题名

建構以集群為基礎的快速時尚銷售預測模式-以日本企業為例

并列篇名

A Clustering-based Sales Forecasting Model for Multiple-channel Retailers: A Case of a Japanese Fashion Company

DOI

10.6846/TKU.2016.00094

作者

朱庭萱

关键词

銷售預測 ; 快速時尚 ; 極限學習機 ; 支援向量迴歸 ; K-Means ; sales forecasting ; fast fashion ; extreme learning machine ; support vector regression ; K-Means

期刊名称

淡江大學管理科學學系碩士班學位論文

卷期/出版年月

2016年

学位类别

碩士

导师

陳怡妃

内容语文

繁體中文

中文摘要

在現今快速變化及高度競爭的產業環境中,一種嶄新的商業模式-「快速時尚」在服飾產業帶來一波新的革命。在時尚產業裡,缺乏歷史數據、時尚趨勢不斷變化及產品需求不確定性情形下,準確的銷售預測是一個重要且具有挑戰性的問題。本研究整合K-Means集群技術與極限學習機(extreme learning machine, ELM)及支援向量迴歸(support vector regression, SVR)分別建構以集群為基礎KM-ELM及KM-SVR之時尚產業銷售預測模式,並根據日本時尚產業個案公司的實體店面與無店鋪通路銷售資料進行實證分析。研究結果顯示,KM-ELM及KM-SVR模式均優於ELM和SVR模式而有較高的預測準確度,表示整合集群技術有助於改善預測表現。此外,無論是在實體店面或是無店鋪通路銷售預測上,KM-ELM模式皆有良好的結果;其相較於其他預測模式,可為時尚產業界之最適銷售預測方法。

英文摘要

In fast fashion industry, accurate sales forecasting is essential and challenging, because of ever-changing fashion trends, insufficient historical data, and uncertainty in demands. This study propose clustering-based sales forecasting models which inte-grate K-Means and either of extreme learning machine (ELM) and support vector re-gression (SVR), namely KM-ELM and KM-SVR. The multiple-channel retailers of Japanese fashion company is selected as a case study in the research to do the empiri-cal analysis. The results showed that KM-ELM and KM-SVR provide better forecast-ing accuracy than ELM and SVR, and the results also presented that K-means is help-ful for improving the forecasting performance. Comparing with other forecasting models, KM-ELM performs better forecasting accuracy in multiple-channel retailers which can be seen as the best model of sales forecasting in fashion industry.

