient Alkaline Water Oxidation Catalyst. Meeting Abstracts 2013, MA2013-02 (39), 2405.
  166. 69. Okamura, M.; Kondo, M.; Kuga, R.; Kurashige, Y.; Yanai, T.; Hayami, S.; Praneeth, V. K. K.; Yoshida, M.; Yoneda, K.; Kawata, S.; Masaoka, S., A pentanuclear iron catalyst designed for water oxidation. Nature 2016, 530 (7591), 465-468.
  167. 70. Zhao, S.; Wang, Y.; Dong, J.; He, C.-T.; Yin, H.; An, P.; Zhao, K.; Zhang, X.; Gao, C.; Zhang, L.; Lv, J.; Wang, J.; Zhang, J.; Khattak, A. M.; Khan, N. A.; Wei, Z.; Zhang, J.; Liu, S.; Zhao, H.; Tang, Z., Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nature Energy 2016, 1, 16184.
  168. Chapter 2.
  169. 5. Iwasawa, Y., X-ray Absorption Fine Structure for Catalysts and Surfaces. World Scientific: Singapore, 1996.
  170. 9. Gottlieb, S. O., Journal of Vacuum Science & Technology A: Vacuum, Surface, and Films, 1987.
  171. Chapter 3.
  172. 25. May, K. J.; Carlton, C. E.; Stoerzinger, K. A.; Risch, M.; Suntivich, J.; Lee, Y.-L.; Grimaud, A.; Shao-Horn, Y., Influence of Oxygen Evolution during Water Oxidation on the Surface of Perovskite Oxide Catalysts. Journal of Physical Chemistry Letters 2012, 3 (22), 3264-3270.
  173. 33. Hamdani, M.; Singh, R. N.; Chartier, P., Co3O4 and Co- Based Spinel Oxides Bifunctional Oxygen Electrodes. International Journal of Electrochemical Science 2010, 5 (4), 556-577.
  174. Chapter 4.
  175. 4. Okamura, M.; Kondo, M.; Kuga, R.; Kurashige, Y.; Yanai, T.; Hayami, S.; Praneeth, V. K. K.; Yoshida, M.; Yoneda, K.; Kawata, S.; Masaoka, S., A pentanuclear iron catalyst designed for water oxidation. Nature 2016, 530 (7591), 465-468.
  176. 6. Hagen, K. S., Iron(II) Triflate Salts as Convenient Substitutes for Perchlorate Salts:  Crystal Structures of [Fe(H2O)6](CF3SO3)2 and Fe(MeCN)4(CF3SO3)2. Inorganic Chemistry 2000, 39 (25), 5867-5869.
  177. 12. Jensen, M. P.; Costas, M.; Ho, R. Y. N.; Kaizer, J.; Mairata i Payeras, A.; Münck, E.; Que, L.; Rohde, J.-U.; Stubna, A., High-Valent Nonheme Iron. Two Distinct Iron(IV) Species Derived from a Common Iron(II) Precursor. Journal of the American Chemical Society 2005, 127 (30), 10512-10525.
  178. Chapter 5.
  179. 3. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar Water Splitting Cells. Chemical Reviews 2010, 110 (11), 6446-6473.
  180. 13. Nakata, K.; Fujishima, A., TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2012, 13 (3), 169-189.
  181. 28. Yang, J.; Walczak, K.; Anzenberg, E.; Toma, F. M.; Yuan, G.; Beeman, J.; Schwartzberg, A.; Lin, Y.; Hettick, M.; Javey, A.; Ager, J. W.; Yano, J.; Frei, H.; Sharp, I. D., Efficient and Sustained Photoelectrochemical Water Oxidation by Cobalt Oxide/Silicon Photoanodes with Nanotextured Interfaces. Journal of the American Chemical Society 2014, 136 (17), 6191-6194.
  182. 33. Mei, B.; Permyakova, A. A.; Frydendal, R.; Bae, D.; Pedersen, T.; Malacrida, P.; Hansen, O.; Stephens, I. E. L.; Vesborg, P. C. K.; Seger, B.; Chorkendorff, I., Iron-Treated NiO as a Highly Transparent p-Type Protection Layer for Efficient Si-Based Photoanodes. The Journal of Physical Chemistry Letters 2014, 5 (20), 3456-3461.
  183. 40. Xiang, C.; Weber, A. Z.; Ardo, S.; Berger, A.; Chen, Y.; Coridan, R.; Fountaine, K. T.; Haussener, S.; Hu, S.; Liu, R.; Lewis, N. S.; Modestino, M. A.; Shaner, M. M.; Singh, M. R.; Stevens, J. C.; Sun, K.; Walczak, K., Modeling, Simulation, and Implementation of Solar-Driven Water-Splitting Devices. Angewandte Chemie International Edition 2016, 55 (42), 12974-12988.