参考文献
|
-
陳佳君(2012)。平價流行之經營模式探討─以服飾產業為例。交通大學科技管理研究所學位論文。
連結:
-
張家熏(2011)。基於K-means演算法,小波轉換及支持向量機之心電訊號辨識系統。臺灣師範大學機電科技研究所學位論文。
連結:
-
蔡爾逸(2012)。應用支撐向量機(SVM)於都市不動產價格預測之研究。中央大學營建管理研究所碩士論文。
連結:
-
Au, K. F., Choi, T. M., & Yu, Y. (2008). Fashion Retail Forecasting by Evolutionary Neural Networks. International Journal of Production Economics,114(2), 615-630.
連結:
-
Benmouiza, K., & Cheknane, A. (2013). Forecasting Hourly Global Solar Radiation Using Hybrid K-means and Nonlinear Autoregressive Neural Network Models. Energy Conversion and Management, 75, 561-569.
連結:
-
Benoít, F., Van Heeswijk, M., Miche, Y., Verleysen, M., & Lendasse, A. (2013). Feature Selection for Nonlinear Models with Extreme Learning Machines. Neurocomputing, 102, 111-124.
連結:
-
Box, G. E. P., Jenkins, G. M., & Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control (forth ed.). John Wiley.
連結:
-
Caro, F., & Gallien, J. (2010). Inventory Management of a Fast-Fashion Retail Network. Operations Research, 58(2), 257-273.
連結:
-
Chang, P. C., Wang, Y. W., & Tsai, C. Y. (2005). Evolving Neural Network for Printed Circuit Board Sales Forecasting. Expert Systems with Applications, 29(1), 83-92.
連結:
-
Chang, P. C., Wang, Y. W., & Yang, W. N. (2004). An Investigation of the Hybrid Forecasting Models for Stock Price Variation in Taiwan. Journal of the Chinese Institute of Industrial Engineers, 21(4), 358-368.
連結:
-
Chen, Z. Y., & Fan, Z. P. (2013). Dynamic Customer Lifetime Value Prediction Using Iongitudinal Data: An Improved Multiple Kernel SVR Approach. Knowledge-Based Systems, 43, 123-134.
連結:
-
Choi, T. M., Hui, C. L., Liu, N., Ng, S. F., & Yu, Y. (2014). Fast Fashion Sales Forecasting with Limited Data and Time. Decision Support Systems, 59, 84-92.
連結:
-
Choi, T. M., Yu, Y., & Au, K. F. (2011). A Hybrid SARIMA Wavelet Transform Method for Sales Forecasting. Decision Support Systems, 51(1), 130-140.
連結:
-
Du, X. F., Leung, S. C., Zhang, J. L., & Lai, K. K. (2013). Demand Forecasting of Perishable Farm Products Using Support Vector Machine. International Journal of Systems Science, 44(3), 556-567.
連結:
-
Frings, G. S. (2005). Fashion: from Concept to Consumer. Pearson Education.
連結:
-
Guftar, M., Ali, S. H., Raja, A. A., & Qamar, U. (2015). A Novel Framework for Classification of Syncope Disease Using K-means Clustering Algorithm. SAI Intelligent Systems Conference (IntelliSys), London, 127-132.
連結:
-
Gunn, S. R. (1998). Support Vector Machines for Classification and Regression. ISIS Technical Report, 14.
連結:
-
Hossain, M. M., & Abdulla, F. (2015). Forecasting the Garlic Production in Bangladesh by ARIMA Model. Asian Journal of Crop Science, 7(2), 147.
連結:
-
Hsu, C. C., & Chen, C. Y. (2003). Applications of Improved Grey Prediction Model for Power Demand Forecasting. Energy Conversion and Management,44(14), 2241-2249.
連結:
-
Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A Practical Guide to Support Vector Classification, 1-16.
連結:
-
Huang, G., Huang, G. B., Song, S., & You, K. (2015). Trends in Extreme Learning Machines: a Review. Neural Networks, 61, 32-48.