主题分类 商管學院 > 管理科學學系碩士班
社會科學 > 管理學
参考文献
  1. 陳佳君(2012)。平價流行之經營模式探討─以服飾產業為例。交通大學科技管理研究所學位論文。
    連結:
  2. 張家熏(2011)。基於K-means演算法,小波轉換及支持向量機之心電訊號辨識系統。臺灣師範大學機電科技研究所學位論文。
    連結:
  3. 蔡爾逸(2012)。應用支撐向量機(SVM)於都市不動產價格預測之研究。中央大學營建管理研究所碩士論文。
    連結:
  4. Au, K. F., Choi, T. M., & Yu, Y. (2008). Fashion Retail Forecasting by Evolutionary Neural Networks. International Journal of Production Economics,114(2), 615-630.
    連結:
  5. Benmouiza, K., & Cheknane, A. (2013). Forecasting Hourly Global Solar Radiation Using Hybrid K-means and Nonlinear Autoregressive Neural Network Models. Energy Conversion and Management, 75, 561-569.
    連結:
  6. Benoít, F., Van Heeswijk, M., Miche, Y., Verleysen, M., & Lendasse, A. (2013). Feature Selection for Nonlinear Models with Extreme Learning Machines. Neurocomputing, 102, 111-124.
    連結:
  7. Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control (forth ed.). John Wiley.
    連結:
  8. Caro, F., & Gallien, J. (2010). Inventory Management of a Fast-Fashion Retail Network. Operations Research, 58(2), 257-273.
    連結:
  9. Chang, P. C., Wang, Y. W., & Tsai, C. Y. (2005). Evolving Neural Network for Printed Circuit Board Sales Forecasting. Expert Systems with Applications, 29(1), 83-92.
    連結:
  10. Chang, P. C., Wang, Y. W., & Yang, W. N. (2004). An Investigation of the Hybrid Forecasting Models for Stock Price Variation in Taiwan. Journal of the Chinese Institute of Industrial Engineers, 21(4), 358-368.
    連結:
  11. Chen, Z. Y., & Fan, Z. P. (2013). Dynamic Customer Lifetime Value Prediction Using Iongitudinal Data: An Improved Multiple Kernel SVR Approach. Knowledge-Based Systems, 43, 123-134.
    連結:
  12. Choi, T. M., Hui, C. L., Liu, N., Ng, S. F., & Yu, Y. (2014). Fast Fashion Sales Forecasting with Limited Data and Time. Decision Support Systems, 59, 84-92.
    連結:
  13. Choi, T. M., Yu, Y., & Au, K. F. (2011). A Hybrid SARIMA Wavelet Transform Method for Sales Forecasting. Decision Support Systems, 51(1), 130-140.
    連結:
  14. Du, X. F., Leung, S. C., Zhang, J. L., & Lai, K. K. (2013). Demand Forecasting of Perishable Farm Products Using Support Vector Machine. International Journal of Systems Science, 44(3), 556-567.
    連結:
  15. Frings, G. S. (2005). Fashion: from Concept to Consumer. Pearson Education.
    連結:
  16. Guftar, M., Ali, S. H., Raja, A. A., & Qamar, U. (2015). A Novel Framework for Classification of Syncope Disease Using K-means Clustering Algorithm. SAI Intelligent Systems Conference (IntelliSys), London, 127-132.
    連結:
  17. Gunn, S. R. (1998). Support Vector Machines for Classification and Regression. ISIS Technical Report, 14.
    連結:
  18. Hossain, M. M., & Abdulla, F. (2015). Forecasting the Garlic Production in Bangladesh by ARIMA Model. Asian Journal of Crop Science, 7(2), 147.
    連結:
  19. Hsu, C. C., & Chen, C. Y. (2003). Applications of Improved Grey Prediction Model for Power Demand Forecasting. Energy Conversion and Management,44(14), 2241-2249.
    連結:
  20. Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A Practical Guide to Support Vector Classification, 1-16.
    連結:
  21. Huang, G., Huang, G. B., Song, S., & You, K. (2015). Trends in Extreme Learning Machines: a Review. Neural Networks, 61, 32-48.
    連結:
  22. Huang, G., Song, S., Gupta, J. N., & Wu, C. (2014). Semi-Supervised and Unsupervised Extreme Learning Machines. Transactions on Cybernetics, 44(12), 2405-2417.
    連結:
  23. Huang, G. B., & Chen, L. (2007). Convex Incremental Extreme Learning Machine. Neurocomputing, 70(16), 3056-3062.
    連結:
  24. Huang, G. B., & Chen, L. (2008). Enhanced Random Search Based Incre-mental Extreme Learning Machine. Neurocomputing, 71(16), 3460-3468.
    連結:
  25. Huang, G. B., Chen, L., & Siew, C. K. (2006). Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes. Neural Networks, IEEE Transactions on, 17(4), 879-892.
    連結:
  26. Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme Learning Machine: Theory and Applications. Neurocomputing, 70(1), 489-501.
    連結:
  27. Huang, C. L., & Tsai, C. Y. (2009). A Hybrid SOFM-SVR with a Fil-ter-Based Feature Selection for Stock Market Forecasting. Expert Sys-tems with Applications, 36(2), 1529-1539.
    連結:
  28. Jianxin, Z., & Zhongzhi, L. (2015). Application of Grey Neural Network Combined Model in Electronic Commerce Sales Forecast. Sensor Letters, 13(12), 1112-1117.
    連結:
  29. Kasun, L. L. C., Zhou, H., Huang, G. B., & Vong, C. M. (2013). Representational Learning with Extreme Learning Machine for Big data. IEEE Intelligent Systems, 28(6), 31-34.
    連結:
  30. Khashman, A., & Nwulu, N. I. (2011). Intelligent Prediction of Crude Oil Price Using Support Vector Machines. Applied Machine Intelligence and Informatics (SAMI), 9th International Symposium on, Smolenice, 165-169.