連結:
-
Huang, G., Song, S., Gupta, J. N., & Wu, C. (2014). Semi-Supervised and Unsupervised Extreme Learning Machines. Transactions on Cybernetics, 44(12), 2405-2417.
連結:
-
Huang, G. B., & Chen, L. (2007). Convex Incremental Extreme Learning Machine. Neurocomputing, 70(16), 3056-3062.
連結:
-
Huang, G. B., & Chen, L. (2008). Enhanced Random Search Based Incre-mental Extreme Learning Machine. Neurocomputing, 71(16), 3460-3468.
連結:
-
Huang, G. B., Chen, L., & Siew, C. K. (2006). Universal Approximation Using Incremental Constructive Feedforward Networks with Random Hidden Nodes. Neural Networks, IEEE Transactions on, 17(4), 879-892.
連結:
-
Huang, G. B., Zhu, Q. Y., & Siew, C. K. (2006). Extreme Learning Machine: Theory and Applications. Neurocomputing, 70(1), 489-501.
連結:
-
Huang, C. L., & Tsai, C. Y. (2009). A Hybrid SOFM-SVR with a Fil-ter-Based Feature Selection for Stock Market Forecasting. Expert Sys-tems with Applications, 36(2), 1529-1539.
連結:
-
Jianxin, Z., & Zhongzhi, L. (2015). Application of Grey Neural Network Combined Model in Electronic Commerce Sales Forecast. Sensor Letters, 13(12), 1112-1117.
連結:
-
Kasun, L. L. C., Zhou, H., Huang, G. B., & Vong, C. M. (2013). Representational Learning with Extreme Learning Machine for Big data. IEEE Intelligent Systems, 28(6), 31-34.
連結:
-
Khashman, A., & Nwulu, N. I. (2011). Intelligent Prediction of Crude Oil Price Using Support Vector Machines. Applied Machine Intelligence and Informatics (SAMI), 9th International Symposium on, Smolenice, 165-169.
連結:
-
Lewis, E. B. (1982). Control of Body Segment Differentiation in Drosophila by the Bithorax Gene Complex. Embryonic Development, 1, 269-288.
連結:
-
Lu, C. J. (2014). Sales Forecasting of Computer Products Based on Variable Selection Scheme and Support Vector Regression. Neurocomputing, 128, 491-499.
連結:
-
Lu, C. J., Lee, T. S., & Lian, C. M. (2012). Sales Forecasting for Computer Wholesalers: A Comparison of Multivariate Adaptive Regression Splines and Artificial Neural Networks. Decision Support Systems, 54(1), 584-596.
連結:
-
MacQueen, J. (1967). Some Methods for Classification and Analysis of Multivariate Observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, 1(14), 281-297.
連結:
-
Nenni, M. E., Giustiniano, L., & Pirolo, L. (2013). Demand Forecasting in the Fashion Industry: a Review. International Journal of Engineering Business Management, 5.
連結:
-
Priest, A. (2005). Uniformity and Differentiation in Fashion. International Journal of Clothing Science and Technology, 17(3/4), 253-263.
連結:
-
Ramos, P., Santos, N., & Rebelo, R. (2015). Performance of State Space and ARIMA Models for Consumer Retail Sales Forecasting. Robotics and Computer-Integrated Manufacturing, 34, 151-163.
連結:
-
Shrivastava, N. A., & Panigrahi, B. K. (2014). A Hybrid Wavelet-ELM Based Short Term Price Forecasting for Electricity Markets. International Journal of Electrical Power & Energy Systems, 55, 41-50.
連結:
-
Sun, Z. L., Choi, T. M., Au, K. F., & Yu, Y. (2008). Sales Forecasting Using Extreme Learning Machine with Applications in Fashion Retailing. Decision Support Systems, 46(1), 411-419.
連結:
-
Vapnik, V. N.(1995). The Nature of Statistical Learning Theory. New York: Springer-Verlag.