    連結:
  31. Lewis, E. B. (1982). Control of Body Segment Differentiation in Drosophila by the Bithorax Gene Complex. Embryonic Development, 1, 269-288.
    連結:
  32. Lu, C. J. (2014). Sales Forecasting of Computer Products Based on Variable Selection Scheme and Support Vector Regression. Neurocomputing, 128, 491-499.
    連結:
  33. Lu, C. J., Lee, T. S., & Lian, C. M. (2012). Sales Forecasting for Computer Wholesalers: A Comparison of Multivariate Adaptive Regression Splines and Artificial Neural Networks. Decision Support Systems, 54(1), 584-596.
    連結:
  34. MacQueen, J. (1967). Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14), 281-297.
    連結:
  35. Nenni, M. E., Giustiniano, L., & Pirolo, L. (2013). Demand Forecasting in the Fashion Industry: a Review. International Journal of Engineering Business Management, 5.
    連結:
  36. Priest, A. (2005). Uniformity and Differentiation in Fashion. International Journal of Clothing Science and Technology, 17(3/4), 253-263.
    連結:
  37. Ramos, P., Santos, N., & Rebelo, R. (2015). Performance of State Space and ARIMA Models for Consumer Retail Sales Forecasting. Robotics and Computer-Integrated Manufacturing, 34, 151-163.
    連結:
  38. Shrivastava, N. A., & Panigrahi, B. K. (2014). A Hybrid Wavelet-ELM Based Short Term Price Forecasting for Electricity Markets. International Journal of Electrical Power & Energy Systems, 55, 41-50.
    連結:
  39. Sun, Z. L., Choi, T. M., Au, K. F., & Yu, Y. (2008). Sales Forecasting Using Extreme Learning Machine with Applications in Fashion Retailing. Decision Support Systems, 46(1), 411-419.
    連結:
  40. Vapnik, V. N.(1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.
    連結:
  41. Wong, W. K., & Guo, Z. X. (2010). A Hybrid Intelligent Model for Medi-um-Term Sales Forecasting in Fashion Retail Supply Chains Using Extreme Learning Machine and Harmony Search Algorithm. International Journal of Production Economics, 128(2), 614-624.
    連結:
  42. Wu, J. L., & Chang, P. C. (2012). A Trend-Based Segmentation Method and the Support Vector Regression for Financial Time Series Forecasting. Mathematical Problems in Engineering, 1-20.
    連結:
  43. Xia, M., Lu, W., Yang, J., Ma, Y., Yao, W., & Zheng, Z. (2015). A Hybrid Method Based on Extreme Learning Machine and K-nearest Neighbor for Cloud Classification of Ground-Based Visible Cloud Image. Neurocomputing, 160, 238-249.
    連結:
  44. Yu, L., Dai, W., & Tang, L. (2016). A Novel Decomposition Ensemble Model with Extended Extreme Learning Machine for Crude Oil Price Forecasting. Engineering Applications of Artificial Intelligence, 47, 110-121.
    連結:
  45. Yu, X., Qi, Z., & Zhao, Y. (2013). Support Vector Regression for Newspaper/Magazine Sales Forecasting. Procedia Computer Science, 17, 1055-1062.
    連結:
  46. Yu, Y., Choi, T. M., & Hui, C. L. (2011). An Intelligent Fast Sales Forecasting Model for Fashion Products. Expert Systems with Applications, 38(6), 7373-7379.
    連結:
  47. 一、中文文獻
  48. Mika.K.(2010)。UNIQLO熱銷全球的秘密,日本首富柳井正的經營學。高寶書版。
  49. 丁宏飛、黄福玲、吴建樂(2010)。基於GA-SVR的煤炭需求預測模型研究。西南民族大學學報:自然科學版,(3),402-405。
  50. 楊雨凡(2010)。UNIQLO之經營型態與日本的消費文化。輔仁大學日本語文學研究所碩士論文。
  51. 葉清江、齊德章、郭定峪(2011)。結合經驗模態分解法與類神經網路在股價預測之應用。科技整合研討會。台北市:東吳大學企管系,14,125-138。
  52. 趙雲瀚(2001)。以資料探勘分析氣候因素對蔬菜供給量之影響。南華大學資訊管理研究所碩士論文。
  53. 盧聖智(2013)。整合集群技術與集成學習之混合式預測架構於餐飲業銷售預測。輔仁大學企業管理研究所碩士論文。
  54. 二、英文文獻
  55. Cai, X., Nan, X. Y., & Gao, B. P. (2015). Oxygen Supply Prediction Model Based on IWO-SVR in Bio-oxidation Pretreatment. Engineering Letters, 23(3).
  56. Fletcher, R. (1987). Practical Methods of Optimization John Wiley & Sons. New York, 80.
  57. Frank, C., Garg, A., Sztandera, L., & Raheja, A. (2003). Forecasting Women's Apparel Sales Using Mathematical Modeling. International Journal of Clothing Science and Technology, 15(2), 107-125.
  58. Tan, J. Y. B., Bong, D. B. L., & Rigit, A. R. H. (2012). Time Series Prediction Using Backpropagation Network Optimized by Hybrid K-means-Greedy Algorithm. Engineering Letters, 20(3), 203-210.
  59. Xue, W., Feijia, L., Wenxia, X., Kun, G., & Guodong, L. (2015). Based on K-Means Clustering and CNN Algorithm Research in Hail Cloud Determination. In Measuring Technology and Mechatronics Automation (ICMTMA), 7th International Conference on Measuring Technology and Mechatronics Automation, Nanchang, 232-235.
  60. 三、網路文獻
  61. 日本UNIQLO官方網站(2015)。
  62. 取自: http://www.uniqlo.com/jp/shop/c/flagship/
  63. 日本國土交通省氣象廳(2015)。
  64. 取自:http://www.jma.go.jp/jma/menu/menureport.html
  65. 迅銷集團FAST RETAILING官方網站(2015)。
  66. 取自:https://www.fastretailing.com/tc/ir/news/