連結:
-
Wong, W. K., & Guo, Z. X. (2010). A Hybrid Intelligent Model for Medi-um-Term Sales Forecasting in Fashion Retail Supply Chains Using Extreme Learning Machine and Harmony Search Algorithm. International Journal of Production Economics, 128(2), 614-624.
連結:
-
Wu, J. L., & Chang, P. C. (2012). A Trend-Based Segmentation Method and the Support Vector Regression for Financial Time Series Forecasting. Mathematical Problems in Engineering, 1-20.
連結:
-
Xia, M., Lu, W., Yang, J., Ma, Y., Yao, W., & Zheng, Z. (2015). A Hybrid Method Based on Extreme Learning Machine and K-nearest Neighbor for Cloud Classification of Ground-Based Visible Cloud Image. Neurocomputing, 160, 238-249.
連結:
-
Yu, L., Dai, W., & Tang, L. (2016). A Novel Decomposition Ensemble Model with Extended Extreme Learning Machine for Crude Oil Price Forecasting. Engineering Applications of Artificial Intelligence, 47, 110-121.
連結:
-
Yu, X., Qi, Z., & Zhao, Y. (2013). Support Vector Regression for Newspaper/Magazine Sales Forecasting. Procedia Computer Science, 17, 1055-1062.
連結:
-
Yu, Y., Choi, T. M., & Hui, C. L. (2011). An Intelligent Fast Sales Forecasting Model for Fashion Products. Expert Systems with Applications, 38(6), 7373-7379.
連結:
-
一、中文文獻
-
Mika.K.(2010)。UNIQLO熱銷全球的秘密,日本首富柳井正的經營學。高寶書版。
-
丁宏飛、黄福玲、吴建樂(2010)。基於GA-SVR的煤炭需求預測模型研究。西南民族大學學報:自然科學版,(3),402-405。
-
楊雨凡(2010)。UNIQLO之經營型態與日本的消費文化。輔仁大學日本語文學研究所碩士論文。
-
葉清江、齊德章、郭定峪(2011)。結合經驗模態分解法與類神經網路在股價預測之應用。科技整合研討會。台北市:東吳大學企管系,14,125-138。
-
趙雲瀚(2001)。以資料探勘分析氣候因素對蔬菜供給量之影響。南華大學資訊管理研究所碩士論文。
-
盧聖智(2013)。整合集群技術與集成學習之混合式預測架構於餐飲業銷售預測。輔仁大學企業管理研究所碩士論文。
-
二、英文文獻
-
Cai, X., Nan, X. Y., & Gao, B. P. (2015). Oxygen Supply Prediction Model Based on IWO-SVR in Bio-oxidation Pretreatment. Engineering Letters, 23(3).
-
Fletcher, R. (1987). Practical Methods of Optimization John Wiley & Sons. New York, 80.
-
Frank, C., Garg, A., Sztandera, L., & Raheja, A. (2003). Forecasting Women's Apparel Sales Using Mathematical Modeling. International Journal of Clothing Science and Technology, 15(2), 107-125.
-
Tan, J. Y. B., Bong, D. B. L., & Rigit, A. R. H. (2012). Time Series Prediction Using Backpropagation Network Optimized by Hybrid K-means-Greedy Algorithm. Engineering Letters, 20(3), 203-210.
-
Xue, W., Feijia, L., Wenxia, X., Kun, G., & Guodong, L. (2015). Based on K-Means Clustering and CNN Algorithm Research in Hail Cloud Determination. In Measuring Technology and Mechatronics Automation (ICMTMA), 7th International Conference on Measuring Technology and Mechatronics Automation, Nanchang, 232-235.
-
三、網路文獻
-
日本UNIQLO官方網站(2015)。
-
取自: http://www.uniqlo.com/jp/shop/c/flagship/
-
日本國土交通省氣象廳(2015)。
-
取自:http://www.jma.go.jp/jma/menu/menureport.html
-
迅銷集團FAST RETAILING官方網站(2015)。
-
取自:https://www.fastretailing.com/tc/ir/news/
|